# Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Detailed Site Investigation

Landfill site off Hednesford Road, Norton Canes, Staffordshire

December 2010

# Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

# Prepared by:

Grontmij Limited 3<sup>rd</sup> Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

**T** 0121 7116600 **F** 0121 7116749 **E** gareth.taylor@grontmij.co.uk

#### Cannock Chase District Council Landfill site off Hednesford Rd, Norton Canes, Staffordshire EPA 1990 Part 2A Detailed Site Investigation

#### **Document Control**

| Document Co                                                                                                        |                     |                      |            |               |                                          |                                          |
|--------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|------------|---------------|------------------------------------------|------------------------------------------|
| Report<br>Reference                                                                                                | Issue Date          | Reason for<br>Issue  |            | Prepared by   | Checked by                               | Approved by                              |
| R483/103912/V1<br>/2010                                                                                            | 18/09/10            | First Issue          | Name       | Mark Hiatt    | Gareth Taylor                            | Nik Dixon                                |
|                                                                                                                    |                     |                      | Position   | Engineer      | Principal<br>Environmental<br>Consultant | Principal<br>Environmental<br>Consultant |
| R483/103912/V2 21/12/10 Updated<br>/2010 with stream<br>and tap<br>sampling<br>results &<br>associated<br>comments | with stream and tap | Name                 | Mark Hiatt | Gareth Taylor | Colin Macdonald                          |                                          |
|                                                                                                                    | resu                | results & associated | Position   | Engineer      | Principal<br>Environmental<br>Consultant | Director, Land Quality                   |

© Grontmij 2010 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.



#### CONTENTS

| 1     | INTRODUCTION                              | . 1 |
|-------|-------------------------------------------|-----|
| 1.1   | Terms of Reference                        |     |
| 2     | BACKGROUND INFORMATION                    | . 2 |
| 2.1   | Site Setting                              | . 2 |
| 2.2   | Previous Reports                          | . 3 |
| 3     | DETAILED INTRUSIVE INVESTIGATION          | . 5 |
| 3.1   | Scope and Methodology                     |     |
| 3.2   | Results                                   |     |
| 3.2.1 | Ground Conditions                         | 5   |
| 3.2.2 | Adequacy of Investigation Depth           | 6   |
| 3.2.3 | Field Evidence of Contamination           | 6   |
| 3.2.4 | Soil Analysis Results                     | 6   |
| 3.2.5 | Soil Leachate Analysis Results            | 9   |
| 3.2.6 | Ground Gas Monitoring                     |     |
| 3.2.7 | Safety of Water Supply Pipes              |     |
| 4     | UPDATED CONCEPTUAL SITE MODEL             |     |
| 4.1   | Introduction                              | 12  |
| 4.2   | Contaminants                              |     |
| 4.3   | Receptors                                 | 12  |
| 4.4   | Pathways                                  |     |
| 5     | STATISTICAL ANALYSIS OF HUMAN HEALTH RISK | 15  |
| 5.1   | Statistics and Part 2A                    |     |
| 5.2   | Statistical Testing Methodology           |     |
| 5.2.1 | Averaging Areas                           |     |
| 5.2.2 | Contaminants of Concern Analysed          |     |
| 5.2.3 | Dataset Management                        |     |
| 5.2.4 | Sample Mean and Critical Concentration    | 16  |
| 5.3   | Discussion                                | 16  |
| 6     | SURACE WATER ANALYSIS                     | 18  |
| 6.1   | Introduction                              |     |
| 6.2   | Methodology                               |     |
| 6.3   | Results                                   |     |
| 6.4   | Conclusion                                | 19  |
| 7     | SAMPLING OF WATER AT RESIDENTS' TAPS      | 20  |
| 7.1   | Introduction                              |     |
| 7.2   | Methodology                               |     |
| 7.3   | Results                                   |     |
| 8     | SUMMARY AND CONCLUSION                    |     |
| -     |                                           |     |



# FIGURES

| igure 2.1 – Site Location |
|---------------------------|
|---------------------------|

# TABLES

| Table 2.1 – Site Setting                                           | 2  |
|--------------------------------------------------------------------|----|
| Table 2.2 - Potential Pollutant Linkages                           |    |
| Table 3.1 – Soil Analysis Results Summary                          |    |
| Table 3.2 – Soil Leachate Analysis Results Summary                 |    |
| Table 4.1 – Pollutant Linkages, Post-Site Investigation            | 13 |
| Table 5.1 - Comparison of Sample Mean with Critical Concentrations | 16 |
| Table 6.1 – Surface Water Analysis Results and Screening           | 18 |
| Table 7.1 – Tap Samples – Chemical analysis Results Summary        | 21 |

#### DRAWINGS

Drawing 1: Exploratory Hole Location Plan

#### APPENDICES

| Appendix A | Initial Desktop Study and Site Walkover Report, January 2010 |
|------------|--------------------------------------------------------------|
| Appendix B | Limitations Statement                                        |
| Appendix C | Exploratory Hole Logs                                        |
| Appendix D | Chemical Analysis Results                                    |
| Appendix E | Gas Monitoring Data                                          |
| Appendix F | Severity and Probability of Risk (after CIRIA 552)           |



# 1 INTRODUCTION

#### 1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Grontmij assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, located off Hednesford Road, Norton Canes, Staffordshire (hereafter referred to as 'the site') was identified as a priority for inspection as:

- The site comprises an area of land which appears to have been infilled with waste material
- The site is considered to be sensitive as 34 residential properties with gardens overly the inferred extent of landfill and the site is underlain by a secondary A aquifer. Additionally, a surface water receptor is present directly east of the inferred landfill boundary

Following the completion of a desktop study (see Appendix A) and a successful application for funding from DEFRA, Grontmij was subsequently appointed by the Council to implement a site investigation, which was undertaken in July 2010. This report presents the findings of the detailed investigation, assesses the significance of the contaminant concentrations detected, and makes recommendations for further work.

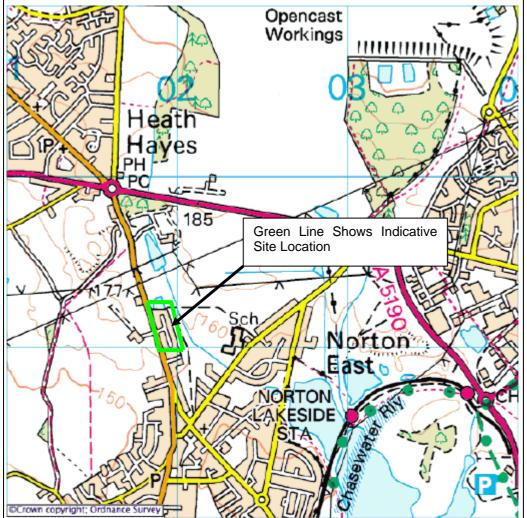
This report is subject to the limitations presented in Appendix B.



# 2 BACKGROUND INFORMATION

# 2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1.


During a public consultation exercise, prior to commencement of site work, it was established that the extent of infilling beneath the site may extend further north than historical mapping and Environment Agency records suggest. This increased extent of the site is accounted for in the descriptions below.

| Data                              | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Address                           | Landfill site off Hednesford Road, Norton Canes, Staffordshire. Nearest postcode is WS11 9SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Current site use                  | Residential houses and gardens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Grid Reference                    | Located around 401945, 309053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Site Area                         | Approximately 0.7 ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Topography                        | Site generally slopes towards the south-east at a slight grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Surrounding land<br>use           | North open land, with large pond @ 5m<br>East: open land, with un-named stream @<br>South: further residential housing adjacent<br>West: Hednesford Road, with open land / residential housing @ 10m                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Geology                           | British Geological Survey (BGS) 1:63,360 map sheet 154 (Lichfield) and the BGS website Geoindex tool indicate the site is underlain by the Middle Coal Measures (interbedded mudstones, siltstones, sandstones and coal seams). The overlying superficial deposits are shown to be Devensian Till; the likely thickness of deposits is not stated.                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Hydrogeology                      | The middle coal measures are regarded as a Secondary A by the Environment Agency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Source Protection<br>Zones (SPZs) | The Environment Agency website indicates that the site does not lie within a source protection zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Surface Waters                    | Pond 5m north (upgradient) of site. Unnamed stream is located 10m east of the site and is discharges into Chasewater (man made reservoir) approximately 600m SE                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Ecological<br>Receptors           | No ecologically sensitive sites, as listed in the Contaminated Land Regulations 2006, identified by a MAGIC search, exist either on, or within a 250m radius of, the site                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Historical Land Use               | The data provided, including Environment Agency historical landfill site records,<br>indicates that the site was formerly operated as a landfill site from 1938 onwards<br>and was subsequently developed as residential housing around the 1970s.<br>There is no information about the site's operational period or the date the site<br>was developed on Environment Agency "What's In Your Back Yard" website.<br>Infilling of the site probably pre-dates the Control of Pollution Act 1974, meaning<br>that site operations are unlikely to have been subject to licensing. |  |  |  |  |  |  |

Table 2.1 – Site Setting



Figure 2.1 – Site Location



Controller of HMSO, © Crown Copyright (not to scale)

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the

# 2.2 Previous Reports

Grontmij has previously completed a desktop assessment of the site, as presented as Appendix A. The assessment included the review of on-line data resources, in-house mapping and records provided by the council, and a site walkover.

The desk study report included an initial Conceptual Site Model (CSM) of potential pollutant linkages, developed in accordance with the model procedures<sup>1</sup> and statutory guidance<sup>2</sup>. The CSM is re-presented as Table 2.2 overleaf.

<sup>&</sup>lt;sup>2</sup> DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.



Ν

<sup>&</sup>lt;sup>1</sup> CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

#### Table 2.2 - Potential Pollutant Linkages

| No.  | Receptor                                                                                                               | Contaminant(s)                                                                                                       | Pathway(s)                                                                                                              | Risk of                 | Comments                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 140. | Receptor                                                                                                               | containinant(3)                                                                                                      | T dtiwdy(3)                                                                                                             | Pollutant               |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      |                                                                                                                        |                                                                                                                      |                                                                                                                         | Linkage Being           |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      |                                                                                                                        |                                                                                                                      |                                                                                                                         | Realised                |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Hum  | an Health                                                                                                              |                                                                                                                      |                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 1    | Residents of properties above<br>infilled ground – including<br>children playing in gardens &<br>vegetable consumption | Contaminants including (but not<br>limited to) metals, hydrocarbons,<br>PAHs, VOCs, SVOCs within the<br>made ground. | Direct ingestion/dermal<br>contact/inhalation of dust/inhalation<br>of vapours/consumption of home-<br>grown vegetables | Medium to high<br>risk  | Grass and/or topsoil coverage likely to mitigate risk to an extent – risk<br>is greatest where possibly impacted soils are exposed or could be<br>encountered, for example, when digging a vegetable patch or when<br>children play outdoors. Properties are constructed directly above a<br>potentially significant contamination source. |  |  |  |
| 2    |                                                                                                                        | Gases arising from<br>decomposition of deleterious<br>elements of the made ground.                                   | Movement into buildings, subsequent<br>asphyxiation (CO2, CH4), explosion<br>(CH4) and toxicity (CO, H2s) risks.        | Medium to high<br>risk. | Investigation and monitoring required to determine risk.                                                                                                                                                                                                                                                                                   |  |  |  |
| Prop | erty                                                                                                                   |                                                                                                                      |                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 4    | Subsurface services serving<br>the buildings (principally<br>water supply)                                             | Contaminants including metals,<br>hydrocarbons, PAHs, VOC,<br>SVOCs within the made ground.                          | Chemical attack and tainting of water<br>supply could occur at high<br>contaminant concentrations / severe<br>pH levels | Medium risk.            | Risk will depend on depth and concentration of contaminants and material(s) used for water pipes.                                                                                                                                                                                                                                          |  |  |  |
| 5    | Property (Structures) – sub-<br>surface concrete                                                                       | Sulphate and pH                                                                                                      | Contact between contaminants and concrete.                                                                              | Medium risk             | Possible risk but could only reasonably be established if concrete class used to construct buildings can be established (unlikely) – therefore, no testing targeted this area – more relevant for any new planned buildings.                                                                                                               |  |  |  |
| Cont | Controlled Waters                                                                                                      |                                                                                                                      |                                                                                                                         |                         |                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 6    | Minor aquifer beneath site                                                                                             | Contaminants including metals,<br>hydrocarbons, PAHs, VOCs and<br>SVOCs within the made ground.                      | Leaching of chemicals to aquifer                                                                                        | Medium risk             | Risk will depend upon depth and concentration of contaminants, presence/absence of confining layers between contaminants and the aquifers, leaching potential etc. Site data needed.                                                                                                                                                       |  |  |  |
| 7    | Surface waters (pond 5m to<br>north and stream 10m to<br>east)                                                         | Contaminants including metals,<br>hydrocarbons, PAHs, VOCs and<br>SVOCs within the made ground.                      | Groundwater flow in permeable strata which are in continuity with watercourses                                          | Medium risk             | Risk depends upon depth/presence of contaminated groundwater,<br>hydraulic gradient within any impacted groundwater unit, and continuity<br>between impacted groundwater and watercourse.                                                                                                                                                  |  |  |  |



# 3 DETAILED INTRUSIVE INVESTIGATION

In order to further examine the potential pollutant linkages identified in Table 2.2, and following a successful application for DEFRA funding, a detailed site investigation was undertaken on the 5th, 6th and 12th July 2010. This section describes the site investigation undertaken and results obtained.

# 3.1 Scope and Methodology

The intrusive site investigation included the following:

- A consultation exercise with residents living at the site, including a mailshot and a public open evening;
- Obtaining plans of underground services and CAT-scanning proposed drilling locations, using a Radiodetection CAT1 and signal generator;
- Drilling eight hand held window sample holes (WS1 WS8) to a maximum depth of 5.0m bgl, at the locations shown on Drawing 1. The window sample holes, which were drilled by Sherwood Drilling Services, were positioned in the rear gardens of housing located above the extent of infill, as indicated on historical mapping and by anecdotal evidence. Borehole positions were selected on the basis of achieving good coverage of the site. The purpose of the window sample holes was to examine shallow and deeper soil conditions, enable the retention of samples for laboratory testing, and facilitate the installation of 50mm diameter dedicated gas monitoring wells in each borehole;
- Logging soil arisings in accordance with BS5930:1999, and additionally noting any visual or olfactory evidence of potential contamination;
- Retaining representative soil samples of the strata encountered, which were selected on the basis of field observations of potential contamination and achieving good spatial and depth coverage of the site
- Submitting retained samples to Alcontrol Geochem in cooled coolboxes and under full chain of custody documentation, and instructing the analysis of samples, and;
- Undertaking four ground gas monitoring rounds, using a Geotechnical Instruments GA2000 gas analyser and flow pod.

# 3.2 Results

# 3.2.1 Ground Conditions

The ground conditions encountered at the site generally comprised Made Ground over Glacial Till (encountered as clay) and Glacio – Fluvial deposits (encountered either as sand, or as sand and gravel).

#### Made Ground

Made Ground was encountered to a maximum depth of 4.0m bgl (in WS2 – borehole termination depth in this hole) and was predominantly granular in nature, consisting of a single sand horizon or interbedded sand, gravel and occasional clay layers and pockets. The gravel content of the Made Ground was highly variable, including fine to coarse ash, burnt shale, glass, mudstone, coal, quartz, coarse grained sandstone, plastic, corroded metal, brick, clinker, ceramic, fabric, wood, slate and leather fragments.



#### Glacial Till and Glacio - Fluvial Deposits

Encountered within all exploratory holes except WS2 and WS8, from depths ranging between 0.96m and 2.31m bgl, and proven to borehole termination at a maximum of 5.0m bgl. The Glacial Till typically comprised a single horizon of soft to very stiff, sandy slightly gravelly clay. The Glacio - fluvial deposits comprised (variously) sand and gravel, silty sand, clayey sand and gravelly sand. The gravel content of the Glacial Till and Glacio – Fluvial deposits consisted of fine to coarse quartz.

#### Carboniferous Coal Measures

Weathered residual soils of the solid geology, comprising very stiff clay, were encountered within WS1 only from 3.80m to 5.00m bgl.

#### Groundwater

Major groundwater ingress was encountered at 0.50m bgl during the excavation of a service inspection pit prior to the drilling of WS6. Moderate groundwater inflow was recorded within WS7 at 1.9m bgl. No other groundwater entries were observed.

The above findings are discussed further in Section 4 (updated CSM). Window sampler hole logs, providing full details of the strata encountered, are included within Appendix C.

# 3.2.2 Adequacy of Investigation Depth

Superficial deposits (i.e. natural ground) were proven in six of the eight window sampler holes drilled, indicating that the full extent of infill material at the site has been encountered and assessed, and gas monitoring (Section 3.2.5) is likely to be representative of the full body of infill. There is no need to consider further deeper drilling at the site.

# 3.2.3 Field Evidence of Contamination

The drilling arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1:

| Exploratory Hole | Visual and Olfactory Evidence of Contamination   |
|------------------|--------------------------------------------------|
| WS1              | 0.23 – 0.68m bgl: burnt shale and ash            |
| WS2              | 0.76 – 1.09m bgl: burnt shale, clinker and metal |
|                  | 2.54 – 4.00m bgl (EOB): occasional clinker       |
| WS3              | 0.34 – 0.96m bgl: clinker and metal              |
| WS4              | 0.00 – 0.96m bgl: ash, slag and burnt shale      |
| WS5              | None identified                                  |
| WS6              | 0.14 – 1.14m bgl: ash and burnt shale            |
| WS7              | 0.00 – 2.31m bgl: ash, burnt shale and metal     |
| WS8              | 0.51 – 1.00m bgl (EOB): ash                      |

Table 3.1 – Field Evidence of Potential Contamination

EOB = end of borehole

# 3.2.4 Soil Analysis Results

Twelve samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to ALcontrol Geochem of Deeside. ALcontrol is UKAS accredited and holds MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve good spatial coverage of the site.



Table 3.1 presents a summary of the analysis results. The results have been compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used in preference comprise:

- 2009 Soil Guideline Values (SGVs) published by the Environment Agency / DEFRA, generated using the latest Contaminated Land Exposure Assessment (CLEA) model, version 1.06
- Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) or the Environmental Industries Commission (EIC), or calculated by Grontmij, all using CLEA 1.06
- SGVs published by the Environment Agency / DEFRA between 2002 and 2007, calculated using prior versions of the CLEA model.

Full analytical testing results are included as Appendix D.



| Determinand                                                                                                             | No. of<br>Samples<br>Tested | Minimum<br>Value | Maximum<br>Value                              | SGV / GAC<br>(using 6%<br>SOM where<br>SOM-<br>dependant) <sup>1</sup> | Locations where<br>SGV or GAC are<br>exceeded |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|
| Arsenic                                                                                                                 | 14                          | 6.8              | 66                                            | 32                                                                     | WS7, 0.3m;<br>WS8, 0.6m                       |
| Antimony                                                                                                                | 14                          | <0.6             | 63                                            | 550                                                                    | -                                             |
| Barium                                                                                                                  | 14                          | 62               | 660                                           | 1300                                                                   | -                                             |
| Beryllium                                                                                                               | 14                          | 1.02             | 14                                            | 51                                                                     | -                                             |
| Boron (water-soluble)                                                                                                   | 14                          | 1.03             | 10                                            | 291                                                                    | -                                             |
| Cadmium                                                                                                                 | 14                          | 0.33             | 4.4                                           | 10                                                                     | -                                             |
| Chromium, hexavalent                                                                                                    | 14                          | <0.60            | 6.0                                           | 4.3                                                                    | WS7, 0.1m                                     |
| Chromium, total                                                                                                         | 14                          | 8.1              | 74                                            | 3,000                                                                  | -                                             |
| Copper                                                                                                                  | 14                          | 21               | 720                                           | 2,330                                                                  | -                                             |
| Lead <sup>2</sup>                                                                                                       | 14                          | 34               | 790                                           | 450                                                                    | WS7, 0.3m                                     |
| Mercury <sup>3</sup>                                                                                                    | 14                          | <0.14            | <0.14                                         | 1                                                                      | -                                             |
| Nickel                                                                                                                  | 14                          | 10               | 150                                           | 130                                                                    | WS7, 0.3m                                     |
| Selenium                                                                                                                | 14                          | <1               | 2.3                                           | 350                                                                    | -                                             |
| Vanadium                                                                                                                | 14                          | 14               | 89                                            | 75                                                                     | WS7, 0.3m                                     |
| Zinc                                                                                                                    | 14                          | 68               | 2000                                          | 3,750                                                                  | -                                             |
| Cyanide                                                                                                                 | 6                           | <1               | <1                                            |                                                                        | -                                             |
| Thiocyanate                                                                                                             | 6                           | <1               | <1                                            |                                                                        | -                                             |
| Asbestos screen                                                                                                         | 6                           | No fibre         | s detected in                                 | any sample                                                             | -                                             |
| Benzene                                                                                                                 | 6                           | <0.01            | <0.01                                         | 0.33                                                                   | -                                             |
| Toluene                                                                                                                 | 6                           | <0.01            | <0.01                                         | 610                                                                    | -                                             |
| Ethyl Benzene                                                                                                           | 6                           | <0.01            | <0.01                                         | 350                                                                    | -                                             |
| Xylene <sup>4</sup>                                                                                                     | 6                           | <0.01            | <0.01                                         | 230                                                                    | -                                             |
| TPH – CWG <sup>5</sup>                                                                                                  | 6                           | 11               | 1800                                          | various                                                                | -                                             |
| Phenols                                                                                                                 | 6                           | <0.01            | <0.01                                         | 420                                                                    | -                                             |
| Polyaromatic Hydrocarbons (PAHs) <sup>6</sup>                                                                           | 3                           | 2.9              | 9.9                                           | various                                                                | -                                             |
| Volatile Organic Compounds<br>and Semi-Volatile Organic<br>Compounds (excl above)<br>Values presented in mg/kg, correct | 3                           | such sci         | ing values exc<br>reening values<br>published | -                                                                      |                                               |

Table 3.1 – Soil Analysis Results Summary

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding). Bold values indicate locations where observed concentrations exceed the screening value.

<sup>1</sup> Six samples were tested for Soil Organic Matter (%SOM) content. A minimum value of 4.79% and a maximum of 55% were recorded, with a mean of 19% and a median of 11%. It is therefore justified, as a minimum, to use the SGVs and GAC generated using a 6% SOM value in CLEA in an initial screen <sup>2</sup> SGV quoted was generated by DEFRA using earlier version of CLEA. A value using the latest version of CLEA is

awaited <sup>3</sup> Testing results presented represent total mercury. SGV presented is for elemental mercury, the most stringent of the elemental, inorganic and methyl mercury SGVs <sup>4</sup>SGV for para-xylene quoted (worst case of the three isomers)

<sup>5</sup> Testing values quoted are for total TPH across all aromatic and aliphatic bands (C5-C35). None of the TPH-CWG screening criteria for individual aliphatic and aromatic bands were exceeded by the corresponding banded analyses <sup>6</sup> Testing values quoted are for total PAHs. None of the individual PAH compound screening criteria were exceeded by the laboratory analyses

The concentrations of heavy metals in soils at the site exceed the generic screening values adopted.



# 3.2.5 Soil Leachate Analysis Results

Three soil samples were submitted for soil leachate analysis (BS12457 2:1 single stage test) at Alcontrol. Table 3.2 presents a summary of the analysis results. The results have been compared to threshold values quoted in the River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 ("WFD values") and, where no WFD standard exists, UK Environmental Quality Standards (EQSs) protective of aquatic plants and animals in surface watercourses.

Full analytical testing results are included in Appendix D.

| Contaminant                                                                      | No of             | Minimum<br>Value | Maximum<br>Value | EQS<br>(freshwater) | WFD<br>values |
|----------------------------------------------------------------------------------|-------------------|------------------|------------------|---------------------|---------------|
|                                                                                  | Samples<br>Tested | Value            | value            | (iresilwater)       | values        |
| Arsenic (mg/l)                                                                   | 3                 | <0.01            | 0.01             | 0.05                | 0.05          |
| Boron (mg/l)                                                                     | 3                 | 0.55             | 0.93             | 2.0                 | n/s           |
|                                                                                  | 3                 |                  |                  | 5                   | 0.45 to       |
| Cadmium                                                                          |                   | 0.11             | 0.59             |                     | 1.5 **        |
| Chromium                                                                         | 3                 | 3.3              | 33               | 5 – 250**           | 32***         |
| Copper                                                                           | 3                 | 5.3              | 5.6              | 1 - 28**            | 1 - 28**      |
| Lead                                                                             | 3                 | 0.29             | 1.2              | 4 - 250**           | 7.2           |
| Nickel                                                                           | 3                 | 8.8              | 13               | 50 - 200**          | 20            |
| Vanadium                                                                         | 3                 | 3.1              | 25               | 20 - 60**           | n/s           |
| Zinc                                                                             | 3                 | 26               | 180              | 8 - 500**           | 8-125**       |
| Mercury                                                                          | 3                 | <0.01            | <0.01            | 1                   | 0.07          |
| Volatile Organic Compounds and<br>Semi-Volatile Organic<br>Compounds (incl PAHs) | 2                 | All results <    | detection limit  | Variou              | a             |

 Table 3.2 – Soil Leachate Analysis Results Summary

Values are presented as µg/l unless stated, and are rounded as applicable to EQS values. **Bold and italic values** indicate testing results in excess of screening values.

\*\* value adopted is dependant upon hardness of the water

\*\*\* quoted as a 95<sup>th</sup> percentile standard, i.e. value can be exceeded up to 5% of the time without being considered a "fail"

n/s - no standard

The maximum concentrations of four metals in leachate exceeded the corresponding screening values (or rather, the exceedances are of the low end of quoted screening value ranges). The absolute EQS value to be adopted at a given site is dependent upon the hardness of surface water at the site.

# 3.2.6 Ground Gas Monitoring

Four rounds of ground gas monitoring were undertaken, using a Geotechnical Instruments GA2000 gas analyser with flow pod. A summary of the gas monitoring results is presented in Table 3.3, with full monitoring data in Appendix E:





| Well | Maximum Values Recorded During Monitoring<br>Events:       |                     |          |           |        | Gas Screening<br>Value <sup>1</sup> (I/hr) | Situation "A"<br>Characteristic |  |
|------|------------------------------------------------------------|---------------------|----------|-----------|--------|--------------------------------------------|---------------------------------|--|
|      | Peak                                                       | Steady              | Steady   | Steady    | Flow   |                                            | Situation <sup>1</sup>          |  |
|      | CH₄ (%)                                                    | CO <sub>2</sub> (%) | CO (ppm) | H₂S (ppm) | (l/hr) |                                            |                                 |  |
| WS1  | 0                                                          | 2.2                 | 0        | 0         | 0.1    | 0.002                                      | 1                               |  |
| WS2  | 0                                                          | 7.3                 | 0        | 0         | 0.1    | 0.007                                      | 1 (see text below)              |  |
| WS3  | 0                                                          | 8.1                 | 0        | 0         | 0.1    | 0.008                                      | 2 (see text below)              |  |
| WS4  | 0                                                          | 4.1                 | 0        | 0         | 0.1    | 0.004                                      | 1                               |  |
| WS5  | 0                                                          | 3.6                 | 0        | 0         | 0.2    | 0.007                                      | 1                               |  |
| WS6  | 0                                                          | 2.0                 | 0        | 0         | 0.2    | 0.004                                      | 1                               |  |
| WS7  | 0                                                          | 4.0                 | 0        | 0         | - 0.1  | 0.004                                      | 1                               |  |
| WS8  | 0                                                          | 3.5                 | 0        | 0         | 0.3    | 0.011                                      | 1                               |  |
| A    | Atmospheric 28/07/2010 996mb (steady trend throughout day) |                     |          |           |        | nroughout day)                             |                                 |  |
|      | Pressure: 11/08/2010 9                                     |                     |          |           | 991    | 1mb (rising trend throughout day)          |                                 |  |
|      |                                                            |                     | 25/08/2  | 010       | 993    | 3mb (falling trend throughout day)         |                                 |  |
|      | 08/09/2010 98                                              |                     |          |           |        | mb (rising trend thr                       | oughout day)                    |  |

Table 3.3 – Summary of Gas Monitoring Data

Readings obtained within a 3 minute measurement period, obtained with a Geotechnical Instruments GA2000plus gas analyser.

 $CH_4$  – methane;  $O_2$  – oxygen;  $CO_2$  carbon dioxide;

CO – carbon monoxide; mb – millibars l/hr – li

 $H_2S$  – hydrogen sulphide; mbgl – metres below ground level mb – millibars l/hr – litres per hour. <sup>1</sup>CIRIA Characteristic Situation based on methodology presented in CIRIA Report C665, Assessing Risks Posed by Hazardous Gases to Buildings. Where the flow rate recorded in the field is zero or negative, a flow of 0.01 l/hr is assumed

The summary data presented above indicates that, in regard to methane and carbon dioxide, CIRIA characteristic situation CS1 should be applied to the majority of the wells. This is the lowest risk category (of six) presented in CIRIA report 665, and indicates that no special gas precautions would be required in the construction of new buildings.

<u>In regard to WS2 and WS3</u> - CIRIA report 665, Table 8.5, indicates that the assessor should consider increasing the applied characteristic situation from CS1 to CS2 if the recorded CO2 concentration is not "typically <5%". The CO2 concentrations recorded on each gas monitoring event (see Appendix E) were as follows:

- WS2: 2.0%, 7.3%, 3.3%, 2.3%
- WS3: 7.8%, 7.0%, 8.0%, 8.1%

The above data indicates that it is reasonable to apply CS1 to WS2, but CS2 should apply to WS3. Where CS2 applies, CIRIA report 665 indicates that basic gas protection measures should be installed when new buildings are constructed. Gas protection to a CS2 standard could comprise, for example, a reinforced concrete slab with a standard 1200g damp proof membrane and underfloor venting.

It is possible that basic gas protection measures such as those outlined above were incorporated when the properties at the site were constructed. As the properties at the site comprise bungalows, constructed around the 1970s, it is unlikely that the properties include cellars, where the risk of CO2 accumulation, and subsequent asphyxiation, is the greatest. Additionally, while the infill material encountered contained ash, burnt shale and some wood fragments, which may generate moderate ground gas concentrations in small quantities, the infill did not contain domestic waste, extensive amounts of wood, paper or similar material that is likely to decay and generate significant concentrations of harmful gases.

On the balance of evidence, methane and carbon dioxide are unlikely to pose a risk to the housing at the site.



Additionally, carbon monoxide and hydrogen sulphide were not detected at concentrations in excess of the gas analyser detection limit, indicating that the toxic inhalation risks posed by these gases is negligible.

# 3.2.7 Safety of Water Supply Pipes

The soil quality data obtained has been screened against Water Regulations Advisory Scheme (WRAS) thresholds, above which "special consideration of the material used" for the water pipe should be given. The results of the screening exercise are presented in Table 3.4 below.

| Analyte                   | Test Res           | ult (mg/kg)                    | WRAS Threshold<br>Value (mg/kg) |
|---------------------------|--------------------|--------------------------------|---------------------------------|
|                           | max                | Mean (where<br>max>threshold)) |                                 |
| Sulphate                  | Not analysed       | -                              | 2000                            |
| Sulphur                   | Not analysed       | -                              | 5000                            |
| Sulphide                  | Not analysed       | -                              | 250                             |
| рН                        | 5.97 – <b>8.35</b> | 7.3                            | <5 or <b>&gt;8</b>              |
| Antimony                  | 63                 | 19                             | 10                              |
| Arsenic                   | 66                 | 18                             | 10                              |
| Cadmium                   | 4.4                | 1.0                            | 3                               |
| Chromium (hexavalent)     | 6.0                | -                              | 25                              |
| Chromium (total)          | 74                 | -                              | 600                             |
| Cyanide (free)            | <1                 | -                              | 25                              |
| Cyanide (complexed)       | <1                 | -                              | 250                             |
| Lead                      | 790                | 140                            | 500                             |
| Mercury                   | <0.14              | -                              | 1                               |
| Selenium                  | 2.3                | -                              | 3                               |
| Thiocyanate               | <1                 | -                              | 50                              |
| Coal Tar                  | Not analysed       | -                              | 50                              |
| Cyclohexane extractable   | Not analysed       | -                              | 50                              |
| Phenol                    | <0.01              | -                              | 5                               |
| Polyaromatic Hydrocarbons | 9.9                | -                              | 50                              |
| Toluene extractable       | <0.01              | -                              | 50                              |
| Petroleum Hydrocarbons    | 1800               | 470                            | 50                              |

Table 3.4 – WRAS Threshold Screen

The maximum concentrations of antimony, arsenic, cadmium, lead and petroleum hydrocarbons, and the maximum soil pH level recorded, exceed the WRAS threshold values. The mean concentrations of antimony, arsenic and petroleum hydrocarbons recorded also exceed the WRAS threshold values

Further investigation of the materials used for water supply pipes at the site, and possibly testing for further analytes, will be required.

The results of the intrusive investigation and monitoring are discussed in more detail in the following section.



# 4 UPDATED CONCEPTUAL SITE MODEL

# 4.1 Introduction

The CSM presented in the earlier Grontmij desk study report (Appendix A) was updated, using the findings of the site investigation, as presented in the following sections.

#### 4.2 Contaminants

The "contaminants" term in the conceptual model has been evaluated by comparing the chemical analysis results obtained during the site investigation with published generic screening values (Tables 3.1, 3.2 and 3.4).

The following contaminants were detected in soil at concentrations in excess of the screening values relevant for a residential site with plant uptake:

• Arsenic, hexavalent chromium, lead, nickel, vanadium

The following contaminants were detected in leachate at concentrations in excess of the hardness-dependant UK Environmental Quality Standards for freshwater (EQS).

• Chromium (total), copper, vanadium and zinc

The following contaminants were detected in soil at concentrations in excess of WRAS standards, protective of water distribution pipework:

- Antimony, arsenic, cadmium, lead, petroleum hydrocarbons and soil pH (as site maxima)
- Antimony, arsenic and petroleum hydrocarbons (as mean concentration)

Low concentrations of methane, carbon monoxide and hydrogen sulphide were recorded, along with low gas flow rates. Although localised, slightly elevated carbon dioxide concentrations were recorded, on the balance of available evidence (including the composition of the infill material), it is considered that ground gas poses a negligible risk to residents at the site.

# 4.3 Receptors

Table 4.1 indicates the receptors considered to be present at the site. The critical human receptor is the on-site resident; while off-site residents and commercial workers are also present, the concentrations of contaminants and, in the case of commercial workers, their exposure frequency and duration, is likely to be less than on-site residents, and are not considered further.

See Appendix A (desk study report) for a detailed discussion of the receptors included in the conceptual model.

# 4.4 Pathways

Pathways (pollutant linkages) are also examined as part of Table 4.1, overleaf.





| Table 4.1 – Pollutant Linkages | , Post-Site Investigation |
|--------------------------------|---------------------------|
|                                |                           |

| Receptor                                                                               | Contaminant(s)                                                                                                                              | Pathway(s)                                                                                                                    | Potential<br>Severity<br>of<br>Linkage <sup>1</sup> | Probability<br>of Linkage<br>Occuring <sup>1</sup> | Overall Risk <sup>1</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residents of<br>properties<br>above<br>infilled<br>ground –<br>including<br>children   | Concentrations of<br>metals in made<br>ground, in samples<br>taken from ground<br>level to 0.60m bgl,<br>exceed generic<br>screening values | Direct ingestion/dermal<br>contact/inhalation of<br>dust/inhalation of<br>vapours/consumption of<br>home-grown vegetables     | Medium                                              | Likely                                             | Moderate                  | Risk rating could be refined by site-specific risk<br>assessment, statistical analysis and a sanity check of<br>risk – see Section 5                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| playing in<br>gardens                                                                  | Ground gases -<br>generally low<br>concentrations &<br>flows encountered                                                                    | ,Movement into buildings,<br>subsequent asphyxiation<br>(CO2, CH4), explosion<br>(CH4) and toxicity (CO,<br>H2s) risks        | Severe                                              | Unlikely                                           | Low/moderate              | No further assessment required (risk level of<br>"low/moderate" is the lowest possible rating where the<br>potential severity of the hazard is considered "severe")                                                                                                                                                                                                                                                                                                                                                                                                              |
| Subsurface<br>services<br>serving the<br>buildings<br>(principally<br>water<br>supply) | Concentrations of<br>metals and<br>hydrocarbons, and<br>soil pH value, within<br>made ground<br>exceed WRAS<br>guideline values             | Chemical attack and<br>tainting of water supply<br>could occur at high<br>contaminant<br>concentrations / severe<br>pH levels | Medium                                              | Low                                                | Low /<br>Moderate         | South Staffordshire Water has confirmed that contaminant resistant<br>pipework is always laid where laboratory testing results (carried out<br>by South Staffordshire Water) indicate the need. The water<br>company also carries out routine testing of water quality at<br>consumer taps (odour and taste assessment), and investigates any<br>problems identified.<br>As a precaution, Cannock Chase District Council has written to<br>South Staffordshire Water to ask that properties within the site are<br>included on a routine testing schedule. The water company has |
|                                                                                        |                                                                                                                                             |                                                                                                                               |                                                     |                                                    |                           | responded to indicate that such testing is not routinely undertaken,<br>but any problem would potentially be detected by routine taste and<br>odour monitoring (particularly in regard to hydrocarbons).<br>To confirm the current exposure to residents, it is proposed that<br>analysis of tap water samples is undertaken, with the results<br>compared to UK drinking water standards. See Section 7                                                                                                                                                                         |



| Receptor                                                                                      | Contaminant(s)                                                                                                                  | Pathway(s)                                                                                                | Potential<br>Severity<br>of<br>Linkage <sup>1</sup> | Probability<br>of Linkage<br>Occuring <sup>1</sup> | Overall Risk <sup>1</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secondary<br>A aquifer<br>beneath site<br>(Coal<br>Measures)                                  | Leachable<br>concentrations of<br>metals within made<br>ground exceed the<br>low end of the<br>hardness-dependant<br>EQS ranges | Vertical contaminant<br>migration within<br>unsaturated zone (Made<br>Ground and superficial<br>deposits) | Mild                                                | Low to<br>likely                                   | Low                       | Logs generally indicate clay (as superficial deposit or<br>weathered coal measures) beneath the made ground.<br>WS2 indicates generally granular made ground to<br>termination (4.0m bgl) so pathway is still possible.<br>However, recorded leachable concentrations are not<br>excessively elevated and adoption of EQSs as<br>screening value for a secondary aquifer is a<br>conservative measure. Thus, due to the low sensitivity<br>of the aquifer, no further assessment is considered<br>necessary                                                                          |
| Unnamed<br>stream<br>located<br>directly east<br>of the site;<br>pond 25m to<br>north of site | Leachable<br>concentrations of<br>metals within made<br>ground exceed the<br>low end of the<br>hardness-dependant<br>EQS ranges | Lateral migration of any<br>impacted perched<br>groundwater within Made<br>Ground to watercourses         | Medium                                              | Low to<br>likely                                   | Moderate                  | Pond is up-gradient of site and unlikely to be impacted<br>by dissolved contaminants migrating in any continuous<br>groundwater unit.<br>Stream is likely to be in hydraulic continuity with made<br>ground in parts of the site – especially WS2. Metals<br>could theoretically leach to the stream. Next step of<br>assessment should be hardness testing of surface<br>waters to confirm the absolute screening values to be<br>applied, coupled with testing of samples from stream,<br>to examine actual dissolved contaminant<br>concentrations in the receptor. See section 6 |

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix F for further details



# 5 STATISTICAL ANALYSIS OF HUMAN HEALTH RISK

The site investigation has established that the concentrations of arsenic, hexavalent chromium, lead, nickel, vanadium (hereafter "contaminants of concern" or "COC") exceed generic screening values applicable to the generic residential housing scenario, where plants are grown for human consumption.

Generic SGVs and GAC are used to examine whether significant possibility of significant harm ("SPOSH" - i.e. unacceptable risk to human health or the environment) <u>may</u> be posed at any given site in England or Wales. The SGVs and GAC have been derived using the CLEA model by various parties (see Section 3.2.3), using conservative input parameter values to generate screening values applicable, theoretically, to all UK sites. Therefore, an exceedance of a SGV or GAC does not necessarily mean that SPOSH exists - only that the generic, conservative screening value has been exceeded, and further assessment is required. The first step of detailed analysis taken comprises a statistical assessment of the data obtained.

# 5.1 Statistics and Part 2A

Guidance regarding how data collection, data review and statistical testing interact to produce defensible conclusions regarding the condition of land is provided within Part 2A of the Environmental Protection Act 1990 and *Guidance on Comparing Soil Contamination Data with a Critical Concentration*<sup>3</sup> (*"the guidance"*). The core concept behind this guidance, with respect to potential Part 2A sites, is whether the level of contamination identified on a site can be confidently assessed as high compared to a suitable measure of risk, for example SGVs, GAC or site-specific assessment criteria (SSAC) derived by a quantitative risk assessment.

The statistical testing approach requires that the assessment of the significance of the identified contamination is addressed through the use of formal hypotheses, the Null Hypothesis ( $H_0$ ) and the Alternative Hypothesis ( $H_1$ ). Statistical tests are formulated in order to be able to demonstrate, at a particular level of confidence (typically 95%), which of the hypotheses is most likely to be true in a given situation. In the investigation of potential Part 2A sites, the guidance identifies that the Null and Alternative Hypotheses are as follows:

- H<sub>0</sub>: the level of contamination at the site is the same as or lower than the critical concentration; and
- H<sub>1</sub>: the level of contamination at the site is higher than the critical concentration.

Part 2A decisions can be made on the basis of the 'balance of probabilities'. As a consequence, if the Null Hypothesis cannot be rejected at the 95% confidence level, defensible decisions can still be made at a lower confidence level of 51% or more.

The *Guidance on Comparing Soil Contamination Data with a Critical Concentration* document provides suggested methods of analysing site investigation data, including appropriate statistical tests depending on the distribution of the data.

<sup>&</sup>lt;sup>3</sup> The Chartered Institute of Environmental Health, CL:AIRE and The Soil and Groundwater Technology Association; May 2008.



# 5.2 Statistical Testing Methodology

The statistical analysis was completed in accordance with the principles and methods identified in *Guidance on Comparing Soil Contamination Data with a Critical Concentration.* 

# 5.2.1 Averaging Areas

Based on the history and current nature of the site, statistical analysis was completed on all soil chemical data from the site, which was analysed as one dataset.

# 5.2.2 Contaminants of Concern Analysed

The concentrations of arsenic, hexavalent chromium, lead, nickel, vanadium recorded at the site were subjected to statistical analysis in order to determine their significance.

# 5.2.3 Dataset Management

In accordance with the guidance, chemical analysis results recorded below the laboratory Method Detection Limit (MDL) were replaced within the dataset with values equal to the MDL in order to be conservative.

# 5.2.4 Sample Mean and Critical Concentration

The initial stage of the statistical testing involves analysis of the relationship between the dataset sample mean and the critical concentration ( $C_c$ ) for each CoC. If the CoC sample mean is less than the  $C_c$  (equal to the SSAC for the particular CoC), the 95 % lower confidence limit of the sample mean must also be less than the  $C_c$  and consequently the Null Hypothesis cannot be rejected.

Comparison of the sample means with the  $C_c$  has been completed for each of the CoC using the SSAC calculated for residents at the site with consumption of home-grown vegetables, as summarised in Table 5.1:

| CoC                      | Sample Size | Sample mean<br>(mg/kg) | C <sub>c</sub> (SGV or GAC)<br>(mg/kg) <sup>2</sup> | Test Result                  |
|--------------------------|-------------|------------------------|-----------------------------------------------------|------------------------------|
| Arsenic                  | 12          | 18                     | 32                                                  | Sample mean < C <sub>c</sub> |
| Chromium<br>(hexavalent) | 12          | 1.3                    | 4.3                                                 | Sample mean < C <sub>c</sub> |
| Lead                     | 12          | 138                    | 450                                                 | Sample mean < C <sub>c</sub> |
| Nickel                   | 12          | 38                     | 130                                                 | Sample mean < C <sub>c</sub> |
| Vanadium                 | 12          | 38                     | 75                                                  | Sample mean < C <sub>c</sub> |

 Table 5.1 - Comparison of Sample Mean with Critical Concentrations

Notes:

 $C_c$  = Critical concentration. All critical concentrations equate to the SGVs or GAC adopted in the initial data screen undertaken in Table 3.2

The initial statistical analysis identified that the sample mean was less than the critical concentration for all CoCs, and thus, the Null Hypothesis cannot be rejected. The average concentration of all CoCs is therefore unlikely to be greater than  $C_{c,}$  and all CoCs can be discounted. No further statistical analysis is required.

# 5.3 Discussion

Statistical analysis has been completed. The statistical analysis identified that the sample mean is less than the critical concentration for all of the identified CoC, and therefore  $H_0$ 



should not be rejected for these CoC. Consequently, no further consideration of the CoC, including identification of possible outliers, was necessary.



# 6 SURACE WATER ANALYSIS

#### 6.1 Introduction

The site investigation identified that the leachable concentrations of metals (chromium, copper, vanadium and zinc) within made ground exceed the low end of the hardness-dependant environmental quality standard (EQS) ranges and/or threshold values quoted in the River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 (WFD). The surface watercourse to the east of the site could potentially contain unacceptable concentrations of dissolved metals, if leachate was to reach the groundwater table and migrate to the watercourse. The expected groundwater flow direction would be towards the surface watercourse (i.e. east).

In order to determine whether the predicted (i.e. leachable) concentrations of metals are representative of actual dissolved metal concentrations in the surface watercourse, surface water samples were collected and analysed. This section describes the sampling undertaken and the results obtained.

# 6.2 Methodology

Surface water grab samples were obtained on 26<sup>th</sup> October 2010 by a Grontmij consultant. Samples were obtained from two positions, one where the watercourse is closest to the site and another in a location downstream (south) of the majority of the site. The positions where samples were collected are shown on Drawing 1.

The samples were submitted to Alcontrol Geochem of Hawarden for dissolved metals analysis. Hardness analysis was also requested, as the EQS or WFD is in some cases dependent on hardness.

# 6.3 Results

The analytical testing results are summarised in Table 6.1, along with applicable screening values for surface watercourses. Where possible, the definitive WFD screening values (in some cases based upon water hardness) have been used in preference to the older EQS values, which require the Environment Agency to determine the hardness-specific value to adopt.

| Contaminant     | No of Samples<br>Tested | Minimum<br>Value | Maximum<br>Value | Screening<br>Value |
|-----------------|-------------------------|------------------|------------------|--------------------|
| Arsenic         | 2                       | 0.71             | 0.83             | 50                 |
| Boron           | 2                       | 330              | 380              | 2000*              |
| Cadmium         | 2                       | <0.10            | <0.10            | 0.25**             |
| Chromium        | 2                       | 2.3              | 2.3              | 3.4                |
| Copper          | 2                       | 2.1              | 2.6              | 10**               |
| Lead            | 2                       | 0.13             | 0.15             | 7.2                |
| Nickel          | 2                       | 3.7              | 4.0              | 20                 |
| Vanadium        | 2                       | 0.79             | 1.0              | 20 - 60*           |
| Zinc            | 2                       | 8.2              | 9.8              | 75**               |
| Mercury         | 2                       | <0.01            | <0.01            | 0.05               |
| Hardness (mg/l) | 2                       | 230              | 260              | n/a                |

Table 6.1 – Surface Water Analysis Results and Screening

Values are presented as µg/l unless stated, and are rounded as applicable to EQS values.

\*EQS presented, as there is no corresponding value within WFD document

\*\*Hardness-dependant WFD values, based upon the most stringent hardness testing result (i.e. 230mg/l)



# 6.4 Conclusion

The analytical testing results were all less than the corresponding screening values, indicating that the concentrations of contaminants within the watercourse are acceptable.

This in turn indicates that unacceptable concentrations of contaminants are not leaching from the site and migrating to the surface watercourse. No further assessment is required.



# 7 SAMPLING OF WATER AT RESIDENTS' TAPS

#### 7.1 Introduction

One aspect of the investigation was to assess whether the concentrations of contaminants in the ground posed a potential risk to drinking water pipes. Certain contaminants can either attack the pipework or permeate through the pipe material.

Currently, the only available guidance on "safe" contaminant levels in regard to water pipes is held in Water Regulations Advisory Scheme (WRAS) report "The Selection of Materials for water Supply Pipes to be Laid in Contaminated Land", October 2002. An exceedance of the threshold levels published in the above document indicates that careful consideration of the materials used for water pipework is required.

The site investigation identified that the maximum concentrations of antimony, arsenic, cadmium, lead and petroleum hydrocarbons, and the maximum soil pH level recorded, exceed WRAS threshold values. The mean concentrations of antimony, arsenic and petroleum hydrocarbons recorded also exceed the WRAS threshold values.

While South Staffordshire Water are able to confirm the materials used for water distribution pipework in the highway, the water company is not responsible for local connections to their mains, which were probably made at each property by the builder(s) of the houses at the site. As it would be problematic to excavate trial trenches across the site in an attempt to discover the materials used for water pipework (including local connection pipes laid by builders), it was agreed that sampling drinking water was the most appropriate means of evaluating whether unacceptable concentrations of contaminants were entering the drinking water supply.

Cannock Chase Council approached South Staffordshire Water to ask that the site is included in any regime of ongoing planned sampling of drinking water quality. Unfortunately, the water company is unable to accommodate such testing. It was therefore decided that samples of drinking water should be obtained as part of this investigation.

# 7.2 Methodology

Grontmij visited the site on 10<sup>th</sup> December 2010 to obtain samples from the kitchen taps of five properties at the site. Wherever possible, samples were taken from the properties where the highest contaminant concentrations had been recorded during the earlier soils investigation.

At each house, the tap was allowed to run for approx 30 seconds, and a sample taken. Samples were collected in phials, glass bottles and plastic bottles provided by the laboratory, Alcontrol Geochem. The samples were dispatched to the lab in chilled coolboxes under full chain of custody documentation. The samples were tested for dissolved metals and hydrocarbons, as these were the contaminants which were recorded in soil at concentrations in excess of the WRAS threshold values. The testing results were compared to guidelines in operation in the UK, comprising drinking water standards (Water Supply Water Quality Regulations 2000) and "Groundwater – Drinking Water Protected Areas" threshold values within the Water Framework Directive (WFD) Directions 2010. While the WFD Directions values are protective of groundwater rather than water at consumer's taps, the WFD values are in some cases more stringent than UK drinking water standards, hence both sets of standards have been used.



# 7.3 Results

A summary of the laboratory analysis results is presented in Table 7.1, along with details of corresponding UK Drinking Water Standards (DWS) and thresholds published in the Water Framework Directive Directions 2010. Full laboratory results are included in Appendix D.

| Contaminant            | No of Samples<br>Tested | Minimum<br>Value                   | Maximum<br>Value                   | UK Drinking<br>Water<br>Standard | WFD<br>Groundwater* |
|------------------------|-------------------------|------------------------------------|------------------------------------|----------------------------------|---------------------|
| Antimony               | 5                       | 0.35                               | 1.0                                | 5.0                              | No standard         |
| Arsenic                | 5                       | 1.8                                | 2.0                                | 10                               | 7.5                 |
| Boron                  | 5                       | 110                                | 130                                | 1000                             | 750                 |
| Cadmium                | 5                       | <0.10                              | 0.16                               | 5.0                              | 3.75                |
| Chromium               | 5                       | 11                                 | 11                                 | 50                               | 37.5                |
| Copper                 | 5                       | 11                                 | 120                                | 2000                             | 1500                |
| Lead                   | 5                       | 0.10                               | 0.17                               | 10                               | 19                  |
| Nickel                 | 5                       | 1.1                                | 2.1                                | 20                               | 15                  |
| Zinc                   | 5                       | 11                                 | 16                                 | 5000                             | 3750                |
| Mercury                | 5                       | <0.01                              | <0.01                              | 1.0                              | 0.75                |
| Banded<br>Hydrocarbons | 5                       | <detection<br>limit</detection<br> | <detection<br>limit</detection<br> | 10**                             | No standard         |

#### Table 7.1 – Tap Samples – Chemical Analysis Results Summary

Results all expressed as ug/l, correct to two significant figures \* "Groundwater – Drinking Water Protected Areas" from Part 8 of the Water Framework Directive Directions 2010

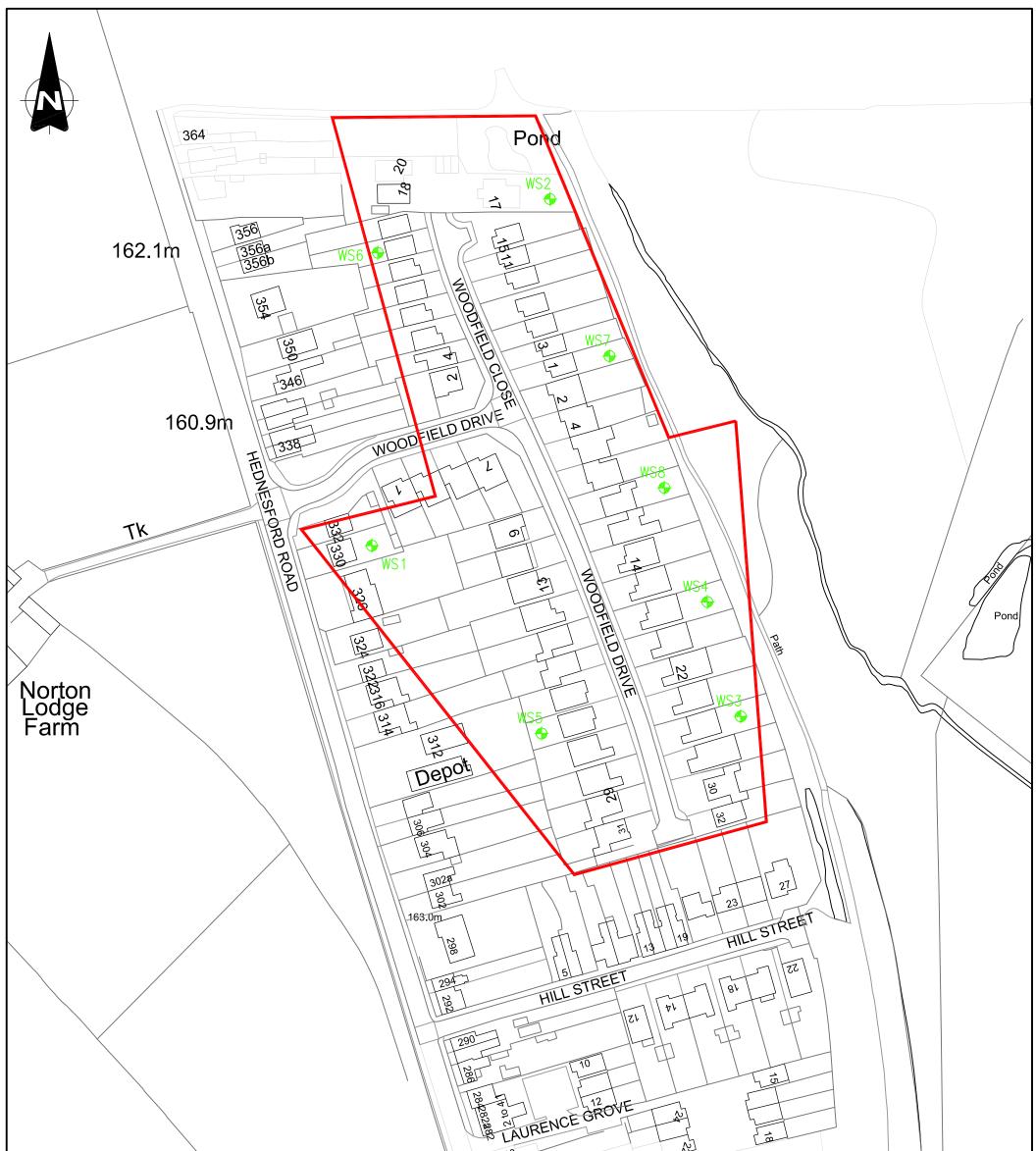
\*\* The drinking water standard of 10ug/l has been withdrawn, but in the absence of other guidance, we have assumed that 10ug/l would be adopted by regulators

The above results indicate that the water quality at consumer's taps at the site is compliant with current legislation, and therefore contaminants in the soil do not appear to be adversely affecting the water pipes at the site.

No further assessment is considered necessary.



# 8 SUMMARY AND CONCLUSION


- Review of historical mapping and EA records provided to Cannock District Council, plus anecdotal evidence obtained during public consultation, identified that land off Hednesford Road in Norton Canes, Staffordshire was infilled with unknown waste material which potentially posed a risk to human health and controlled waters.
- A detailed investigation identified that concentrations of metals in Made Ground exceeded generic human health screening criteria. However, statistical analysis demonstrated that the likely average concentrations of contaminants beneath the site do not exceed the generic human health screening criteria. Therefore, it is unlikely that the concentrations of contaminants beneath the site pose a risk to human health.
- The detailed investigation identified that leachable concentrations of contaminants exceeded screening values protective of groundwater quality. However, the aquifer beneath the site, within coal measures, is of low sensitivity, and the adopted screening values are considered to be overly conservative. Therefore, no further assessment in regard to groundwater is necessary.
- Soil leachate contaminant concentrations also exceed generic screening values protective of aquatic life in surface waters. Contaminants could migrate to a stream, located approximately 10m from the eastern site boundary at its closest point. Surface water samples were collected from the stream and analysed at the laboratory. The dissolved contaminant concentrations did not exceed surface water quality standards. Therefore, it is unlikely that significant concentrations of contaminants are leaching from the site and migrating to the stream, and no further assessment is necessary.
- Concentrations of contaminants within made ground exceed the generic screening criteria for contaminant permeation adopted by water companies. Samples of drinking water were taken from five consumers' taps. Drinking water quality at the site is good, and contaminants in the soil do not appear to be adversely affecting the drinking water supply. No further assessment is considered necessary.
- Gas monitoring has identified that the concentrations and flow rates of hazardous gases beneath the site are unlikely to pose a human health or explosion risk to the housing at the site. No further assessment in regard to gas is necessary.

On the basis of the preceding assessment and the limitations listed in Appendix B, we consider that the site is suitable for its current use, and should not be declared contaminated land under Part 2A of the Environmental Protection Act 1990.



22

# DRAWINGS



|                                                                                    |                                                                                                                                  | Pond<br>5                                                                                                                                                                                                                                                                                                                                           | 268<br>268<br>268                                           | Bowling Green |                                                                                                                                  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0         15/10/10         First Issue           No.         Date         Revision | Image: Model         Image: Model           MC         MH           By         Chk                                               | This map is reproduced from Ordnance Survey material<br>with the permission on behalf of the controller of her<br>Majesty's Stationery Office (C) Crown Copyright.<br>Unauthorised reproduction infringes Crown Copyright<br>and may lead to prosecution or civil proceedings.<br>Cannock Chase District Council, Licence No.<br>100019754, (2009). | Client / Project<br>Cannock<br>Chase<br>Council             | Gro           | ontmij                                                                                                                           |
| Drawn: Checked:<br>MC MH<br>File Ref : 103912-001<br>Original Size: 420x297 - A3   | Approved:         Date:           GVT         15/10/10           Drawing No : DRAWING 1           Scale : 1:1250         Rev : 0 | KEY:<br>WS1<br>WINDOW SAMPLER BOREHOLE                                                                                                                                                                                                                                                                                                              | BOREHOLE LOCATION PLAN<br>Drawing Status<br>FOR INFORMATION |               | Tel: 0113 262 0000<br>Fax: 0113 262 0737<br>Web: www.grontmij.co.uk<br>Edinburgh. Glasgow. Leeds.<br>Reading. Solihull. Wrexham. |

# APPENDIX A

Cannock Chase District Council

**Environmental Protection Act** 1990, Part IIa: Initial Desktop Study and Site Walkover

Landfill site off Hednesford Road, Norton Canes, Staffordshire

January 2010

#### Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by: Grontmij Limited 3<sup>rd</sup> Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

**T** 0121 7116600 **F** 0121 7116749 E gareth.taylor@grontmij.co.uk



#### **Document Control**

| Report Reference | Issue<br>Date | Reason for<br>Issue |           | Prepared by              | Checked by              | Approved by           |
|------------------|---------------|---------------------|-----------|--------------------------|-------------------------|-----------------------|
| HedDTS/V1/2010   | 21/01/10      | First Issue         | Signature |                          |                         |                       |
|                  |               |                     | Name      | Mark Hiatt               | Gareth<br>Taylor        | Bryn Thomas           |
|                  |               |                     | Position  | Geotechnical<br>Engineer | Principal<br>Consultant | Technical<br>Director |

© Grontmij 2010 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.



# CONTENTS

| 1     | INTRODUCTION                 | . 1 |
|-------|------------------------------|-----|
| 1.1   | Terms of Reference           | . 1 |
| 2     | SITE SETTING                 | . 2 |
| 3     | PRELIMINARY CONCEPTUAL MODEL | 4   |
| 3.1   | Introduction                 | 4   |
| 3.1.1 | Sources of Contaminants      | 4   |
| 3.1.2 | Receptors                    | 5   |
| 3.1.3 | Pathways                     | 6   |
| 3.1.4 | Potential Pollutant Linkages | 6   |
| 4     | CLOSING REMARKS              | 8   |
|       |                              |     |

# FIGURES

| Figure 2.1 – Site Location               | 3 |
|------------------------------------------|---|
| TABLES                                   | _ |
| Table 2.1 – Site Setting                 | 2 |
| Table 4.1 - Potential Receptors          |   |
| Table 4.2 - Potential Pollutant Linkages | 7 |

# APPENDICES

| Appendix A | Limitations Statement |
|------------|-----------------------|
|            |                       |



#### 1 INTRODUCTION

#### **1.1 Terms of Reference**

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Contaminated Land inspection strategy. Part IIa of the Environmental Protection Act 1990 (Part IIa) requires each local authority to inspect areas of land which it believes may be Part IIa Contaminated Land.

The scope of work agreed between Grontmij and the Council included:

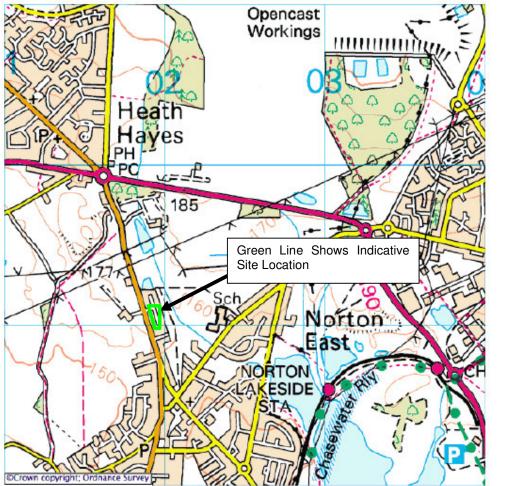
- Prioritisation of an initial list of potentially contaminated sites for intrusive investigation work, based upon the sensitivity of each site, using existing limited desktop study data provided by the Council, and
- Production of Desktop Study reports for priority sites, to improve the understanding of the sites and inform the planning of intrusive site investigations.

This report presents the findings of a desk study review at a site located off Hednesford Road, Norton Canes, Staffordshire. The site location is shown on Drawing 1.

The site comprises an area of land which appears to have been infilled with waste material. The site is considered to be sensitive as 34 residential properties with gardens overly the inferred extent of landfill and the site is underlain by a minor aquifer. Additionally, a surface water receptor is present directly east of the inferred landfill boundary

This report is subject to the limitations presented in Appendix A.





# 2 SITE SETTING

The site's setting and location are summarised in Table 2.1 and Figure 2.1.

| Table 2.1 – Site Sett              | ing                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data                               | Information                                                                                                                                                                                                                                                                                                                                                                                                    |
| Address                            | Landfill site off Hednesford Road, Norton Canes, Staffordshire. Nearest postcode is WS11 9SR                                                                                                                                                                                                                                                                                                                   |
| Current site use:                  | Residential houses and gardens.                                                                                                                                                                                                                                                                                                                                                                                |
| Grid Reference:                    | Located around 401945, 309053                                                                                                                                                                                                                                                                                                                                                                                  |
| Site Area:                         | Approximately 0.7 ha                                                                                                                                                                                                                                                                                                                                                                                           |
| Topography:                        | Generally towards the east                                                                                                                                                                                                                                                                                                                                                                                     |
| Surrounding land<br>use<br>Geology | Residential properties with gardens to north and south. Hednesford Road to the west and a railway (possible disused) and unnamed water course to the west British Geological Survey (BGS) 1:63,360 map sheet 154 (Lichfield) and the                                                                                                                                                                           |
|                                    | BGS website Geoindex tool indicate the site is underlain by the Middle Coal Measures (interbedded mudstones, siltstones, sandstones and coal seams). The overlying superficial deposits are shown to be Devensian Till; the likely thickness of deposits is not stated.                                                                                                                                        |
| Hydrogeology                       | The middle coal measures are regarded as a minor aquifer, by the Environment Agency                                                                                                                                                                                                                                                                                                                            |
| Source Protection<br>Zones (SPZs)  | The Environment Agency website indicates that the site does not lie within a source protection zone                                                                                                                                                                                                                                                                                                            |
| Surface Waters                     | Unnamed stream is located directly east of the site and is discharges into Chasewater (man made reservoir) approximately 600m SE                                                                                                                                                                                                                                                                               |
| Historical Land Use                | The data provided, including Environment Agency historical landfill site records, indicates that the site was formerly operated as a landfill site from 1938 onwards and was subsequently developed as residential housing around the 1970s. There is no information about the site's license, operational period or the date the site was developed on Environment Agency "What's In Your Back Yard" website. |
| Walkover                           | No evidence of contamination evident, although not surprising as the site is fully redeveloped as a residential estate                                                                                                                                                                                                                                                                                         |







Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright Plan is not to scale.



Ν

# 3 PRELIMINARY CONCEPTUAL MODEL

# 3.1 Introduction

This section of the report presents a preliminary contaminated land assessment, on the basis of the available desktop data. The assessment presents an evaluation of the potential risks posed, should contaminants be present in the soil or groundwater beneath the site.

In the context of the Environmental Protection Act 1990 (EPA90), the Water Act 2003 and associated guidance<sup>1,2</sup>, a preliminary (contaminated land) risk assessment should focus on whether the land at a subject site meets the statutory definition of Contaminated Land. Part IIA of the EPA90, as amended by the Water Act 2003, defines Contaminated Land as:

- "any land which appears to the local authority in whose area it is situated to be in such condition by reason of substances in, on or under the land, that:
- significant harm is being caused or there is a significant possibility of significant harm being caused; or
- significant pollution of controlled waters is being caused or there is significant possibility of such pollution being caused

The procedure for assessing contaminated land involves the development of a Conceptual Site Model (CSM) comprising the assessment of potential Contaminants, Pathways and Receptors.

# 3.1.1 Sources of Contaminants

The "contaminants" term in the conceptual model has been evaluated by inspection of existing desktop study data provided by Cannock Chase District Council, and a preliminary site walkover. The following potential sources of contaminants have been identified:

- An infilled area of land, which could contain contaminants including (but not limited to) metals, hydrocarbons, polyaromatic hydrocarbons (PAHs), volatile and semi-volatile organic compounds (VOCs and SVOCs)
- Methane and carbon dioxide gas, from the decomposition of any deleterious material within the made ground

<sup>&</sup>lt;sup>2</sup> DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.



<sup>&</sup>lt;sup>1</sup> CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

## 3.1.2 Receptors

DEFRA Circular 02/2006 defines a Receptor as:

• "either (a) a living organism, a group of organisms, an ecological system or a piece of property which (i) is in a category listed in Table A as a type of receptor, and (ii) is being, or could be, harmed, by a contaminant; or (b) controlled waters which are being, or could be, polluted by a contaminant".

Table 1.1 lists all of the receptors to be considered by a Part IIA or PPS23<sup>3</sup> assessment, and assesses whether the receptors are likely to be present at the site.

| Receptor Type                           | Receptors                                                                                                                                    | Present (✓<br>/≭) | Notes                                                                                                                                         |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Humans                                  | On-site residents                                                                                                                            | V                 | Residential properties (houses<br>and gardens) above indicative<br>extent of landfill. Assumed to<br>have vegetable patches.                  |
|                                         | Construction staff and SI personnel.                                                                                                         | X                 | No known redevelopment<br>proposed                                                                                                            |
|                                         | Future occupants of the site                                                                                                                 | ✓                 | (level of risk same as current<br>residents so not considered<br>further)                                                                     |
|                                         | Off site commercial workers or residents                                                                                                     | ✓                 | Possibly exposed to gases<br>migrating off-site through<br>permeable strata                                                                   |
| Ecosystems                              | Any designated ecological system <sup>4</sup> , or<br>living organism forming part of such a<br>system                                       | X                 | Inspection of MAGIC website<br>has identified that the site<br>does not lie within, or within<br>250m of, an ecologically<br>designated site. |
| Property (Flora                         | Crops, including timber                                                                                                                      | X                 | Not present                                                                                                                                   |
| and Fauna)                              | Produce grown domestically, or on allotments for consumption                                                                                 | ✓                 | Vegetables grown in residential gardens.                                                                                                      |
|                                         | Livestock                                                                                                                                    | X                 | Not present                                                                                                                                   |
|                                         | Other owned or domesticated animals                                                                                                          | ✓                 | Pets in residential properties.                                                                                                               |
|                                         | Wild animals which are the subject of shooting or fishing rights                                                                             | X                 | Not present                                                                                                                                   |
| Property<br>(Buildings &<br>Structures) | A 'building' means any structure,<br>including any part below ground level,<br>but does not include plant or machinery<br>within a building. | ✓                 | Residential houses above indicative extent of landfill.                                                                                       |
| Controlled<br>Waters <sup>1</sup>       | Territorial waters                                                                                                                           | ×                 | None feasibly close enough to be impacted.                                                                                                    |

#### **Table 3.1 - Potential Receptors**

<sup>&</sup>lt;sup>3</sup> Planning Policy Statement (PPS) 23: Planning and Pollution Control, Annex 2: Development on Land Affected by Contamination <sup>4</sup> Includes sites designated as SSSI or National Nature Reserve by the Wildlife and Countryside Act 1981, Special Area of Conservation (including candidate sites), Special Protection Area or Ramsar Site by the Conservation (Natural Habitats etc) Regulations 1994, and Local Nature Reserve by the National Parks and Access to the Countryside Act 1949.



| Receptor Type | Receptors          | Present (✓<br>/≭) | Notes                                                                                                                                  |
|---------------|--------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|               | Coastal waters     | ×                 | None feasibly close enough to be impacted.                                                                                             |
|               | Inland Freshwaters | ✓                 | Unnamed stream immediately<br>adjacent to the east of the<br>inferred landfill boundary.<br>Chasewater (man made<br>reservoir) 600m SE |
|               | Groundwater        | 1                 | Minor aquifer beneath site                                                                                                             |

<sup>1</sup> as defined in the Water Resources Act Section 104. Generally includes most surface water bodies excluding drains which discharge into sewers.

### 3.1.3 Pathways

DEFRA Circular 02/2006 defines a Pathway as:

• "one or more routes or means by, or through, which a receptor: (a) is being exposed to, or affected by, a contaminant; or (b) could be exposed or affected"

Pathways are examined as part of Table 3.2, overleaf.

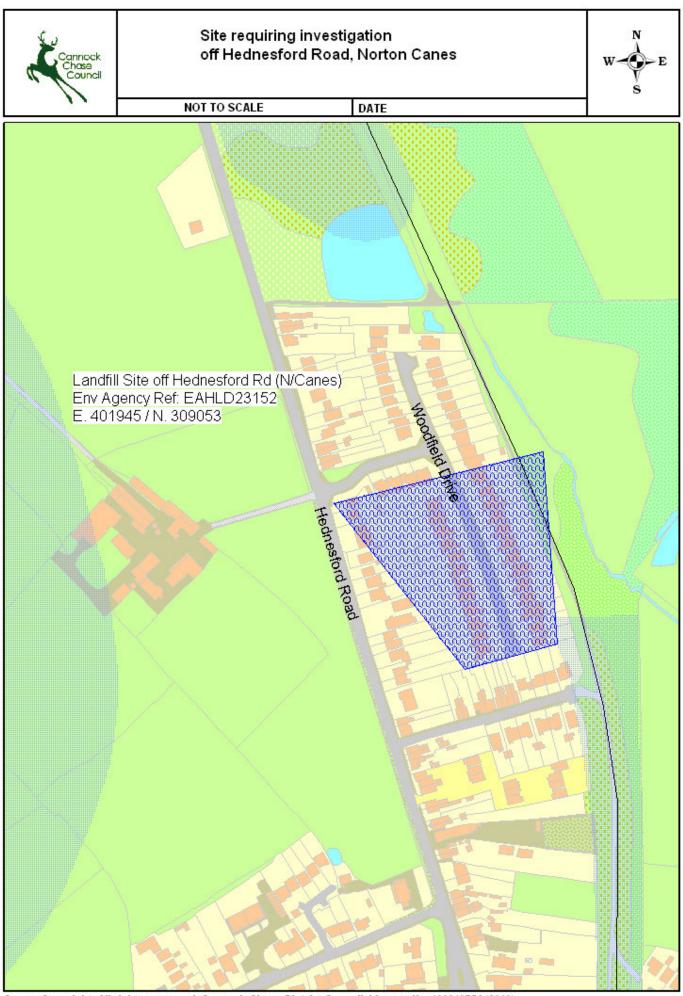
### 3.1.4 Potential Pollutant Linkages

The pollutant linkages identified are also presented in Table 3.2.



#### Table 3.2 - Potential Pollutant Linkages

|      | le 3.2 - Potential Pollul                                                                                                      |                                                                                                                         | Dettermente)                                                                                                            | Diala                                               |                                                                                                                                                                                                                                                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.  | Receptor                                                                                                                       | Contaminant(s)                                                                                                          | Pathway(s)                                                                                                              | Risk o<br>Pollutant<br>Linkage<br>Being<br>Realised | Comments                                                                                                                                                                                                                                                                                                                                   |
| Huma | an Health                                                                                                                      |                                                                                                                         |                                                                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                            |
| 1    | Residents of properties<br>above infilled ground –<br>including children playing in<br>gardens & vegetable<br>consumption      | Contaminants including (but not<br>limited to) metals,<br>hydrocarbons, PAHs, VOCs,<br>SVOCs within the made<br>ground. | Direct ingestion/dermal<br>contact/inhalation of dust/inhalation<br>of vapours/consumption of home-<br>grown vegetables | Medium to<br>high risk                              | Grass and/or topsoil coverage likely to mitigate risk to an extent –<br>risk is greatest where possibly impacted soils are exposed or<br>could be encountered, for example, when digging a vegetable<br>patch or when children play outdoors. Properties are constructed<br>directly above a potentially significant contamination source. |
| 2    |                                                                                                                                | Methane and carbon dioxide<br>from decomposition of<br>deleterious elements of the<br>made ground.                      | Movement into buildings,<br>subsequent asphyxiation and<br>explosion risk.                                              | Medium to<br>high risk.                             | Investigation and monitoring required to determine risk.                                                                                                                                                                                                                                                                                   |
| Prop | erty                                                                                                                           |                                                                                                                         |                                                                                                                         |                                                     | ·                                                                                                                                                                                                                                                                                                                                          |
| 4    | Subsurface services serving<br>the buildings (principally<br>water supply)                                                     | Contaminants including metals,<br>hydrocarbons, PAHs, VOC,<br>SVOCs within the made<br>ground.                          | Chemical attack and tainting of<br>water supply could occur at high<br>contaminant concentrations /<br>severe pH levels | Medium risk.                                        | Risk will depend on depth and concentration of contaminants and material(s) used for water pipes.                                                                                                                                                                                                                                          |
| 5    | Property (Structures) – sub-<br>surface concrete                                                                               | Sulphate and pH                                                                                                         | Contact between contaminants and concrete.                                                                              | Medium risk                                         | Possible risk but could only reasonably be established if concrete class used to construct buildings can be established (unlikely) – therefore, no testing targeted this area – more relevant for any new planned buildings.                                                                                                               |
| Cont | rolled Waters                                                                                                                  |                                                                                                                         |                                                                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                            |
| 6    | Minor aquifer beneath site                                                                                                     | Contaminants including metals,<br>hydrocarbons, PAHs, VOCs<br>and SVOCs within the made<br>ground.                      | Leaching of chemicals to aquifer                                                                                        | Medium risk                                         | Risk will depend upon depth and concentration of contaminants, presence/absence of confining layers between contaminants and the aquifers, leaching potential etc. Site data needed.                                                                                                                                                       |
| 7    | Surface waters (closest is<br>unnamed watercourse<br>immediately adjacent to the<br>east of the inferred landfill<br>boundary) | Contaminants including metals,<br>hydrocarbons, PAHs, VOCs<br>and SVOCs within the made<br>ground.                      | Groundwater flow in permeable strata which are in continuity with watercourses                                          | Medium risk                                         | Risk depends upon depth/presence of contaminated groundwater, hydraulic gradient within any impacted groundwater unit, and continuity between impacted groundwater and watercourse.                                                                                                                                                        |




## 4 CLOSING REMARKS

Potential pollutant linkages affecting the health of on-site residents, controlled waters, and property have been identified, and therefore an initial intrusive investigation should be carried out to examine the likelihood of pollutant linkages existing at the site.



www.grontmij.co.uk



Crown Copyright. All rights reserved. Cannock Chase District Council. Licence No. 100019754 (2010)

## **Appendix A: Limitations Statement**

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Grontmij Limited.
- 3. Observations were made of the site and of structures on the site as indicated within the report..
- 4. Grontmij has relied upon the existing data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: '...the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.



# APPENDIX B

## **Appendix B: Limitations Statement**

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data



become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.



www.grontmij.co.uk

# APPENDIX C

| Grontmij |  | Grontmi | ij |
|----------|--|---------|----|
|----------|--|---------|----|

| Project               |          |                |       |                    |              |                      | <sup>Client</sup><br>Cannock C | haaa DC                                                      | L                      | ogged By                          |                        |
|-----------------------|----------|----------------|-------|--------------------|--------------|----------------------|--------------------------------|--------------------------------------------------------------|------------------------|-----------------------------------|------------------------|
| Hednes                | sford Ro |                |       |                    |              |                      |                                |                                                              |                        | MJH                               |                        |
| Job No<br>1           | 03912    | Da             | 0:    | 5-07-10<br>5-07-10 |              | Ground L             | evel (m)                       | Co-ordinates                                                 | Ĺ                      | Checked By<br>GVT                 |                        |
| SAMF                  | PLES &   | TESTS          | L.    |                    |              |                      |                                | STRATA                                                       |                        |                                   | ient                   |
| Depth                 | п Туре   | Test<br>Result | Water | Reduced<br>Level   | Legend       | Depth<br>(Thickness) |                                | DESCRIPTIO                                                   | N                      |                                   | Instrument<br>Backfill |
|                       |          | Result         | >     | Levei              |              | -                    | MADE GRO                       | OUND: (Turf over) Light bro                                  | wn verv clavev verv    | aravelly fine to                  | 티다                     |
| 0.10-0.10             |          |                |       |                    | $\bigotimes$ | 0.23                 | coarse SAN                     | D with occasional roots an                                   | nd rootlets. Gravel is | s fine to /                       |                        |
| -                     |          |                |       |                    | $\bigotimes$ | (0.45)<br>0.68       | MADE GRO                       | gular to rounded quartz, bri<br>DUND: Brown very clayey v    | erv gravelly fine to   | coarse SAND                       |                        |
| 0.60-0.60             |          |                |       |                    | ŔŔ           | 0.00                 | with occasion                  | ub rounded quartz, brick, b                                  | ts. Gravel is fine to  | // medium sub                     |                        |
| - 0.85-0.85<br>-      | 5 ES     |                |       |                    | $\bigotimes$ | -<br>-               | and ash.                       |                                                              |                        | - /                               |                        |
| -                     |          |                |       |                    | $\bigotimes$ | <                    | MADE GRO                       | OUND: Soft to firm, dark bro<br>el is fine to coarse sub ang | own slightly sandy s   | lightly gravelly                  |                        |
| -                     |          |                |       |                    | $\bigotimes$ | (1.58)               | ceramic and                    | l occasional glass.                                          | galar to roundou qu    |                                   |                        |
|                       |          |                |       |                    | $\otimes$    | -<br>4               |                                |                                                              |                        |                                   |                        |
| -<br> -               |          |                |       |                    | $\bigotimes$ | <_<br>€ 0.00         |                                |                                                              |                        |                                   |                        |
| 2.30-2.30             | ) ES     |                |       |                    |              | 2.26                 | Soft becom                     | ng firm, orange brown and                                    | l light grey sandy sli | ghtly gravelly                    |                        |
| -                     |          |                |       |                    |              | -                    | CLAY. Grav                     | el is fine to rounded quartz                                 | z. (Glacial Till)      |                                   |                        |
|                       |          |                |       |                    |              | -<br>-               |                                |                                                              |                        |                                   |                        |
| E                     |          |                |       |                    |              | (1.54)<br>€          |                                |                                                              |                        |                                   | [:目:                   |
| -                     |          |                |       |                    |              |                      |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | 3.80                 |                                |                                                              |                        |                                   |                        |
| -                     |          |                |       |                    |              | 4.00                 | Very stiff da                  | rk grey CLAY. (Coal Meas                                     | ures)                  |                                   |                        |
| -                     |          |                |       |                    |              | -                    | End of Hole                    | at 4m bgl.                                                   |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| -                     |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| -                     |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| -                     |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| ł                     |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| -                     |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 3/10                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 18/2                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 23 AI                 |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| - AG                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 0.GP                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 12 H                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 1036                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| 2006                  |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
| I COC                 |          |                |       |                    |              | -                    |                                |                                                              |                        |                                   |                        |
|                       |          |                |       |                    |              | Ę                    |                                |                                                              |                        |                                   |                        |
| A<br>Strike Depth: /r |          | Groundwate     |       | narks              |              | neral Rem            |                                |                                                              |                        | Final De                          | pth                    |
|                       |          |                |       |                    | Loca         | ition: Back garde    | en in lawn area                |                                                              |                        | 4m b                              | gl                     |
|                       |          | ncountered     |       |                    |              |                      |                                |                                                              |                        |                                   |                        |
|                       | or Sherv | vood Drilli    | ng    |                    |              | ethod/<br>ant Used   | Hand he                        | eld window sampling                                          | All dimensi            | ons in metres Scale 1:50<br>Sheet | t 1 of 1               |

|  | Grontm | ij |
|--|--------|----|
|--|--------|----|

| Project    |       |                |       |                    |              |                      | Client           |                                                                                         | Log                                               | ged By               |
|------------|-------|----------------|-------|--------------------|--------------|----------------------|------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|
| Hednesfo   | rd Ro | ad             |       |                    |              |                      | Cannock C        | hase DC                                                                                 |                                                   | MJH                  |
| Job No     |       | Da             | te _  |                    |              | Ground               | Level (m)        | Co-ordinates                                                                            | Che                                               | ecked By             |
|            | 8912  |                | 0     | 5-07-10<br>5-07-10 |              |                      |                  |                                                                                         |                                                   | GVT                  |
| SAMPL      | ES &  | TESTS          | ъ     |                    |              |                      |                  | STRATA                                                                                  |                                                   | nent                 |
| Depth      | Туре  | Test<br>Result | Water | Reduced<br>Level   | Legend       | Depth<br>(Thickness) |                  | DESCRIPTIC                                                                              | N                                                 | Instrument           |
| 0.10-0.10  | ES    |                |       |                    | $\boxtimes$  | <u>←</u>             | MADE GRO         | DUND: (Turf over) Brown v<br>ID with occasional roots a                                 | very clayey very gravell                          | y fine to            |
| 0.30-0.30  | ES    |                |       |                    | $\bigotimes$ | (0.76)               | sub angula       | r to rounded quartz, brick,                                                             |                                                   |                      |
| 0.60-0.60  | ES    |                |       |                    | $\bigotimes$ | 0.76                 |                  | and occasional glass.                                                                   |                                                   |                      |
| 1.00-1.00  | ES    |                |       |                    |              | - 1.09               | and GRAV         | DUND: Dark grey and brow<br>EL. Gravel is fine to coarse<br>ceramic, burnt shale, clini | e angular to sub rounde<br>ker, coarse grained sa | ed quartz.           |
|            |       |                |       |                    |              | (0.67)               | MADE GRO         | glass, wood, metal and pla<br>DUND: Firm dark grey sligh<br>ne to medium angular brich  | ntly sandy slightly grave                         |                      |
|            |       |                |       |                    | $\bigotimes$ | 1.76                 | ,                | DUND: Dark grey very silty                                                              |                                                   |                      |
|            |       |                |       |                    |              | <br>[ (0.78)         | Gravel is fir    | ne to medium rounded qua                                                                | artz and sub angular br                           | ick.                 |
|            |       |                |       |                    | $\bigotimes$ | 2.54                 |                  | OUND: Dark grey and brow                                                                | vn verv siltv verv sandv                          | GRAVEI               |
|            |       |                |       |                    |              |                      |                  | edium to coarse angular to                                                              |                                                   |                      |
|            |       |                |       |                    |              | (1.46)               |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | 4.00                 |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    | End of Hole      | e at 4m bgl.                                                                            |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              |                      |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              |                      |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       |                |       |                    |              | -                    |                  |                                                                                         |                                                   |                      |
|            |       | Froundwate     |       |                    | Gei          | -<br>neral Ren       | narks            |                                                                                         |                                                   | Final Depth          |
|            |       | (m) Groundwa   |       | marks              | Loca         | ation: Back gard     | den in lawn area |                                                                                         |                                                   | 4m bgl               |
| Contractor | Sherv | vood Drilli    | ing   |                    |              | ethod/               | ,,               | - International Providence                                                              | All dimensions                                    | in metres Scale 1:50 |
|            |       |                | -     |                    | PI           | ant Used             | Hand h           | eld window sampling                                                                     | An uniterisions                                   | Sheet 1 of           |

| Grontm | į | j |
|--------|---|---|
|        |   | - |

| Project                         |                 |                |              |                    |            |                               | Client                                          |                                                        |                                             | Logged By                          |                        |
|---------------------------------|-----------------|----------------|--------------|--------------------|------------|-------------------------------|-------------------------------------------------|--------------------------------------------------------|---------------------------------------------|------------------------------------|------------------------|
| Hednesfor                       | rd Ro           | ad             |              |                    |            |                               | Cannock Ch                                      | ase DC                                                 |                                             | MJH                                |                        |
| Job No                          |                 | Dat            | ie o         | - 07 40            |            | Ground L                      | evel (m)                                        | Co-ordinates                                           |                                             | Checked By                         |                        |
| 103                             | 912             |                |              | 5-07-10<br>5-07-10 |            |                               |                                                 |                                                        |                                             | GVT                                |                        |
| SAMPLE                          | ES &            | TESTS          | <u>ب</u>     |                    |            |                               |                                                 | STRATA                                                 | L.                                          |                                    | ent                    |
| Depth                           | Туре            | Test<br>Result | Water        | Reduced<br>Level   | Legend     | Depth                         |                                                 | DESCRIPTIC                                             | DN                                          |                                    | Instrument<br>Backfill |
| 0.10-0.10                       | ES              | Result         | _            | Levei              |            | × 0.34                        |                                                 | JND: (Turf over) Brown v<br>Gravel is fine to coarse   | ery clayey fine to c<br>angular brick and   | oarse SAND<br>sub rounded          |                        |
| 0.35-0.35                       | ES              |                |              |                    |            | *                             | quartz.                                         | JND: Dark brown and dar                                |                                             |                                    | 4:4:                   |
| 0.60-0.60<br>-<br>-             | ES              |                |              |                    |            | × (0.62)<br>0.96              | coarse graine<br>occasional cl                  | ed SAND. Gravel is sub roinker and metal               | ounded to rounded                           | d quartz, brick,                   |                        |
| - 1.00-1.00<br>-<br>-<br>-<br>- | ES              |                |              |                    |            | (1.04)                        | Very stiff ora<br>CLAY. Grave<br>(Glacial Till) | nge brown and light grey<br>I is fine to medium sub ro | slightly sandy sligh<br>bunded to well rour | ntly gravelly<br>nded quartz.      |                        |
| -                               |                 |                |              |                    | - <u>.</u> | 2.00                          | End of Hole a                                   | at Om hal                                              |                                             |                                    | <u> :目</u> :           |
| Strike Depth: (m) F             |                 |                |              |                    |            |                               |                                                 |                                                        |                                             |                                    |                        |
| Strike Depth: (m) F             | C<br>Rising to: | m) Groundwater | r<br>ter Ren | narks              |            | neral Rem<br>ation: Back gard |                                                 |                                                        |                                             | Final De                           | epth                   |
| N                               |                 | ncountered     |              | _                  |            |                               |                                                 |                                                        |                                             | 2m b                               | ogl                    |
| Contractor §                    | Sherw           | ood Drilli     | ng           |                    |            | lethod/<br>lant Used          | Hand he                                         | d window sampling                                      | All dimen                                   | sions in metres Scale 1:50<br>Shee | et 1 of 1              |

|  | Grontmi | ij |
|--|---------|----|
|--|---------|----|

| Project           |            |                |         |                  |           |                  | Client        |                                                             | I                    | Logged By                         |                        |
|-------------------|------------|----------------|---------|------------------|-----------|------------------|---------------|-------------------------------------------------------------|----------------------|-----------------------------------|------------------------|
| Hednesfo          | rd Ro      | ad             |         |                  |           |                  | Cannock Ch    |                                                             |                      | MJH                               |                        |
| Job No            |            | Dat            | te 0    | 5-07-10          | )         | Ground L         | ₋evel (m)     | Co-ordinates                                                |                      | Checked By<br>GVT                 |                        |
| 103               | 3912       |                | 0       | 5-07-10          | )         |                  |               |                                                             |                      | GVI                               |                        |
| SAMPL             | ES &       | TESTS          | ۲.      |                  |           |                  |               | STRATA                                                      |                      |                                   | nent                   |
| Depth             | Туре       | Test<br>Result | Water   | Reduced<br>Level | Legend    | Depth            |               | DESCRIPTION                                                 | N                    |                                   | Instrument<br>Backfill |
| 0.10-0.10         | ES         | rtoourt        | -       | 2010.            |           |                  | MADE GROU     | JND: Brown very clayey ve                                   | ery gravelly fine to | coarse SAND                       |                        |
| 0.30-0.30         | ES         |                |         |                  |           | X                | with occasior | nal cobbles. Gravel is fine t<br>ash, slag and burnt shale. | to coarse sub and    | ular to rounded                   |                        |
| 0.60-0.60         | ES         |                |         |                  | $\otimes$ | ¥ (0.96)<br>¥    | and burnt sha | ale.                                                        |                      | ulai brick, slag                  |                        |
| -                 |            |                |         |                  |           | 0.96             |               |                                                             |                      |                                   |                        |
| 1.00-1.00         | ES         |                |         |                  | 0.000     |                  | Light brown a | and light grey very clayey o<br>avel is rounded to well rou | coarse grained SA    | ND and                            |                        |
| -                 |            |                |         |                  | 0.0.0     |                  | Deposits)     |                                                             | ndeu quartz. (Gia    |                                   |                        |
| -                 |            |                |         |                  | 0.000     | 우 (1.04)         |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  | 0.00      | 2.00             |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           |                  | End of Hole a | at 2m bgl.                                                  |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | F                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| 5                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -<br>-            |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -                |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | F-               |               |                                                             |                      |                                   |                        |
| -                 |            |                |         |                  |           | -<br> -          |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | Ē                |               |                                                             |                      |                                   |                        |
|                   |            |                |         |                  |           | E                |               |                                                             |                      |                                   |                        |
|                   |            | Groundwate     |         | <u> </u>         | Ge        | neral Rem        | l<br>narks    |                                                             |                      | Final D                           | epth                   |
| Strike Depth: (m) | Rising to: | (m) Groundwa   | ter Rer | marks            |           | ation: Back gard |               |                                                             |                      |                                   |                        |
| ۲<br>۱            | lone E     | ncountered     |         |                  |           |                  |               |                                                             |                      | 2m k                              | JGI                    |
| Strike Depth: (m) | Sherw      | vood Drilli    | ng      |                  |           | lethod/          |               |                                                             | 3L 11A               | sione in metror 01- 4-70          |                        |
| 5                 |            |                | 5       |                  |           | lant Used        | Hand he       | d window sampling                                           | All dimens           | sions in metres Scale 1:50<br>She | eet 1 of 1             |

|  | Grontm | ij | j |
|--|--------|----|---|
|--|--------|----|---|

| Project                |          | 1                                    |       |                    |                                                              |                                                                                             | Client<br>Cannock Ch                     |                                                                                         |                                       | Logged By<br>MJH                   |                        |
|------------------------|----------|--------------------------------------|-------|--------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|------------------------|
| Hednesford<br>Job No   | I Roa    | ad<br>Dat                            | to to |                    |                                                              | Ground                                                                                      | Level (m)                                | Co-ordinates                                                                            |                                       | Checked By                         |                        |
| 1039                   | 12       | Dat                                  | - 01  | 6-07-10<br>6-07-10 |                                                              | Ground                                                                                      | Lever (III)                              | Co-ordinates                                                                            |                                       | GVT                                |                        |
| SAMPLES                |          |                                      | er    |                    |                                                              |                                                                                             |                                          | STRATA                                                                                  |                                       |                                    | Instrument<br>Backfill |
| Depth T                | Гуре     | Test<br>Result                       | Water | Reduced<br>Level   | Legend                                                       | (Thickness)                                                                                 |                                          | DESCRIPTION                                                                             |                                       |                                    | Instru<br>Bac          |
|                        | ES       |                                      |       |                    | <u>x11/2</u> . <u>x11/2</u><br>1/2 · <u>x11/2</u> · <u>x</u> | (0.40)<br>0.40                                                                              | MADE GROU<br>occasional ro<br>(Topsoil). | JND: Brown very clayey gra<br>oots and rootlets. Gravel is r                            | avelly fine to coar<br>medium rounded | rse SAND with<br>quartz.           |                        |
|                        | ES<br>ES |                                      |       |                    |                                                              | ×<br>× (0.60)                                                                               | MADE GROU<br>gravelly coar               | JND: Light brown and orang<br>se grained SAND. Gravel is<br>uartz and coarse grained sa | medium to coar                        | layey very<br>rse sub rounded      |                        |
| 1.00-1.00              | ES       |                                      |       |                    |                                                              | × 1.00                                                                                      | Stiff orange b                           | prown slightly sandy slightly<br>parse sub rounded to well ro                           | gravelly CLAY.                        | Gravel is<br>Glacial Till)         |                        |
| ·<br>·<br>·            |          |                                      |       |                    |                                                              | <<br>-<br>-<br>                                                                             |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              |                                                                                             |                                          |                                                                                         |                                       |                                    |                        |
| ·<br>·<br>·<br>·       |          |                                      |       |                    |                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | )<br>End of Hole a                       |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          | at sin bgi.                                                                             |                                       |                                    |                        |
| -<br>-                 |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -<br>-                 |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -<br>-                 |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
|                        |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| -                      |          |                                      |       |                    |                                                              | -                                                                                           |                                          |                                                                                         |                                       |                                    |                        |
| Strike Depth: (m) Risi |          | roundwatei<br><sup>m)</sup> Groundwa |       | narks              |                                                              | neral Ren<br>ation: Back gar                                                                | narks<br>den in gravel patio area        |                                                                                         |                                       | Final De                           | epth                   |
|                        |          | ncountered                           |       |                    |                                                              |                                                                                             |                                          |                                                                                         |                                       | 3m b                               | gl                     |
| Contractor Sh          | nerw     | ood Drilli                           | ng    |                    |                                                              | ethod/<br>lant Used                                                                         | Hand hel                                 | d window sampling                                                                       | All dimens                            | sions in metres Scale 1:50<br>Shee | et 1 of 1              |

| 😧 Grontmij |
|------------|
|------------|

| Project                   |            |                              |          |                    |                                          |                       | Client            | 50                                                                             |                            | Logged By                             |
|---------------------------|------------|------------------------------|----------|--------------------|------------------------------------------|-----------------------|-------------------|--------------------------------------------------------------------------------|----------------------------|---------------------------------------|
| Hednesfo                  | rd Ro      |                              |          |                    |                                          |                       | Cannock Cl        | 1                                                                              |                            | MJH                                   |
| Job No<br>103             | 912        | Da                           | 0        | 6-07-10<br>6-07-10 |                                          | Ground I              | _evel (m)         | Co-ordinates                                                                   |                            | Checked By<br>GVT                     |
| SAMPLI                    | -5 &       | TESTS                        | L_       |                    |                                          |                       |                   | STRATA                                                                         |                            | t                                     |
| Depth                     | Type       | Test                         | Water    | Reduced            | Legend                                   | Depth                 |                   | DESCRIF                                                                        | TION                       |                                       |
|                           |            | Result                       | 5        | Level              | A le Al                                  | (Thickness)           |                   |                                                                                | <u> </u>                   |                                       |
| 0.10-0.10                 | ES         |                              |          |                    |                                          | 0.14                  |                   | UND: Brown very clay<br>otlets. (Topsoil)                                      | ey fine grained SAND       | with occasional                       |
| 0.30-0.30                 | ES         |                              | Ţ        |                    | $\bigotimes$                             | ×                     | MADE GRO          | UND: Dark grey very                                                            | silty very gravelly fine t | o coarse SAND                         |
| 0.60-0.60                 | ES         |                              |          |                    |                                          | × (1.00)<br>×         | ash, ceramic      | nal cobbles. Gravel is<br>c, burnt shale, brick an                             | d occasional leather f     | agments                               |
| 1.00-1.00                 | ES         |                              |          |                    |                                          | 1.14                  |                   |                                                                                |                            | - <b>f</b> ine to come                |
| 1.20-1.20                 | ES         |                              |          |                    | ×0 · · · × · · · · × · · · · · · · · · · | -<br>-<br>- (0.86)    |                   | silty gravelly coarse gr<br>well rounded quartz. (C                            |                            |                                       |
|                           |            |                              |          |                    | ×                                        | - 2.00                |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | <u>- 2.00</u>         | Firm reddish      | brown slightly sandy                                                           | slightly gravelly CLAY.    | Gravel is                             |
|                           |            |                              |          |                    | <u> </u>                                 | (0.52)<br><u>2.52</u> | medium to c       | coarse rounded to well                                                         | rounded quartz. (Glac      | sial Till)                            |
|                           |            |                              |          |                    | ,,,,,,,,,,                               | - 2.69<br>- 3.02      | Fluvial Depo      | wn and light grey claye<br>osits)<br>brown sandy slightly g                    |                            | `                                     |
|                           |            |                              |          |                    | ×                                        | -                     | rounded qua       | artz. (Glacial Till)                                                           | Tavelly CLAT. Gravel       |                                       |
|                           |            |                              |          |                    | · · · × ·                                | <u> </u>              | erange brei       | wn silty coarse grained                                                        |                            | · · · · · · · · · · · · · · · · · · · |
|                           |            |                              |          |                    |                                          |                       | brown silty c     | slightly sandy slightly g<br>coarse grained sand ba<br>well rounded quartz. (C | ands. Gravel is fine to    | medium 🗍 🗌                            |
|                           |            |                              |          |                    |                                          | , <b>4</b><br>        |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    | - <u> </u>                               | (1.68)<br>-           |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          |                       |                   |                                                                                |                            | · · · · ·                             |
|                           |            |                              |          |                    | - <u>.</u>                               | ā.                    |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | <u> </u>              | End of Hole       | at 5m bol                                                                      |                            |                                       |
|                           |            |                              |          |                    |                                          | F                     |                   | ut om ogi.                                                                     |                            |                                       |
|                           |            |                              |          |                    |                                          | E                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | Ę                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | E C                   |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | -                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | F                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | Ē                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | -                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | Ē                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | Ę                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | -                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | E                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | E                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | F                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | F                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | Ē                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | -                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | F                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | E                     |                   |                                                                                |                            |                                       |
|                           |            |                              |          |                    |                                          | E .                   |                   |                                                                                |                            |                                       |
|                           |            | Froundwate                   | er       |                    | Ge                                       | neral Rem             | Jarks             |                                                                                |                            | Final Deptl                           |
| rike Depth: (m) I<br>0.47 | Rising to: | (m) Groundwa<br>Major inflow | ater Rer | marks              |                                          |                       | len in flower bed |                                                                                |                            |                                       |
| 0.77                      |            | wajor innOW                  |          |                    |                                          |                       |                   |                                                                                |                            | 5m bgl                                |
| Contractor ;              | Sherw      | ood Drilli                   | ing      |                    |                                          | lethod/<br>lant Used  | Hand he           | eld window samplin                                                             | All dimen                  | sions in metres Scale 1:50            |
|                           |            |                              |          |                    |                                          |                       |                   |                                                                                | 3                          | Sheet 1 o                             |

| $\mathbf{k}$ | Grontm | į | j |
|--------------|--------|---|---|
|--------------|--------|---|---|

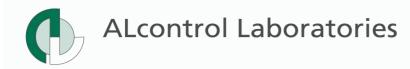
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                               |       |                    |              |                                                          | Client<br>Cannock C                    | base DC                                                                                   | Log                                           | ged By<br>MJH                |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|-------|--------------------|--------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|------------------------|
| Hednesfor<br>Job No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rd Ro      | ad<br>Da                      | to    |                    |              | Ground L                                                 |                                        | Co-ordinates                                                                              | Che                                           | ecked By                     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 912        | Da                            | - 01  | 6-07-10<br>6-07-10 |              |                                                          |                                        | 00-0rumates                                                                               |                                               | GVT                          |                        |
| SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                               | ter   |                    |              |                                                          |                                        | STRATA                                                                                    |                                               |                              | ment<br>kfill          |
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Туре       | Test<br>Result                | Water | Reduced<br>Level   | Legend       | (Thickness)                                              |                                        | DESCRIPTIC                                                                                | DN .                                          |                              | Instrument<br>Backfill |
| 0.10-0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ES<br>ES   |                               |       |                    |              |                                                          | grained SA                             | DUND: Dark grey and dark<br>ND. Gravel is fine to coarse<br>, brick, coal, metal and glas | e angular to sub round                        | led ash,                     |                        |
| 0.60-0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ES         |                               |       |                    | $\bigotimes$ | Ŷ<br>₹                                                   |                                        |                                                                                           |                                               |                              |                        |
| -<br>- 1.00-1.00<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ES         |                               |       |                    |              | ¢<br>(2.31)                                              |                                        |                                                                                           |                                               |                              |                        |
| -<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                               | Ţ     |                    |              | <<br>-<br>-<br>-<br>-<br>-                               |                                        |                                                                                           |                                               |                              |                        |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                               | -     |                    | $\bigotimes$ |                                                          |                                        |                                                                                           |                                               |                              |                        |
| -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                               |       |                    |              | <u>2.31</u><br>(0.69)                                    | Light grey (<br>medium to<br>Deposits) | very silty coarse grained SA coarse sub rounded to well                                   | ND and GRAVEL. Gra<br>I rounded quartz. (Glad | avel is<br>cial Fluvial      |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    | 0.0.0.0      | 4 <u>3.00</u>                                            | End of Hole                            | e at 3m bgl.                                                                              |                                               |                              | <u> :   :</u>          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    |              |                                                          |                                        |                                                                                           |                                               |                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    |              |                                                          |                                        |                                                                                           |                                               |                              |                        |
| 2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010<br>2010 |            |                               |       |                    |              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                        |                                                                                           |                                               |                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    |              | -<br>-<br>-<br>-<br>-<br>-                               |                                        |                                                                                           |                                               |                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    |              | -<br>-<br>-<br>-<br>-<br>-<br>-                          |                                        |                                                                                           |                                               |                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                               |       |                    |              | F                                                        |                                        |                                                                                           |                                               |                              |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | roundwate                     |       | <u> </u>           |              | <u>†</u><br>neral Rem                                    |                                        |                                                                                           |                                               | Final De                     | pth                    |
| Strike Depth: (m) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kising to: | (m) Groundwa<br>Moderate infl |       | narks              | Loca         | ation: Back gard                                         | en in flower bed                       |                                                                                           |                                               | 3m b                         |                        |
| Contractor (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sherw      | ood Drilli                    | ing   |                    | M            | ethod/<br>ant Used                                       | Hand h                                 | eld window sampling                                                                       | All dimensions i                              | in metres Scale 1:50<br>Shee | et 1 of 1              |

| Ducient                              |            |                |         |                    |                    |                                 |                             |                                                | Lever d C                                                    | <u>.</u>                                 |
|--------------------------------------|------------|----------------|---------|--------------------|--------------------|---------------------------------|-----------------------------|------------------------------------------------|--------------------------------------------------------------|------------------------------------------|
| Project                              |            |                |         |                    |                    |                                 | Client<br>Cannock Ch        |                                                | Logged E                                                     | <sup>3y</sup><br>MJH                     |
| Hednesfo                             | ra Ro      |                |         |                    |                    |                                 |                             |                                                |                                                              |                                          |
| Job No<br>103                        | 3912       | Dat            | L       | 2-07-10<br>2-07-10 | )                  | Ground L                        | evel (m)                    | Co-ordinates                                   | Checked                                                      | ву<br>GVT                                |
| SAMPL                                | ES &       | TESTS          | 5       |                    |                    |                                 |                             | STRATA                                         |                                                              | lent                                     |
| Depth                                | Туре       | Test<br>Result | Water   | Reduced<br>Level   | Legend             | Depth<br>(Thickness)            |                             | DESCRIPTIO                                     | N                                                            | Instrument                               |
| 0.10-0.10                            | ES<br>ES   | Result         |         | Lever              | <u>11. 11. 11.</u> |                                 | occasional ro<br>(Topsoil). | oots and rootlets. Gravel is                   | ravelly fine to coarse SANE<br>medium rounded quartz.        | D with                                   |
| 0.60-0.60                            | ES         |                |         |                    |                    | (0.49)<br>- 1.00                | SAND. Grave                 | el is fine to coarse sub ang<br>nic and glass. | y very gravelly fine to coars<br>gular sub rounded ash, bric | se · · · · · · · · · · · · · · · · · · · |
| -                                    |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-<br>-<br>- |                             |                                                |                                                              |                                          |
| -<br>-<br>-<br>-<br>-<br>-           |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-<br>-      |                             |                                                |                                                              |                                          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -                                    |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-<br>-      |                             |                                                |                                                              |                                          |
| -                                    |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -                                    |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -                                    |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
|                                      |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-<br>-      |                             |                                                |                                                              |                                          |
| -<br>-<br>-<br>-<br>-<br>-<br>-      |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -<br>-<br>-<br>-<br>-<br>-<br>-      |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -<br>-<br>-<br>-<br>-<br>-           |            |                |         |                    |                    | -<br>-<br>-<br>-<br>-           |                             |                                                |                                                              |                                          |
| -                                    |            |                |         |                    | <u> </u>           | [                               | <u> </u>                    |                                                |                                                              |                                          |
| Strike Depth: (m)                    | Rising to: |                | ter Rer | marks              |                    | neral Rem<br>ation: Back gard   | iarks<br>en in flower bed   |                                                |                                                              | Final Depth                              |
|                                      |            | ncountered     |         |                    |                    | othed/                          |                             |                                                |                                                              | 1m bgl                                   |
| Contractor                           | Snerw      | vood Drilli    | ng      |                    | P                  | ethod/<br>lant Used             | ŀ                           | land Tools                                     | All dimensions in metres                                     | Scale 1:50<br>Sheet 1 of 1               |

# APPENDIX D

| Al control                | Laboratories                                                                                                                          |                                  |                                  |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------|----------------------------------------------------------|--------------------------|-----------------|--------------------------|-----------------|---------------------------------|-------------------|----------------------------------------|------------------|-----------------|-------------------|-----------------|---------------------------------|-------------------|------------|--------------|
| ALCONTO                   | Laboratories                                                                                                                          | Cu                               | stomer Samp                      |                          | WS1                                                      | WS1                      | WS2             | WS2                      | WS3             | WS3                             | WS4               | WS4                                    | WS5              | WS6             | WS6               | WS7             | WS7                             | WS7               | WS8        | WS8          |
|                           |                                                                                                                                       | Cu                               |                                  | epth                     | 0.10-0.00                                                | 0.30-0.00                | 0.10-0.00       | 1.00-0.00                |                 | 0.35-0.00                       | 0.10-0.00         | 0.60-0.00                              | 0.10-0.00        | 0.10-0.00       | 0.30-0.00         |                 | 0.30-0.00                       | 0.60-0.00         |            |              |
| Case:                     | 100707-41,100707-28,100709-53,100715-98,10                                                                                            |                                  |                                  | GS Id                    | 0.10-0.00<br>NS                                          | 0.30-0.00<br>NS          | 0.10-0.00<br>NS | 1.00-0.00<br>NS          |                 |                                 | 0.10-0.00<br>NS   | 0.00-0.00<br>NS                        | 0.10-0.00<br>NS  | 0.10-0.00<br>NS | 0.30-0.00         | 0.10-0.00<br>NS | 0.30-0.00<br>NS                 | 0.00-0.00<br>NS   |            | 0.00-0.00    |
| Customer:                 | Grontmij Solihull (5731)                                                                                                              |                                  | Sample                           |                          | SOLID                                                    | SOLID                    | SOLID           | SOLID                    | SOLID           | SOLID                           | SOLID             | SOLID                                  | SOLID            | SOLID           | SOLID             | SOLID           | SOLID                           | SOLID             |            | SOLID        |
| Customer ref:             | CANNOCK PORT 2A                                                                                                                       |                                  | Sampled                          |                          | 05/07/2010                                               | 05/07/2010               | 05/07/2010      | 05/07/2010               | 05/07/2010      | 05/07/2010                      | 05/07/2010        | 05/07/2010                             | 05/07/2010       | 06/07/2010      | 06/07/2010        | 06/07/2010      | 06/07/2010                      | 06/07/2010        |            | 12/07/2010   |
| Order no:                 | ,146072                                                                                                                               | Sam                              | ole Received                     | Date                     | 07/07/2010                                               | 07/07/2010               | 07/07/2010      | 07/07/2010               | 07/07/2010      | 07/07/2010                      | 07/07/2010        | 07/07/2010                             | 07/07/2010       | 07/07/2010      | 07/07/2010        | 09/07/2010      | 09/07/2010                      | 09/07/2010        | 15/07/2010 | 15/07/2010   |
|                           |                                                                                                                                       | Fina                             | Instruction                      | Date                     | 26/07/2010                                               | 26/07/2010               | 26/07/2010      | 27/07/2010               | 27/07/2010      | 27/07/2010                      | 27/07/2010        | 27/07/2010                             | 27/07/2010       | 27/07/2010      | 27/07/2010        | 26/07/2010      | 26/07/2010                      | 26/07/2010        | 26/07/2010 | 26/07/2010   |
| All results expressed     | on a dry weight basis                                                                                                                 | Repor                            | rt Completed                     |                          | 05/08/2010                                               | 05/08/2010               | 05/08/2010      | 05/08/2010               | 05/08/2010      | 05/08/2010                      | 05/08/2010        | 05/08/2010                             | 05/08/2010       | 05/08/2010      | 05/08/2010        | 05/08/2010      | 05/08/2010                      | 05/08/2010        | 05/08/2010 | 04/08/2010   |
|                           |                                                                                                                                       |                                  |                                  | oject                    | 100707-28                                                | 100707-28                | 100707-28       | 100707-28                | 100707-28       | 100707-28                       | 100707-41         | 100707-41                              | 100707-41        | 100707-41       | 100707-41         | 100709-53       | 100709-53                       | 100709-53         | 100715-104 | 100715-104   |
|                           |                                                                                                                                       |                                  | b Sample Nu                      |                          | 1786662                                                  | 1786510                  | 1786350         | 1786472                  | 1786125         | 1786156                         | 1786393           | 1786462                                | 1786519          | 1786856         | 1786868           | 1799508         | 1799556                         | 1799611           | 1827101    | 1826843      |
|                           |                                                                                                                                       |                                  | nple Tempera                     |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
| Analysis<br>Sample Descri | Test                                                                                                                                  | Method                           | Units                            | LOD                      |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
| oumpie Deser              | Colour                                                                                                                                | PM024                            |                                  |                          | Dark Brown                                               | Dark Brown               | Dark Brown      | Dark Brown               | Dark Brown      | Dark Brown                      | Dark Brown        | Dark Brown                             | Dark Brown       | Dark Brown      | Dark Brown        | Dark Brown      | Dark Brown                      | Dark Brown        | Dark Brown | Dark Brown   |
|                           | Grain Size                                                                                                                            | PM024                            | _                                |                          | 0.063 - 0.1 mm                                           | 0.063 - 0.1 mm           | 0.063 - 0.1 mm  | 0.063 - 0.1 mm           | 0.063 - 0.1 mm  | 0.063 - 0.1 mm                  | 0.1 - 2 mm        | 0.1 - 2 mm                             | 0.1 - 2 mm       | 0.1 - 2 mm      | 0.1 - 2 mm        | 0.1 - 2 mm      | 0.1 - 2 mm                      | 0.1 - 2 mm        |            | 063 - 0.1 mm |
|                           | Description                                                                                                                           | PM024                            | -                                |                          | Top Soil                                                 | Silty Clay               | Top Soil        |                          | Sandy Silt Loam | Silty Clay                      | Sand              | Sandy Loam                             | Sand             | Sandy Loam      | Sandy Silt Loarr  | Sand            | Loamy Sand                      | Sand              |            |              |
|                           | Inclusions                                                                                                                            | PM024                            | -                                |                          | Stones                                                   | Stones                   | N/A             | Stones                   | Stones          | Stones                          | Stones            | Stones                                 | Stones           | Stones          | Stones            | Stones          | Stones                          | Stones            | N/A        | Stones       |
|                           | Moisture                                                                                                                              | PM114                            | %                                |                          | -                                                        | -                        | -               | 18.1                     |                 | -                               |                   | -                                      |                  |                 | 44.3              |                 | 41.4                            |                   | -          |              |
|                           | Moisture content ratio                                                                                                                | PM114                            | %                                |                          | -                                                        | -                        | -               | 22.2                     | -               | -                               | -                 | -                                      |                  | -               | 79.4              | -               | 70.6                            |                   | -          |              |
|                           | Dry matter content ratio                                                                                                              | PM114                            | %                                |                          |                                                          | -                        |                 | 81.9                     |                 |                                 |                   | -                                      | -                |                 | 55.8              | -               | 58.6                            |                   |            |              |
| Asbestos                  |                                                                                                                                       |                                  |                                  |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
|                           | Asbestos Containing Material Screen                                                                                                   | TM001                            | -                                |                          | -                                                        | No ACM Detected          | -               | -                        | -               | No ACM Detected                 | -                 | No ACM Detected                        | No ACM Detected  | -               | No ACM Detected   | -               | No ACM Detected                 | -                 | -          |              |
|                           | Date of Analysis                                                                                                                      | TM048                            | -                                |                          | -                                                        | -                        |                 | -                        | -               | -                               |                   |                                        | -                | -               |                   | -               | -                               | -                 |            |              |
|                           | Analysed by<br>Comments                                                                                                               | TM048<br>TM048                   | -                                |                          |                                                          | -                        | -               | -                        | -               |                                 | -                 |                                        | -                |                 |                   |                 | -                               |                   |            | · · ·        |
|                           | Asbestos, Chrysotile (white)                                                                                                          | TM048<br>TM048                   | -                                |                          | -                                                        | -                        | -               | -                        | -               |                                 |                   |                                        |                  | -               | -                 | -               | -                               |                   | -          |              |
|                           | Asbestos, Amosite (brown)                                                                                                             | TM048                            |                                  | -                        |                                                          |                          |                 |                          | -               |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
|                           | Asbestos, Crocidolite (blue)                                                                                                          | TM048                            | -                                |                          | -                                                        | -                        | -               |                          |                 |                                 |                   |                                        | -                | -               |                   | -               | -                               |                   | · -        |              |
|                           | Anthophyllite, Fibrous                                                                                                                | TM048                            | -                                |                          | -                                                        | -                        | -               |                          |                 | -                               |                   | -                                      | -                |                 | -                 |                 | -                               |                   |            |              |
|                           | Tremolite, Fibrous                                                                                                                    | TM048                            | -                                |                          | -                                                        | -                        |                 |                          | -               | -                               | -                 | -                                      | -                | -               | -                 | -               | -                               | -                 | -          |              |
|                           | Actinolite, Fibrous                                                                                                                   | TM048                            | -                                |                          | -                                                        |                          | -               |                          |                 |                                 |                   | -                                      |                  | -               |                   | -               |                                 |                   | -          |              |
|                           | Non-asbestos fibre                                                                                                                    | TM048                            | -                                |                          | -                                                        |                          | -               |                          | -               | -                               |                   | -                                      |                  | -               |                   | -               |                                 |                   | -          |              |
| Carbon                    |                                                                                                                                       |                                  |                                  |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
| la escercie e             | Soil Organic Matter (SOM)                                                                                                             | TM132                            | %                                | <0.35                    | 8.59                                                     | 10.8                     | 4.79            |                          | 5.52            | 7.31                            | 10.6              | 15.3                                   | 6.62             | 7.65            | 40                | 55              | 39.7                            |                   | 16.4       | 32.9         |
| Inorganics                |                                                                                                                                       |                                  |                                  |                          |                                                          | 7.27                     |                 |                          |                 |                                 |                   |                                        |                  |                 | 7.7               |                 |                                 |                   |            |              |
|                           | pH<br>Cyanide, Total                                                                                                                  | TM133<br>TM153                   | pH Units<br>mg/kg                | <1                       | 6.14                                                     | 1.27                     | 8.33            |                          | 6.79            | 7.04                            | 7.31              | 7.45                                   | 6.64             | 8.35            | <1                | 7.68            | 7.91                            |                   | 5.97       | 7.96         |
|                           | Thiocyanate                                                                                                                           | TM153                            | mg/kg                            | <1                       | -                                                        | <1                       | -               |                          | -               | <1                              |                   | دا<br>دا                               | <1               |                 | <1                | -               | <1                              |                   | -          |              |
| Metals                    |                                                                                                                                       |                                  |                                  |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
|                           | Chromium, Hexavalent                                                                                                                  | TM151                            | mg/kg                            | <0.6                     | <1.2                                                     | <1.2                     | <0.6            |                          | <1.2            | <0.6                            | <0.6              | <1.2                                   | <0.6             | <0.6            | <0.6              | 5.98            | 1.26                            |                   | <1.2       | <1.2         |
|                           | Antimony                                                                                                                              | TM181                            | mg/kg                            | <0.6                     | -                                                        | 1.61                     | -               |                          |                 | 3.53                            |                   | <0.6                                   | <0.6             |                 | 7.81              |                 | 62.7                            |                   | -          |              |
|                           | Arsenic                                                                                                                               | TM181                            | mg/kg                            | <0.6                     | 17.5                                                     | 16.1                     | 12.4            |                          | 9.55            |                                 | 8.51              | 9.7                                    | 6.79             | 8.91            | 30.6              | 15.3            | 65.5                            |                   | 12.6       | 33.8         |
|                           | Barium                                                                                                                                | TM181                            | mg/kg                            | <0.6                     | 148                                                      | 174                      | 243             | -                        | 156             |                                 | 372               | 132                                    | 62               | 120             | 400               |                 | 656                             |                   | 154        | 245          |
|                           | Beryllium                                                                                                                             | TM181                            | mg/kg                            | <0.0                     | 2.17                                                     | 2.35                     | 2.01            | -                        | 1.73            |                                 | 6.54              |                                        | 1.12             | 1.39            | 7.05              |                 | 13.6                            | -                 | 1.28       |              |
|                           | Cadmium                                                                                                                               | TM181                            | mg/kg                            | < 0.02                   | 1.03                                                     | 1.02                     | 0.824           |                          | 0.518           | 0.413                           | 0.546             | 0.876                                  | 0.328            | 0.682           | 1.61              | 0.582           | 4.4                             |                   | 0.647      | 0.777        |
|                           | Chromium<br>Copper                                                                                                                    | TM181<br>TM181                   | mg/kg<br>mg/kg                   | <0.9                     | 20.3<br>715                                              | 19.1<br>205              | 20.2<br>43.1    | -                        | 21.9<br>53.3    | 25.8<br>26.7                    | 23.9<br>60.9      | 13<br>65.7                             | 8.14             | 19.6<br>37.6    | 19.9<br>103       | 27.1<br>47.4    | 74.2                            | -                 | 20.6       | 21.4<br>95.4 |
|                           | Copper<br>Lead                                                                                                                        | TM181<br>TM181                   | mg/kg<br>mg/kg                   | <0.7                     | 121                                                      | 205                      | 43.1            |                          | 68.2            |                                 | 60.9<br>37        |                                        | 55.8             | 37.6            | 237               | 47.4            | 352                             | -                 | 48.7       | 95.4         |
|                           | Mercury                                                                                                                               | TM181                            | mg/kg                            | <0.14                    | <0.14                                                    | <0.14                    | <0.14           |                          | <0.14           | <0.14                           | <0.14             |                                        | <0.14            | <0.14           | <0.14             |                 |                                 |                   | <0.14      | <0.14        |
|                           | Nickel                                                                                                                                | TM181                            | mg/kg                            | <0.2                     | 31.5                                                     | 31.7                     | 23.5            |                          | 32.5            |                                 | 33.5              |                                        | 10               |                 | 61.1              | 22.7            | 146                             |                   | 24.4       | 55.5         |
|                           | Selenium                                                                                                                              | TM181                            | mg/kg                            | <1                       | 1.11                                                     | 1.02                     | 1.22            |                          | 1.36            | <1                              | 2.3               | <1                                     | <1               | <1              | 1.96              | 1.46            | <10                             | -                 | 1.31       | 1.52         |
|                           | Vanadium                                                                                                                              | TM181                            | mg/kg                            | <0.2                     | 31.5                                                     | 32.5                     | 30.2            |                          | 31.5            | 17.7                            | 58.3              | 27.3                                   | 14               | 25.7            | 60.8              | 29.4            | 89.3                            |                   | 24.7       | 60.6         |
|                           | Zinc                                                                                                                                  | TM181                            | mg/kg                            | <1.9                     | 289                                                      | 281                      | 258             |                          | 136             |                                 | 172               | 211                                    | 68.4             | 188             | 747               | 141             | 1990                            |                   | 176        |              |
| Dhanala                   | Boron, water soluble                                                                                                                  | TM222                            | mg/kg                            | <1                       | 1.08                                                     | 1.34                     | 1.56            |                          | <1              | <1                              | <1                | <1                                     | 1.03             | 1.7             | 5.35              | 8.43            | 9.95                            |                   | <1         | 1.38         |
| Phenols                   |                                                                                                                                       |                                  |                                  |                          |                                                          |                          |                 |                          |                 |                                 |                   |                                        |                  |                 |                   |                 |                                 |                   |            |              |
|                           | Phenol                                                                                                                                | TM062 (S                         | mg/kg                            | <0.0                     |                                                          | <0.01                    |                 |                          |                 | <0.01                           |                   | <0.01                                  | <0.01            |                 | <0.01             |                 | <0.01                           |                   |            |              |
| Gasoline Rong             | de Organics (GPO)                                                                                                                     |                                  |                                  |                          |                                                          |                          |                 | <10                      |                 |                                 | <10               | <10                                    |                  |                 | <10               |                 | -                               | <10               |            |              |
| Gasoline Rang             | ge Organics (GRO)                                                                                                                     | TMORO                            | uaka                             | ~10                      |                                                          |                          |                 |                          |                 | -                               | <10               | <10                                    | -                |                 | <10               |                 |                                 | <10               |            |              |
| Gasoline Rang             | Aliphatics >C5-C6                                                                                                                     | TM089                            | µg/kg<br>µg/kg                   | <10                      | -                                                        | <10                      | -               | -                        | -               | _                               | -10               | -10                                    | _                |                 | -10               |                 |                                 | -10               | -          |              |
| Gasoline Rang             | Aliphatics >C5-C6<br>Aliphatics >C6-C8                                                                                                | TM089                            | µg/kg                            | <10                      | -                                                        | <10                      |                 | <10                      |                 |                                 | <10<br><10        |                                        |                  |                 | <10               | -               |                                 | <10<br><10        |            |              |
| Gasoline Rang             | Aliphatics >C5-C6                                                                                                                     |                                  | µg/kg<br>µg/kg                   | -                        | -<br>-<br>-                                              | -                        | -               | -                        | -               | -                               | <10<br><10<br><10 | <10                                    | -                | -               | <10<br><10<br><10 |                 | -                               | <10<br><10<br><10 | -          |              |
| Gasoline Rang             | Aliphatics >C5-C6<br>Aliphatics >C6-C8<br>Aliphatics >C8-C10                                                                          | TM089<br>TM089                   | µg/kg                            | <10<br><10               |                                                          | <10<br><10               | -               | <10<br><10               | -               | -                               | <10               | <10                                    | -                |                 | <10               |                 |                                 | <10               | -          |              |
| Gasoline Rang             | Aliphatics >C5-C6<br>Aliphatics >C6-C8<br>Aliphatics >C8-C10<br>Aliphatics >C10-C12                                                   | TM089<br>TM089<br>TM089          | µg/kg<br>µg/kg<br>µg/kg          | <10<br><10<br><10        |                                                          | <10<br><10<br><10        | -               | <10<br><10<br><10        | -               |                                 | <10<br><10        | <10<br><10                             | -<br>-<br>-<br>- | · · · ·         | <10<br><10        |                 |                                 | <10<br><10        | -          |              |
| Gasoline Rang             | Aliphatics >C5-C6<br>Aliphatics >C6-C8<br>Aliphatics >C8-C10<br>Aliphatics >C8-C10<br>Aliphatics >C10-C12<br>Total Aliphatics >C5-C12 | TM089<br>TM089<br>TM089<br>TM089 | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg | <10<br><10<br><10<br><10 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <10<br><10<br><10<br><10 | -               | <10<br><10<br><10<br><10 | -               | -<br>-<br>-<br>-<br>-<br>-<br>- | <10<br><10<br><10 | <10<br><10<br><10<br><10<br><10<br><10 |                  |                 | <10<br><10<br><10 | -               | -<br>-<br>-<br>-<br>-<br>-<br>- | <10<br><10<br><10 | -          |              |

|                   | Aromatics >EC10-EC12                                                                                                                                                  | TM089                                                                                  | µg/kg                                                       | <10                                                          |                                                      | <10                                                                                         | -                                                                                           | <10                                                  |                                 |   | <10                             | <10                                                  | - |   | <10                                                          | -   |                       | <10                                                                                    | -                                         |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|---|---------------------------------|------------------------------------------------------|---|---|--------------------------------------------------------------|-----|-----------------------|----------------------------------------------------------------------------------------|-------------------------------------------|--|
|                   | Total Aromatics >C6-C12                                                                                                                                               | TM089                                                                                  | µg/kg                                                       | <10                                                          | -                                                    | <10                                                                                         | -                                                                                           | <10                                                  |                                 | - | <10                             | <10                                                  | - | - | <10                                                          |     | -                     | <10                                                                                    | -                                         |  |
|                   | GRO Surrogate % recovery**                                                                                                                                            | TM089                                                                                  | %                                                           |                                                              | -                                                    | 28                                                                                          | -                                                                                           | 68                                                   |                                 |   | 34                              | 29                                                   | - |   | 13                                                           | -   |                       | 24                                                                                     | -                                         |  |
|                   | Benzene                                                                                                                                                               | TM089                                                                                  | µg/kg                                                       | <10                                                          | -                                                    | <10                                                                                         | -                                                                                           | <10                                                  |                                 |   | <10                             | <10                                                  | - |   | <10                                                          | -   |                       | <10                                                                                    | -                                         |  |
|                   | Toluene                                                                                                                                                               | TM089                                                                                  | µg/kg                                                       | <2                                                           | -                                                    | <2                                                                                          | -                                                                                           | <2                                                   |                                 | - | <2                              | <2                                                   | - |   | <2                                                           | -   | -                     | <2                                                                                     | -                                         |  |
|                   | Ethylbenzene                                                                                                                                                          | TM089                                                                                  | µg/kg                                                       | <3                                                           | -                                                    | -3                                                                                          | -                                                                                           | <3                                                   |                                 |   | <3                              | <3                                                   |   |   | <3                                                           |     |                       | <3                                                                                     | -                                         |  |
| -                 | m,p-Xylene                                                                                                                                                            | TM089                                                                                  | µg/kg                                                       | <6                                                           |                                                      | <6                                                                                          |                                                                                             | <6                                                   |                                 |   | <6                              | <6                                                   |   |   | <6                                                           |     |                       | <6                                                                                     |                                           |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             | <3                                                           | -                                                    | <8                                                                                          | -                                                                                           | <0                                                   |                                 | - |                                 |                                                      |   |   |                                                              | -   | -                     | <0                                                                                     |                                           |  |
|                   | o-Xylene                                                                                                                                                              | TM089                                                                                  | µg/kg                                                       |                                                              | -                                                    |                                                                                             | -                                                                                           |                                                      |                                 | - | <3                              | <3                                                   |   |   | <3                                                           | -   | -                     |                                                                                        | -                                         |  |
|                   | m,p,o-Xylene                                                                                                                                                          | TM089                                                                                  | µg/kg                                                       | <10                                                          |                                                      | <10                                                                                         | -                                                                                           | <10                                                  | -                               | - | <10                             | <10                                                  |   |   | <10                                                          | -   | -                     | <10                                                                                    | -                                         |  |
|                   | BTEX, Total                                                                                                                                                           | TM089                                                                                  | µg/kg                                                       | <10                                                          | -                                                    | <10                                                                                         | -                                                                                           | <10                                                  |                                 |   | <10                             | <10                                                  |   |   | <10                                                          | -   |                       | <10                                                                                    | -                                         |  |
|                   | Methyl tertiary butyl ether (MTBE)                                                                                                                                    | TM089                                                                                  | µg/kg                                                       | <5                                                           | -                                                    | <5                                                                                          | -                                                                                           | <5                                                   |                                 |   | <5                              | <5                                                   | - |   | <5                                                           | -   | -                     | <5                                                                                     | -                                         |  |
|                   | GR0 >C5-C12                                                                                                                                                           | TM089                                                                                  | µg/kg                                                       | <44                                                          | -                                                    | <44                                                                                         | -                                                                                           | <44                                                  |                                 |   | <44                             | <44                                                  | - |   | <44                                                          | -   |                       | <44                                                                                    | -                                         |  |
| Speciated EPH     | H CWG                                                                                                                                                                 |                                                                                        |                                                             |                                                              |                                                      |                                                                                             |                                                                                             |                                                      |                                 |   |                                 |                                                      |   |   |                                                              |     |                       |                                                                                        |                                           |  |
| •                 | Aliphatics >C12-C16                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          | · ·                                                  | 5320                                                                                        |                                                                                             | 38600                                                |                                 |   | <100                            | 1220                                                 |   |   | 14100                                                        |     |                       | 21100                                                                                  |                                           |  |
|                   | Aliphatics >C16-C21                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 9780                                                                                        |                                                                                             | 65200                                                |                                 |   | <100                            | 2280                                                 |   |   | 16400                                                        |     |                       | 20400                                                                                  |                                           |  |
| -                 |                                                                                                                                                                       |                                                                                        |                                                             |                                                              | -                                                    |                                                                                             | -                                                                                           |                                                      |                                 | - |                                 |                                                      | - |   |                                                              | -   | -                     |                                                                                        | -                                         |  |
|                   | Aliphatics >C16-C35                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 55500                                                                                       | -                                                                                           | 247000                                               |                                 |   | 1800                            | 9800                                                 | - |   | 86400                                                        | -   |                       | 81200                                                                                  | -                                         |  |
|                   | Aliphatics >C21-C35                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 45800                                                                                       | -                                                                                           | 182000                                               | -                               | - | 1800                            | 7520                                                 | - |   | 70100                                                        | -   | -                     | 60800                                                                                  | -                                         |  |
|                   | Aliphatics >C35-C44                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 12500                                                                                       | -                                                                                           | 48600                                                |                                 | - | <100                            | 572                                                  | - |   | 12200                                                        | -   | -                     | 6820                                                                                   | -                                         |  |
|                   | Total Aliphatics >C12-C44                                                                                                                                             | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 73400                                                                                       | -                                                                                           | 334000                                               |                                 |   | 1800                            | 11600                                                | - | - | 113000                                                       | -   | -                     | 109000                                                                                 | -                                         |  |
|                   | Aromatics >EC12-EC16                                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | 4710                                                                                        | -                                                                                           | 127000                                               |                                 | - | <100                            | 4520                                                 | - |   | 27100                                                        | -   | -                     | 10400                                                                                  | -                                         |  |
|                   | Aromatics >EC16-EC21                                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | 23800                                                                                       |                                                                                             | 539000                                               |                                 | - | 806                             | 9640                                                 | - | - | 80300                                                        | -   | -                     | 35900                                                                                  | -                                         |  |
|                   | Aromatics >EC21-EC35                                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | 111000                                                                                      |                                                                                             | 876000                                               |                                 |   | 2580                            | 18400                                                | _ |   | 280000                                                       |     | -                     | 90300                                                                                  | _                                         |  |
|                   | Aromatics >EC35-EC44                                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 39900                                                                                       |                                                                                             | 241000                                               |                                 |   | <100                            | 4780                                                 |   |   | 87500                                                        |     |                       | 20800                                                                                  |                                           |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             |                                                              | -                                                    |                                                                                             | -                                                                                           |                                                      |                                 | - |                                 |                                                      |   | - |                                                              |     | -                     |                                                                                        |                                           |  |
| <u> </u>          | Aromatics >EC40-EC44                                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 15600                                                                                       | -                                                                                           | 86600                                                |                                 |   | <100                            | 1550                                                 |   | - | 31500                                                        | - 1 | -                     | 6260                                                                                   |                                           |  |
|                   | Total Aromatics >EC12-EC44                                                                                                                                            | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 180000                                                                                      | -                                                                                           | 1780000                                              |                                 | - | 3390                            | 37300                                                | - |   | 475000                                                       | -   | -                     | 157000                                                                                 | -                                         |  |
|                   | Aliphatics >C35-C40                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          | -                                                    | -                                                                                           | -                                                                                           | -                                                    |                                 | - | -                               | -                                                    | - | - |                                                              | -   | -                     | 6820                                                                                   | -                                         |  |
|                   | Aliphatics >C40-C44                                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           | -                                                                                           | -                                                    |                                 |   | -                               | -                                                    | - | - | -                                                            | -   | -                     | <100                                                                                   | -                                         |  |
|                   | Total Aliphatics >C12-C35                                                                                                                                             | TM173                                                                                  | µg/kg                                                       | <10                                                          | - 0                                                  | -                                                                                           | -                                                                                           | -                                                    |                                 |   | -                               |                                                      | - |   |                                                              | -   |                       | 102000                                                                                 | -                                         |  |
|                   | Total Aliphatics >C12-C40                                                                                                                                             | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           |                                                                                             | -                                                    |                                 |   | _                               | -                                                    |   |   |                                                              |     |                       | 109000                                                                                 | -                                         |  |
| -                 | Total Aliphatics & Aromatics >C12-C44                                                                                                                                 | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      |                                                                                             |                                                                                             |                                                      |                                 |   |                                 |                                                      |   |   |                                                              |     |                       | 266000                                                                                 |                                           |  |
| TPH Critoria W    | Vorking Group (TPH CWG)                                                                                                                                               | 1111175                                                                                | pana                                                        | <10                                                          | -                                                    | -                                                                                           | -                                                                                           |                                                      |                                 | - |                                 |                                                      | - | - |                                                              | -   |                       | 200000                                                                                 | -                                         |  |
| IT IT Officeria W |                                                                                                                                                                       |                                                                                        |                                                             | <10                                                          |                                                      |                                                                                             |                                                                                             |                                                      |                                 |   |                                 |                                                      |   |   |                                                              |     |                       |                                                                                        |                                           |  |
|                   | Total Aliphatics >C5-C44                                                                                                                                              | TM173                                                                                  | µg/kg                                                       | 110                                                          | 0                                                    | 73400                                                                                       | -                                                                                           | 334000                                               |                                 | - | 1800                            | 11600                                                | - | - | 113000                                                       | -   | -                     | 109000                                                                                 | -                                         |  |
|                   | Total Aromatics >C6-C44                                                                                                                                               | TM173                                                                                  | µg/kg                                                       | <10                                                          |                                                      | 180000                                                                                      | -                                                                                           | 1780000                                              |                                 |   | 3390                            | 37300                                                | - |   | 475000                                                       | -   |                       | 157000                                                                                 | -                                         |  |
|                   | Total Aliphatics & Aromatics >C5-C44                                                                                                                                  | TM173                                                                                  | µg/kg                                                       | <10                                                          | 0 -                                                  | 253000                                                                                      | -                                                                                           | 2120000                                              |                                 |   | 5190                            | 48900                                                | - |   | 587000                                                       | -   |                       | 266000                                                                                 | -                                         |  |
|                   | Total Aliphatics >C5-35                                                                                                                                               | TM173                                                                                  | µg/kg                                                       | <10                                                          | - 0                                                  | 60900                                                                                       | -                                                                                           | 286000                                               |                                 |   | 1800                            | 11000                                                | - |   | 101000                                                       | -   | -                     | 102000                                                                                 | -                                         |  |
|                   | Total Aromatics >C5-35                                                                                                                                                | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | 140000                                                                                      |                                                                                             | 1540000                                              |                                 |   | 3390                            | 32500                                                | - |   | 387000                                                       | -   | -                     | 137000                                                                                 | -                                         |  |
|                   | Total Aliphatics & Aromatics >C5-35                                                                                                                                   | TM173                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | 201000                                                                                      | -                                                                                           | 1830000                                              |                                 |   | 5190                            | 43500                                                | - |   | 488000                                                       | -   | -                     | 239000                                                                                 | -                                         |  |
| Semi-Volatile     | Organic Compounds (SVOCs)                                                                                                                                             |                                                                                        | F 5 ··· 5                                                   |                                                              |                                                      |                                                                                             |                                                                                             |                                                      |                                 |   |                                 |                                                      |   |   |                                                              |     |                       |                                                                                        |                                           |  |
| oom rolanio       | Phenol                                                                                                                                                                | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      |                                                                                             |                                                                                             | <100                                                 |                                 |   |                                 | <100                                                 |   |   | <100                                                         |     |                       |                                                                                        |                                           |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             | -                                                            |                                                      | -                                                                                           | -                                                                                           |                                                      |                                 | - | -                               |                                                      | - |   |                                                              | -   | -                     |                                                                                        | -                                         |  |
|                   | Pentachlorophenol                                                                                                                                                     | TM157                                                                                  | µg/kg                                                       | <10                                                          | -                                                    | -                                                                                           | -                                                                                           | <100                                                 |                                 |   | -                               | <100                                                 | - | - | <100                                                         | -   |                       |                                                                                        | -                                         |  |
|                   | n-Nitroso-n-dipropylamine                                                                                                                                             | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           | -                                                                                           | <100                                                 |                                 |   | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | Nitrobenzene                                                                                                                                                          | TM157                                                                                  | µg/kg                                                       | <10                                                          | 0 -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | Isophorone                                                                                                                                                            | TM157                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 |   | -                               | <100                                                 | - | - | <100                                                         |     | -                     | -                                                                                      | -                                         |  |
|                   | Hexachloroethane                                                                                                                                                      | TM157                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | Hexachlorocyclopentadiene                                                                                                                                             | TM157                                                                                  | µg/kg                                                       | <10                                                          | 0 -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 |   |   | <100                                                         |     | -                     | -                                                                                      | -                                         |  |
|                   | Hexachlorobutadiene                                                                                                                                                   | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      |                                                                                             |                                                                                             | <100                                                 |                                 |   | _                               | <100                                                 |   |   | <100                                                         |     |                       |                                                                                        |                                           |  |
|                   | Hexachlorobenzene                                                                                                                                                     | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           | -                                                                                           | <100                                                 |                                 |   |                                 | <100                                                 |   | - | <100                                                         |     |                       |                                                                                        |                                           |  |
|                   | n-Dioctyl phthalate                                                                                                                                                   | TM157<br>TM157                                                                         | µg/kg<br>µg/kg                                              | <10                                                          |                                                      | -                                                                                           |                                                                                             | <100                                                 |                                 | - |                                 | <100                                                 | - | - | <100                                                         |     | -                     |                                                                                        |                                           |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             |                                                              |                                                      | -                                                                                           | -                                                                                           |                                                      |                                 |   |                                 |                                                      |   | - |                                                              | - 1 |                       | -                                                                                      |                                           |  |
|                   | Dimethyl phthalate                                                                                                                                                    | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - |   | <100                                                         |     | -                     | -                                                                                      | -                                         |  |
|                   | Diethyl phthalate                                                                                                                                                     | TM157                                                                                  | µg/kg                                                       | <10                                                          | 0 -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - |   | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | n-Dibutyl phthalate                                                                                                                                                   | TM157                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 |   | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | Dibenzofuran                                                                                                                                                          | TM157                                                                                  | µg/kg                                                       | <10                                                          | o -                                                  | -                                                                                           | -                                                                                           | 365                                                  |                                 | - | -                               | 117                                                  | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | Carbazole                                                                                                                                                             | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           |                                                                                             | 194                                                  |                                 | - | -                               | <100                                                 | - |   | <100                                                         |     | -                     |                                                                                        | -                                         |  |
|                   | Butylbenzyl phthalate                                                                                                                                                 | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | _                                                                                           |                                                                                             | <100                                                 |                                 | _ | _                               | <100                                                 |   |   | <100                                                         |     |                       |                                                                                        | _                                         |  |
|                   | bis(2-Ethylhexyl) phthalate                                                                                                                                           | TM157<br>TM157                                                                         | µg/kg<br>µg/kg                                              | <10                                                          | 0                                                    | -                                                                                           | -                                                                                           | <100                                                 |                                 | - |                                 | <100                                                 | - | - | <100                                                         |     | -                     |                                                                                        |                                           |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             |                                                              |                                                      | -                                                                                           | -                                                                                           |                                                      |                                 |   | -                               |                                                      | - |   |                                                              |     | -                     |                                                                                        | -                                         |  |
|                   | bis(2-Chloroethoxy)methane                                                                                                                                            | TM157                                                                                  | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   |                                                                                                                                                                       |                                                                                        | µg/kg                                                       | <10                                                          |                                                      | -                                                                                           | -                                                                                           | <100                                                 |                                 | - | -                               | <100                                                 | - | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | bis(2-Chloroethyl)ether                                                                                                                                               | TM157                                                                                  |                                                             |                                                              | 0 -                                                  | -                                                                                           |                                                                                             | <100                                                 |                                 | - |                                 | <100                                                 |   | - | <100                                                         | -   | -                     | -                                                                                      | -                                         |  |
|                   | bis(2-Chloroethyl)ether<br>Azobenzene                                                                                                                                 | TM157<br>TM157                                                                         | µg/kg                                                       | <10                                                          |                                                      |                                                                                             |                                                                                             |                                                      |                                 |   |                                 | <100                                                 | - |   |                                                              |     |                       |                                                                                        | -                                         |  |
|                   |                                                                                                                                                                       |                                                                                        |                                                             | <10<br><10                                                   | - 0                                                  | -                                                                                           | -                                                                                           | <100                                                 |                                 |   |                                 |                                                      |   |   | <100                                                         | -   | -                     |                                                                                        |                                           |  |
|                   | Azobenzene                                                                                                                                                            | TM157                                                                                  | µg/kg                                                       | _                                                            |                                                      |                                                                                             |                                                                                             | <100<br><100                                         |                                 |   |                                 | <100                                                 | - | - | <100                                                         |     |                       | -                                                                                      | -                                         |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitroaniline                                                                                                                         | TM157<br>TM157<br>TM157                                                                | µg/kg<br>µg/kg<br>µg/kg                                     | <10<br><10                                                   | 0 -                                                  |                                                                                             |                                                                                             | <100                                                 |                                 | - | -                               |                                                      | - | - | <100                                                         |     | -                     |                                                                                        |                                           |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitroaniline<br>4-Methylphenol                                                                                                       | TM157<br>TM157<br>TM157<br>TM157                                                       | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                            | <10<br><10<br><10                                            | o -<br>o -                                           |                                                                                             | •                                                                                           | <100<br><100                                         |                                 | - | -                               | <100                                                 |   |   | <100<br><100                                                 |     | -                     |                                                                                        |                                           |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitrophenol<br>4-Methylphenol<br>4-Chlorophenylphenylether                                                                           | TM157<br>TM157<br>TM157<br>TM157<br>TM157                                              | hâykâ<br>hâykâ<br>hâykâ<br>hâykâ                            | <10<br><10<br><10<br><10                                     | 0 -<br>0 -                                           | -                                                                                           | •                                                                                           | <100<br><100<br><100                                 | -                               | - | -                               | <100<br><100                                         | - |   | <100<br><100<br><100                                         | -   | -                     | ·<br>·<br>·                                                                            | -                                         |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitrophenol<br>4-Methylphenol<br>4-Chiorophenylphenylether<br>4-Chioropaniline                                                       | TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157                                     | hðykð<br>hðykð<br>hðykð<br>hðykð                            | <10<br><10<br><10<br><10<br><10                              | 0 -<br>0 -<br>0 -                                    | -                                                                                           | -                                                                                           | <100<br><100<br><100<br><100                         | -                               | - | -                               | <100<br><100<br><100                                 | - |   | <100<br><100<br><100<br><100                                 | -   | -<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-                                                                       | -                                         |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitrophenol<br>4-Nitrophenylphenol<br>4-Chiorophenylphenylether<br>4-Chioro-3-methylphenol                                           | TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157                            | hðikð<br>hðikð<br>hðikð<br>hðikð<br>hðikð                   | <100<br><100<br><100<br><100<br><100<br><100<br><100         | 0 -<br>0 -<br>0 -<br>0 -<br>0 -                      | -<br>-<br>-<br>-<br>-                                                                       |                                                                                             | <100<br><100<br><100<br><100<br><100<br><100         |                                 |   |                                 | <100<br><100<br><100<br><100<br><100                 | - |   | <100<br><100<br><100<br><100<br><100                         |     |                       | -<br>-<br>-<br>-<br>-                                                                  | -                                         |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitrophenol<br>4-Chicrophenylphenol<br>4-Chicroaniline<br>4-Chicro-3-methylphenol<br>4-Bromophenylphenol<br>4-Bromophenylphenylether | TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157                   | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg | <100<br><100<br><100<br><100<br><100<br><100<br><100<br><100 | 0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |                                                                                             | <100<br><100<br><100<br><100<br><100<br><100         |                                 |   | -<br>-<br>-<br>-<br>-           | <100<br><100<br><100<br><100<br><100<br><100         |   |   | <100<br><100<br><100<br><100<br><100<br><100<br><100         |     |                       |                                                                                        |                                           |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitroaniline<br>4-Methylphenol<br>4-Chlorophenylphenylether<br>4-Chloro-3-methylphenol<br>4-Bromophenylphenylether<br>3-Nitroaniline | TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157 | hðikð<br>hðikð<br>hðikð<br>hðikð<br>hðikð                   | <100<br><100<br><100<br><100<br><100<br><100<br><100         | 0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -        |                                                                                             |                                                                                             | <100<br><100<br><100<br><100<br><100<br><100<br><100 | -<br>-<br>-<br>-<br>-<br>-<br>- | - | -<br>-<br>-<br>-<br>-           | <100<br><100<br><100<br><100<br><100<br><100<br><100 |   |   | <100<br><100<br><100<br><100<br><100<br><100<br><100<br><100 |     |                       | -<br>-<br>-<br>-<br>-<br>-<br>-                                                        | -<br>-<br>-<br>-<br>-<br>-<br>-           |  |
|                   | Azobenzene<br>4-Nitrophenol<br>4-Nitrophenol<br>4-Chicrophenylphenol<br>4-Chicroaniline<br>4-Chicro-3-methylphenol<br>4-Bromophenylphenol<br>4-Bromophenylphenylether | TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157<br>TM157                   | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg | <100<br><100<br><100<br><100<br><100<br><100<br><100<br><100 | 0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 -<br>0 - | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <100<br><100<br><100<br><100<br><100<br><100         |                                 |   | -<br>-<br>-<br>-<br>-<br>-<br>- | <100<br><100<br><100<br><100<br><100<br><100         |   | - | <100<br><100<br><100<br><100<br><100<br><100<br><100         |     |                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |


|          | 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           | -     |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|---------------------------------------------------------------------------------------------|-------|
|          | 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   |                                                                                             | -     |
|          | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           | -     |
|          | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   |                                                                                             |       |
|          | 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     |                                                                                             |       |
|          | 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ |   |     | _                                                                                           | _     |
|          | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | _                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - |     |                                                                                             |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | - | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   | -   | -                                                                                           |       |
|          | 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           |       |
|          | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -   | -                                                                                           | -     |
|          | 2,4,5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   | -   | -                                                                                           | -     |
|          | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           | -     |
|          | 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           | -     |
|          | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           |       |
|          | 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - | -   | -                                                                                           |       |
|          | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   |                                                                                             |       |
|          | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     |                                                                                             |       |
|          | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     |                                                                                             |       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | 589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   | -   | -                                                                                           |       |
|          | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | - |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -   | -                                                                                           |       |
|          | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | 645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   | -                                                                                           | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | -                                                                                           | 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - |   | -   | -                                                                                           | · · · |
|          | Benzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           |                                                                                             | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   | -   | -                                                                                           |       |
| -        | Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | 525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - |                                                                                             | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | -                                                                                           | 667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - | -   | -                                                                                           |       |
|          | Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | 812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - |                                                                                             | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           | -                                                                                           | 959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   | -   | -                                                                                           | -     |
|          | Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | - | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | - | -   | -                                                                                           | -     |
|          | Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | 714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | - | -                                                                                           | 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           | -                                                                                           | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | - | -   | -                                                                                           | -     |
|          | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           | -                                                        | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -                                                                                           | 803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           | -                                                                                           | 1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - | -   | -                                                                                           | -     |
|          | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           |                                                          | 383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   |     | -                                                                                           | -     |
|          | Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                           |                                                          | 371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                           |                                                                                             | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | - |     | -                                                                                           | -     |
|          | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |     | -                                                                                           |       |
| <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           |                                                          | 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | - | -                                                                                           | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           |                                                                                             | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - | - |     |                                                                                             |       |
|          | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   | - 1 |                                                                                             |       |
|          | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   |     | -                                                                                           |       |
|          | Dibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TM157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <100                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             | -                                                        | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   | -                                                                                           | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - |   |     |                                                                                             | · ·   |
|          | nic Compounds (VOCs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |     |                                                                                             |       |
|          | Dibromofluoromethane**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |                                                                                             | 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - |   |     | -                                                                                           | -     |
|          | Dibromonadromonane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | - | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |     |                                                                                             |       |
|          | Toluene-d8**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |                                                          | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |   | -                                                                                           | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | -                                                                                           | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - | - |     | -                                                                                           | -     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - | - | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | -                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | - |     | -                                                                                           | -     |
|          | Toluene-d8**<br>4-Bromofluorobenzene**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>%<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <4                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | 93.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | - | •                                                                                           | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | -                                                                                           | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   | -   | -                                                                                           | -     |
|          | Toluene-d8**<br>4-Bromofluorobenzene**<br>Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %<br>%<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <4                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -                                                        | 93.5<br>136<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - |   | ·<br>·<br>·                                                                                 | 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | •                                                                                           | 95<br>154<br><4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |     | -                                                                                           |       |
|          | Toluene-d8**<br>4-Bromofluorobenzene**<br>Dichlorodifluoromethane<br>Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4<br><7                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - |   |                                                                                             | 95.7<br>121<br><4<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                           | · · ·                                                                                       | 95<br>154<br><4<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromofluorobenzene** Dichlorodifluoromethane Chloromethane Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - |   | -<br>-<br>-<br>-<br>-<br>-                                                                  | 95.7<br>121<br><4<br><7<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                           |                                                                                             | 95<br>154<br><4<br><7<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |                                                                                             |       |
|          | Toluene-d8**<br>4-Bromofluorobenzene**<br>Dichloromethane<br>Chloromethane<br>Winyl Chloride<br>Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <10<br><13                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |                                                                                             | 95.7<br>121<br><4<br><7<br><10<br><13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichlorodfluorobenzene** Chloromethane Chloromethane Vinyl Chloride Bromomethane Chlorobethane Chlorobethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10<br><13<br><14                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 93.5<br>136<br><4<br><7<br><10<br><13<br><14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | 95.7<br>121<br><4<br><7<br><10<br><13<br><14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13<br><14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   | -   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichlorodifluoromethane Chloromethane Yinyl Chloride Bromomethane Chlorothane Trichlorofluorormethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <10<br><13<br><14<br><6                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | 95.7<br>121<br><4<br><7<br><10<br><13<br><14<br><6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdfluorobenzene** Dichlorodfluoromethane Chloromethane Chloride Bromomethane Chloromethane 1.1-Dichlorodethene 1.1-Dichlorodethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10<br><13<br><14<br><6<br><10                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br><4<br><7<br><10<br><13<br><14<br><6<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dicklorodfiluoromethane Chloromethane Wrny Chloride Bromomethane Chloroethane Trichlorofluorormethane 1.1-Dickloroethene Carbon Disulphide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <10<br><13<br><14<br><6<br><10<br><7                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><14<br><5<br><10<br><10<br>49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br><4<br><7<br><10<br><13<br><13<br><14<br><6<br><10<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><22.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dicklorodfluoromethane Chloromethane Viny Chloride Bromomethane Chloroethane Trichlorofluorormethane 1.1-Dichloroethene Carbon Disulphide Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10<br><13<br><14<br><6<br><10<br><7<br><10                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><10<br><10<br>49.5<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><10<br><10<br><10<br><7<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichiorodifluoromethane Chioromethane Chioromethane Chioromethane Tichiorofluoromethane 1.1-Dichioroethene Carbon Disulphide Dichioromethane Methyl Tertiary Butyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><13<br><14<br><6<br><10<br><10<br><10<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br>< 4<br>< 00<br>< 13<br>< 14<br>< 60<br>< 10<br>< 14<br>< 60<br>< 70<br>< 7<br>< 70<br>< 70<br>< 10<br>< 11<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><22.8<br>26.3<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dicklorodfluoromethane Chloromethane Viny Chloride Bromomethane Chloroethane Trichlorofluorormethane 1.1-Dichloroethene Carbon Disulphide Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><70<br><10<br><13<br><14<br><6<br><10<br>49.5<br><10<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><10<br><10<br><10<br><7<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                           |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br>22.8<br>26.3<br><11<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichiorodifluoromethane Chioromethane Chioromethane Chioromethane Tichiorofluoromethane 1.1-Dichioroethene Carbon Disulphide Dichioromethane Methyl Tertiary Butyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><13<br><14<br><6<br><10<br><10<br><10<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 95.7<br>121<br>< 4<br>< 00<br>< 13<br>< 14<br>< 60<br>< 10<br>< 14<br>< 60<br>< 70<br>< 7<br>< 70<br>< 70<br>< 10<br>< 11<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70<br>< 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br><22.8<br>26.3<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Trichlorofluorormethane 1.1-Dichloromethane Carbon Disulphide Dichloromethane Methyl Tentiray Buyl Ether Ians-1-2-Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><70<br><10<br><13<br><14<br><6<br><10<br>49.5<br><10<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 957<br>121<br><12<br><10<br><10<br><13<br><14<br><10<br><10<br><10<br><11<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                             | 95<br>154<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br>22.8<br>26.3<br><11<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichlorodfluoromethane Chloromethane Yinyl Chloride Bromomethane Chloroethane Trichlorofluorormethane 1.1-Dichloroethane Methyl Tertiary Butyl Ether trans-1-2-Dichloroethane dis-1-2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11<br><8                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><10<br><13<br><14<br><6<br><10<br>49.5<br><10<br>49.5<br><10<br>49.5<br><11<br><11<br><8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | 957<br>121<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>4<br>9<br>4<br>4<br>4<br>7<br>7<br>7<br>0<br>0<br>4<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                             |                                                                                             | 95<br>154<br><4<br><7<br><7<br><13<br><14<br><6<br><0<br>22.8<br>26.3<br><11<br><11<br><11<br><8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane 1-Dichloromethane Carbon Disulphide Dichloromethane Methyl Tentingy Buyl Eher trans-1-2-Dichloromethane ds-1-2-Dichloromethane 2.2-Dichloromethane 2.2-Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11<br><11<br><8<br><5<br><12                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5.5<br>136<br><4<br><7<br><13<br><14<br><4<br><4<br><13<br><14<br><4<br><5<br><10<br><11<br><11<br><11<br><11<br><11<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |   |                                                                                             | 857           121           121           121           4           47           43           43           44           46           40           41           46           40           41           41           42           43           44           45           40           41           42           43           44           45           46           47           48           42           43           44           44           45           45                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                                             | 95           154           <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dichlorodifluoromethane Chloromethane Viny Chloride Bromomethane Chloroethane Trichlorofluoromethane 1.1-Dichloroethene Carbon Disulphide Dichloromethane 1.1-Dichloroethene 1.1-Dichloroethene 1.1-Dichloroethene 2.2-Dichloroethene Bromochloromethane Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11<br><11<br><8<br><5<br><12<br><14                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>93.5<br>136<br><4<br><10<br><13<br><14<br>49.5<br><10<br><111<br><111<br><111<br><111<br><11<br><11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |                                                                                             | 957<br>121<br>3<br>4<br>57<br>50<br>3<br>51<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                             | 95           154           <6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromfluorobenzene** Dicklorodfluoromethane Chloromethane Viny Chloride Bromomethane Chlorothane Trichlorofluorormethane 1.1-Dichlorothene Carbon Disulphide Dichloromethane Methyl Torliary Butyl Ether trans-1-2-Dichlorothene dis-1-2-Dichlorothene 2.2-Dichlorothene E-Dichlorothane Chlorothane Chlorothane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11<br><11<br><8<br><5<br><12<br><14<br><8                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d< td=""><td></td><td></td><td></td><td>957<br/>121<br/>34<br/>37<br/>30<br/>31<br/>32<br/>44<br/>45<br/>40<br/>41<br/>41<br/>41<br/>44<br/>44<br/>44<br/>44<br/>44<br/>44</td><td></td><td></td><td>95<br/>154<br/>4<br/>4<br/>7<br/>00<br/>413<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>22.8<br/>3<br/>22.8<br/>3<br/>411<br/>4<br/>11<br/>4<br/>11<br/>4<br/>11<br/>4<br/>11<br/>4<br/>11<br/>4<br/>4<br/>8<br/>3<br/>4<br/>5<br/>4<br/>2<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4<br/>4</td><td></td><td></td><td></td><td></td><td></td></d<></d<br></d<br></d<br></d<br></d<br></d<br></d<br></d<br></d<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |                                                                                             | 957<br>121<br>34<br>37<br>30<br>31<br>32<br>44<br>45<br>40<br>41<br>41<br>41<br>44<br>44<br>44<br>44<br>44<br>44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                             | 95<br>154<br>4<br>4<br>7<br>00<br>413<br>4<br>4<br>4<br>4<br>4<br>4<br>22.8<br>3<br>22.8<br>3<br>411<br>4<br>11<br>4<br>11<br>4<br>11<br>4<br>11<br>4<br>11<br>4<br>4<br>8<br>3<br>4<br>5<br>4<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Methy Terniay Buyl Ether trans-1-2-Dichloromethane ds-1-2-Dichloromethane ds-1-2-Dichloromethane 2.2-Dichloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <10<br><13<br><14<br><6<br><10<br><7<br><10<br><11<br><11<br><11<br><8<br><5<br><12<br><12<br><14<br><8<br><7                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>138<br><pre>44<br/><pre>c7<br/><pre>c10<br/><pre>c13<br/><pre>c14<br/><pre>c14<br/><pre>c16<br/><pre>c10<br/><pre>c10<br/><pre>c14<br/><pre>c10<br/><pre>c14<br/><pre>c10<br/><pre>c14<br/><pre>c14<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c16<br/><pre>c1</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> |   |   |                                                                                             | 857           121           121           121           4           4           4           43           44           46           47           48           49           40           40           40           41           41           42           43           44           45           44           45           44           45           46           47           48           49           40           41           42           43           44           45                                                                                                                                                                                                                                                                                                                                           |                                                                                             |                                                                                             | 85           154           44           47           43           43           44           46           40           41           45           46           47           48           49           41           41           45           41           45           41           46           41           42           44           45           47                                                                                                                                                                                                                                                                                                                                                       |   |   |     |                                                                                             |       |
|          | Tokiene-d8**  4-Bromdfuorobenzene** Dicklorodfilturormethane Chloromethane Chloromethane Chloromethane Chloromethane 1.1-Dichloromethane Carbon Disulphide Dickloromethane Methyl Tentiary Butyl Ether Itans-1-2-Dichloromethane itans-1-2-Dichloromethane Cab-1-2-Dichloromethane Chloroform 1.1-Dichloromethane Chloroform 1.1-1.1-Trichloromethane 1.1-Dichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>&lt;10 &lt;13 &lt;14 &lt;6 &lt;10 &lt;7 &lt;10 &lt;11 &lt;11 &lt;8 &lt;5 &lt;12 &lt;12 &lt;14 &lt;8 &lt;5 &lt;12 &lt;14 &lt;8 &lt;&lt;7 &lt;14 &lt;8 &lt;&lt;7 &lt;11 </pre>                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><pre>44</pre> <10 <10 <11 <13 <14 <16 <11 <16 <11 <18 <16 <11 <18 <18 <18 <18 <18 <19 <11 <11 <11 <11 <11 <11 <11 <12 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <14 <16 <17 <17 <18 <18 <18 <19 <19 <19 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <p< td=""><td></td><td></td><td></td><td>95.7         121            4            4            60            41            60            41            60            41            41            41            41            42            42            43            44</td><td></td><td></td><td>95           154           64           67           40           61           44           66           228           283           263           41           41           41           41           41           41           42           43           44           44           41           41           42           44           48           47           47           47           41</td><td></td><td></td><td></td><td></td><td></td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | 95.7         121            4            4            60            41            60            41            60            41            41            41            41            42            42            43            44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                             | 95           154           64           67           40           61           44           66           228           283           263           41           41           41           41           41           41           42           43           44           44           41           41           42           44           48           47           47           47           41                                                                                                                                                                                                                                                                                                             |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromfluorobenzene** Dicklorodfluoromethane Chloromethane Viny Chloride Bromomethane Chlorothane Trichlorofluorormethane 1.1-Dicklorodfluoromethane Chlorothane Methyl Tortiary Butyl Ether trans-1-2-Dickloroethene 2.2-Dickloroethene 2.2-Dickloroethene 2.2-Dickloroethene Chlorothane Chlorothane Chlorofm 1.1-Tickloroethane 1.1-Dickloroethane 1.1-Dickloroethane Chlorofm 1.1-Dickloroethane Chlorofm 1.1-Dickloroethane Chlorofm 1.1-Dickloroethane Chlorofm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>&lt;10 &lt;13 &lt;14 &lt;6 &lt;10 &lt;7 &lt;7 &lt;10 &lt;11 &lt;11 &lt;8 &lt;5 &lt;12 &lt;14 &lt;8 &lt;5 &lt;12 &lt;14 &lt;8 &lt;7 &lt;14 &lt;8 &lt;7 &lt;11 &lt;14 </pre>                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d<br><d< td=""><td></td><td></td><td></td><td>957<br/>121<br/>34<br/>37<br/>30<br/>33<br/>44<br/>46<br/>40<br/>41<br/>41<br/>41<br/>41<br/>44<br/>44<br/>44<br/>44<br/>41<br/>41<br/>41<br/>41<br/>41</td><td></td><td></td><td>95           154</td><td></td><td></td><td></td><td></td><td></td></d<></d<br></d<br></d<br></d<br></d<br></d<br></d<br></d<br></d<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |                                                                                             | 957<br>121<br>34<br>37<br>30<br>33<br>44<br>46<br>40<br>41<br>41<br>41<br>41<br>44<br>44<br>44<br>44<br>41<br>41<br>41<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |                                                                                             | 95           154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Methy Terniay Buyl Ether trans-1-2-Dichloromethane ds-1-2-Dichloromethane ds-1-2-Dichloromethane Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>&lt;10 </pre> <pre>&lt;13 </pre> <pre>&lt;14 </pre> <pre>&lt;6 </pre> <pre>&lt;10 </pre> <pre>&lt;7 </pre> <pre>&lt;10 </pre> <pre>&lt;11 </pre> <pre>&lt;11 </pre> <pre>&lt;12 </pre> <pre>&lt;14 </pre> <pre>&lt;28 </pre> <pre>&lt;12 </pre> <pre>&lt;14 </pre> <pre>&lt;21 </pre> <pre>&lt;14 </pre> <pre>&lt;21 </pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br>- 44<br>- 47<br>- 41<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |                                                                                             | 857           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121                                                                                      |                                                                                             |                                                                                             | 85           154           44           47           43           44           46           40           41           45           41           45           41           45           44           45           44           45           44           45           44           45           44           45           47           41           44           45           47           41           44           45                                                                                                                                                                                                                                                                                      |   |   |     |                                                                                             |       |
|          | Tokiene-d8**  4-Bromdfuorobenzene** Dicklorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane 1.1-Dichloromethane Chloromethane Carbon Disulphide Dickloromethane Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 9355<br>136<br><pre>44<br/></pre> <pre>64<br/></pre> <pr< td=""><td></td><td></td><td></td><td>95.7         121           २२         २२           २३         २३           २३         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४</td><td></td><td></td><td>95           154           &lt;</td></pr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |                                                                                             | 95.7         121           २२         २२           २३         २३           २३         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                             | 95           154           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Methy Terniay Buyl Ether trans-1-2-Dichloromethane ds-1-2-Dichloromethane ds-1-2-Dichloromethane Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><7<br><13<br><4<br><5<br><4<br><4<br><5<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |                                                                                             | 857           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121                                                                                      |                                                                                             |                                                                                             | 95           154           <8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |     |                                                                                             |       |
|          | Tokiene-d8**  4-Bromdfuorobenzene** Dicklorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane 1.1-Dichloromethane Chloromethane Carbon Disulphide Dickloromethane Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g<br>49%g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 9355<br>136<br><pre>44<br/></pre> <pre>64<br/></pre> <pr< td=""><td></td><td></td><td></td><td>95.7         121           २२         २२           २३         २३           २३         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४</td><td></td><td></td><td>95           154           &lt;</td></pr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |   |                                                                                             | 95.7         121           २२         २२           २३         २३           २३         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४           २४         २४                                                                                                                                                                                                                                                                                                     |                                                                                             |                                                                                             | 95           154           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromfluorobenzene** Dicklorodifuoromethane Chioromethane Chioromethane Chioroethane Trichiorofluoromethane 1.1-Dichloroethane Chioroethane 1.1-Dichloroethane 1.1-Dichloroethane 2.2-Dichloroethane 3.2-Dichloroethane Chioromethane Chioromethane Chioromethane 1.1-Dichloroethane 1.1-Dichloroethane Chioroethane Chioromethane Chioromethane Chioromethane Chioromethane Chioromethane Chioromethane Chioropropane Bromochloromethane Chioroethane 1.1-Dichloroethane 1.1-Dichloroethane Chioromethane Chioroethane Chioromethane Chioromethane Chioropropane Carbontetrachloride 1.2-Dichloroethane Chioropropane Carbontetrachloride Chioroethane Chioropropane Carbontetrachloride Chioroethane Chioropropane Carbontetrachloride Chioroethane Chioropropane Carbontetrachloride Chioroethane Chioroethan | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | µg/kg                                                                                                                                                                                                                                 | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 93.5<br>136<br><4<br><7<br><7<br><13<br><4<br><5<br><4<br><4<br><5<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7<br><7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |                                                                                             | 957           121           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २ <td></td> <td></td> <td>95           154           &lt;8</td> <7                                                                                   |                                                                                             |                                                                                             | 95           154           <8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Methy Tenting Buyl Ether trans-1-2-Dichloroethene 2.2-Dichloroethene Carbon Chloromethane Chloroform 1.1.1-Trichloroethane 1.1-Dichloroethane 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg<br>yg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                               | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>136<br>- 44<br>- 47<br>- 41<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |                                                                                             | 528       121       12       12       12       13       14       15       15       16       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       18       17       17       17       18       17       17       18       17       17       18       19       19       10       11       17       18       19       19       11       11       12       13       14       14       17       18       19       19       10       10   <                                                                                                                                                                                                    |                                                                                             |                                                                                             | 95           154           <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromfluorobenzene** Dicklorodifluoromethane Chloromethane | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/kg                                                                                                                                 | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 9355<br>136<br>44 47 47 48 4955 410 411 4955 410 411 4955 414 48 47 414 48 47 414 48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |                                                                                             | 957           121           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २           २ <td></td> <td></td> <td>95           154</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                    |                                                                                             |                                                                                             | 95           154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Chloromethane Chlorohomethane Chlorohomethane Chlorohomethane Chlorohomethane Chloromethane | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116TM116<br>TM116TM116<br>TM16<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>T                                                         | ygkg<br>ygkg<br>ygkg<br>ygkg<br>ygkg<br>ygkg<br>ygkg<br>ygkg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>935<br>44<br>47<br>41<br>41<br>41<br>41<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |   |                                                                                             | 857           121           12           12           12           13           14           15           14           15           11           11           11           11           11           11           12           11           12           11           12           11           12           13           14           15           14           15           16           17           18           19           11           11           12           13           14           15           16           17           18           19           11           11           12           13           14           15           16           17           18           19                                                                                                                          |                                                                                             |                                                                                             | 85           154           44           47           43           44           45           40           41           45           41           45           41           45           411           48           47           48           49           49           49           49           49           49           42           42           42           43           44                                                                                                                                                                                                                                                                                                                            |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromdhuorobenzene** Dickinordiftuoromethane Chioromethane Chioromethane Chioromethane Chioroethane Chioroet | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116TM16<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>T                                     | µg/kg                                                                                                 | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>136<br>44<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)<br>-(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |                                                                                             | 857           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121                                                                                      |                                                                                             |                                                                                             | 95           154           44           47           40           43           44           46           28.8           28.8           28.8           41           44           45           45           44           45           44           48           47           41           44           48           49.8           49.8           42           49           47           48           49.8           41           42           42           43           44           45           49           41           42           43           44           45           46           47           48           47           48           47           48           49           411           411  < |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromofluorobenzene** Dichlorodfluoromethane Chloromethane Vinyl Chlorde Bromomethane Chloroethane Chloroethane Chloroethane Carbon Disulphide Dichloromethane Carbon C | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM16<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>T                                                     | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                    | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>136<br>44 47 40 41 41 41 41 41 41 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |                                                                                             | 957           121           4           4           4           4           60           44           60           44           60           44           60           44           60           44           45           45           44           45           45           45           45           46           47           48           49           44           45           45           44           45           44           45           45           46           47                                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                             | 85           154           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4           4                                                                                                                                                                                                                    |   |   |     |                                                                                             |       |
|          | Toluene-d8** 4-Bromdhuorobenzene** Dichlorodfiluoromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Chloromethane Carbon Disulphide Dichloromethane Chloromethane Chlorom | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM17<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>T | ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg<br>ygikg                                                                                                                                                                                                                                                                                                                                                                       | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>935<br>(136<br>(4<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |                                                                                             | 1 28<br>1 28<br>1 28<br>1 28<br>1 28<br>1 28<br>1 28<br>1 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             |                                                                                             | 85           154           44           47           43           44           45           40           41           45           411           45           44           45           411           48           49           49           41           48           49           49           49           40           47           44           48           49           42           44           48           49           47           44           47           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44            44               |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromdhuorobenzene** Dickinordiftuoromethane Chioromethane 1.1-Dichioromethane Chioromethane Chiorom | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116TM17<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>T                                         | µg/kg                                 | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>935<br>44<br>47<br>41<br>41<br>41<br>41<br>40<br>40<br>40<br>41<br>40<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |                                                                                             | 578           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121                                                                                      |                                                                                             |                                                                                             | 85           154           44           47           40           43           44           46           28.8           28.8           41           44           45           45           44           45           44           48           49           49           49           49           49           41           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44              |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromfluorobenzene** Dicklorodfluoromethane Chloromethane  | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/kg           µg/kg | <10                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |                                                          | 935<br>935<br>44<br>47<br>41<br>41<br>41<br>41<br>41<br>42<br>42<br>42<br>44<br>45<br>42<br>42<br>44<br>45<br>42<br>42<br>44<br>45<br>42<br>44<br>45<br>42<br>44<br>45<br>42<br>44<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |                                                                                             | 857         121           121         4           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0< |                                                                                             |                                                                                             | 95           154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |     |                                                                                             |       |
|          | Tokiene-d8** 4-Bromdhuorobenzene** Dickinordiftuoromethane Chioromethane 1.1-Dichioromethane Chioromethane Chiorom | TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116TM17<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116<br>TM116TM116<br>TM116<br>T                                         | µg/kg           µg/kg | <10                                                                                                                                                                                                                                                                                                                              | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - |                                                                                             |                                                          | 935<br>935<br>44<br>47<br>41<br>41<br>41<br>41<br>40<br>40<br>40<br>41<br>40<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |                                                                                             | 578           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121           121                                                                                      |                                                                                             |                                                                                             | 85           154           44           47           40           43           44           46           28.8           28.8           41           44           45           45           44           45           44           48           49           49           49           49           49           41           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44           44              |   |   |     |                                                                                             |       |

|   | 1.2-Dibromoethane           | TM116 µg | /kg <                                                                                                                                                                                 | 2   |   |   | <12 |   | - |   | <12 | - | <12  | L . | _ |   |   |   |
|---|-----------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|---|-----|---|---|---|-----|---|------|-----|---|---|---|---|
|   |                             | TM116 μg |                                                                                                                                                                                       |     |   |   | <12 |   |   |   | <5  | - | <12  |     |   |   |   |   |
|   | 1.1.1.2-Tetrachloroethane   | TM116 µg |                                                                                                                                                                                       |     |   |   | <10 |   |   |   | <10 |   | <10  |     |   |   |   |   |
|   | Ethylbenzene                | TM116 μg |                                                                                                                                                                                       |     |   |   | <10 |   |   |   | -4  |   | 37.1 |     |   |   | _ |   |
|   | p/m-Xylene                  | TM116 µg |                                                                                                                                                                                       |     |   |   | <14 |   |   |   | <14 |   | <14  |     |   |   |   |   |
|   | o-Xylene                    |          | /kg <                                                                                                                                                                                 |     |   |   | <10 |   |   |   | <10 |   | <10  |     |   |   |   |   |
|   | Styrene                     | TM116 µg |                                                                                                                                                                                       |     |   |   | <10 | - |   |   | <10 |   | <10  |     | - |   |   |   |
|   | Bromoform                   |          | /kg <'                                                                                                                                                                                |     |   |   | <10 |   |   |   | <10 |   | <10  |     |   |   |   |   |
| - |                             | TM116 µg |                                                                                                                                                                                       |     |   |   | <5  | - |   |   | <5  |   | <5   |     |   |   |   |   |
|   | 1.1.2.2-Tetrachloroethane   | TM116 µg |                                                                                                                                                                                       |     |   | - | <10 | _ |   |   | <10 |   | <10  |     | - |   | - |   |
|   | 1.2.3-Trichloropropane      | TM116 µg |                                                                                                                                                                                       |     |   | - | <17 | - |   |   | <17 |   | <17  |     | - |   |   |   |
|   | Bromobenzene                | TM116 µg |                                                                                                                                                                                       |     | - | - | <10 | - | - |   | <10 |   | <10  |     | - |   |   |   |
|   | Propylbenzene               | TM116 µg |                                                                                                                                                                                       | 1 - |   | - | <11 | - |   | - | <11 |   | <11  |     | - |   |   | - |
|   | 2-Chlorotoluene             | TM116 µg | /kg </td <td>-</td> <td>-</td> <td>-</td> <td>&lt;9</td> <td>-</td> <td>-</td> <td></td> <td>&lt;9</td> <td></td> <td>&lt;9</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> | -   | - | - | <9  | - | - |   | <9  |   | <9   |     | - |   | - | - |
|   | 1.3.5-Trimethylbenzene      | TM116 µg | /kg <l< td=""><td></td><td>-</td><td>-</td><td>&lt;8&gt;</td><td>-</td><td>-</td><td></td><td>&lt;8</td><td></td><td>&lt;8</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td></l<> |     | - | - | <8> | - | - |   | <8  |   | <8   | -   | - |   | - | - |
|   | 4-Chlorotoluene             | TM116 µg | /kg <                                                                                                                                                                                 | 2 - |   | - | <12 | - |   | - | <12 |   | <12  | -   | - | - | - | - |
|   | tert-Butylbenzene           | TM116 µg | /kg <                                                                                                                                                                                 | 2 - |   | - | <12 | - |   | - | <12 |   | <12  | -   | - | - | - | - |
|   | 1.2.4-Trimethylbenzene      | TM116 µg | /kg </td <td>-</td> <td></td> <td>-</td> <td>&lt;9</td> <td>-</td> <td>-</td> <td></td> <td>&lt;9</td> <td></td> <td>&lt;9</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> | -   |   | - | <9  | - | - |   | <9  |   | <9   | -   | - |   | - | - |
|   | sec-Butylbenzene            | TM116 µg | /kg <'                                                                                                                                                                                | 0 - |   | - | <10 | - |   | - | <10 |   | <10  | -   | - |   | - |   |
|   | 4-Isopropyltoluene          | TM116 µg | /kg <'                                                                                                                                                                                | 1 - |   | - | <11 | - | - |   | <11 |   | <11  |     | - | - |   |   |
|   | 1.3-Dichlorobenzene         | TM116 µg | /kg <l< td=""><td>-</td><td>-</td><td>-</td><td>&lt;6</td><td>-</td><td>-</td><td></td><td>&lt;6</td><td></td><td>&lt;6</td><td></td><td>-</td><td></td><td></td><td></td></l<>       | -   | - | - | <6  | - | - |   | <6  |   | <6   |     | - |   |   |   |
|   | 1.4-Dichlorobenzene         | TM116 µg | /kg <                                                                                                                                                                                 |     |   | - | <5  | - |   |   | <5  |   | <5   | -   | - |   |   | - |
|   | n-Butylbenzene              | TM116 µg | /kg <'                                                                                                                                                                                | 0 - | - | - | <10 | - | - | - | <10 |   | <10  |     | - |   | - | - |
|   | 1.2-Dichlorobenzene         | TM116 µg | /kg <'                                                                                                                                                                                | 2 - | - | - | <12 | - | - |   | <12 |   | <12  |     | - |   |   |   |
|   | 1.2-Dibromo-3-chloropropane | TM116 µg | /kg <'                                                                                                                                                                                | 4 - | - | - | <14 | - | - | - | <14 |   | <14  | -   | - | - |   | - |
|   | Tert-amyl methyl ether      | TM116 µg | /kg <'                                                                                                                                                                                | 5 - | - | - | <15 | - | - |   | <15 |   | <15  |     | - | - |   | - |
|   | 1.2.4-Trichlorobenzene      | TM116 µg |                                                                                                                                                                                       |     | - |   | <6  | - | - | - | <6  |   | <6   |     | - | - |   | - |
|   | Hexachlorobutadiene         | TM116 µg | /kg <'                                                                                                                                                                                | 2 - | - | - | <12 | - | - | - | <12 |   | <12  |     | - | - |   | - |
|   | Naphthalene                 | TM116 µg | /kg <'                                                                                                                                                                                |     | - |   | <13 | - | - | - | <13 |   | <13  |     | - | - |   | - |
|   | 1.2.3-Trichlorobenzene      | TM116 µg | /kg <l< td=""><td>-</td><td>-</td><td>-</td><td>&lt;6</td><td>-</td><td>-</td><td>-</td><td>&lt;6</td><td></td><td>&lt;6</td><td></td><td>-</td><td>-</td><td></td><td>-</td></l<>    | -   | - | - | <6  | - | - | - | <6  |   | <6   |     | - | - |   | - |

| ALCOIN            | ol Laboratories                                              | -              |          |                  |            |            |           |
|-------------------|--------------------------------------------------------------|----------------|----------|------------------|------------|------------|-----------|
|                   |                                                              |                | Cust     | omer Sample ID   | WS2        | WS6        | WS        |
|                   |                                                              |                |          | Depth            | 1.00-0.00  | 0.30-0.00  | 0.30-0.0  |
| Case:             | 100707-41,100707-28,100709-53                                |                |          | AGS Id           | NS         | NS         | N         |
| Customer:         | Grontmij Solihull (5731)                                     |                |          | Sample Type      | SOLID      | SOLID      | SOLI      |
| Customer ref:     | CANNOCK PORT 2A                                              |                |          | Sampled Date     | 05/07/2010 | 06/07/2010 | 06/07/201 |
| Order no:         | ,146072                                                      |                | Sampl    | e Received Date  | 07/07/2010 | 07/07/2010 | 09/07/201 |
|                   |                                                              |                | Final    | Instruction Date | 26/07/2010 | 27/07/2010 | 27/07/201 |
| All results expre | essed on a dry weight basis                                  |                | Report   | Completed Date   | 05/08/2010 | 05/08/2010 | 05/08/201 |
|                   |                                                              |                |          | Project          | 100707-28  | 100707-41  | 100709-5  |
|                   |                                                              |                | Lab      | Sample Number    | 1786472    | 1786868    | 179955    |
|                   |                                                              |                | Sam      | ple Temperature  |            |            |           |
| Analysis          | Test                                                         | Method         | Units    | LOD              |            |            |           |
|                   | eptance Criteria (WAC)                                       |                |          |                  |            |            |           |
|                   | CEN 2:1 - Temperature                                        | PM115          | °C       |                  | 18.7       | 21.9       | 21        |
|                   | CEN 2:1 - pH                                                 | PM115          | pH Units |                  | 8.07       | 7.63       | 7.8       |
|                   | CEN 2:1 - Conductivity @ 20 deg.C                            | PM115          | μS/cm    |                  | 1280       | 538        | 93        |
| Filtered (Di      | issolved) Metals                                             |                |          |                  | 1200       | 000        |           |
|                   | CEN 2:1 - Arsenic (diss.filt)                                | TM152          | mg/l     | <0.12            | 0.00429    | 0.0066     | 0.0003    |
|                   | CEN 2:1 - Arsenic (diss.filt)<br>CEN 2:1 - Boron (diss.filt) | TM152          | mg/l     | <9.4             | 0.00429    | 0.0000     | 0.0003    |
|                   | CEN 2:1 - Boron (diss.filt)<br>CEN 2:1 - Cadmium (diss.filt) | TM152<br>TM152 | -        | <9.4<br><0.1     | 0.546      | <0.0001    | 0.0005    |
|                   |                                                              |                | mg/l     | <0.1             |            |            |           |
|                   | CEN 2:1 - Chromium (diss.filt)                               | TM152          | mg/l     | -                | 0.0033     | 0.00679    | 0.03      |
|                   | CEN 2:1 - Copper (diss.filt)                                 | TM152          | mg/l     | <0.85            | 0.00529    | 0.00554    | 0.005     |
|                   | CEN 2:1 - Lead (diss.filt)                                   | TM152          | mg/l     | <0.02            | 0.00052    | 0.000291   | 0.001     |
|                   | CEN 2:1 - Nickel (diss.filt)                                 | TM152          | mg/l     | <0.15            | 0.00877    | <0.00015   | 0.01      |
|                   | CEN 2:1 - Selenium (diss.filt)                               | TM152          | mg/l     | <0.39            | 0.00178    | 0.00265    | 0.0005    |
|                   | CEN 2:1 - Vanadium (diss.filt)                               | TM152          | mg/l     | <0.24            | 0.00345    | 0.0249     | 0.00      |
|                   | CEN 2:1 - Zinc (diss.filt)                                   | TM152          | mg/l     | <0.41            | 0.0261     | 0.0485     | 0.1       |
|                   | CEN 2:1 - Mercury (diss.filt)                                | TM183          | mg/l     | <0.01            | <0.00001   | <0.00001   | <0.0000   |
| Mineral Oil       | / Oils & Greases                                             |                |          |                  |            |            |           |
|                   | CEN 2:1 - TPH / Oil & Greases                                | TM235          | mg/l     | <1               | <1         | -          |           |
| Semi-Volat        | tile Organic Compounds (SVOCs)                               |                |          |                  |            |            |           |
|                   | CEN 2:1 - 1,2,4-Trichlorobenzene (aq)                        | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 1,2-Dichlorobenzene (aq)                           | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 1,3-Dichlorobenzene (aq)                           | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 1,4-Dichlorobenzene (aq)                           | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2,4,5-Trichlorophenol (aq)                         | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2,4,6-Trichlorophenol (aq)                         | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2,4-Dichlorophenol (aq)                            | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2,4-Dimethylphenol (aq)                            | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2,4-Dinitrotoluene (aq)                            | TM176          | mg/l     | <1               | -          | < 0.001    | <0.0      |
|                   | CEN 2:1 - 2,6-Dinitrotoluene (aq)                            | TM176          | mg/l     | <1               | -          | < 0.001    | <0.0      |
|                   | CEN 2:1 - 2-Chloronaphthalene (aq)                           | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2-Chlorophenol (aq)                                | TM176          | mg/l     | <1               | _          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2-Methylnaphthalene (aq)                           | TM176          | mg/l     | <1               | _          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2-Methylphenol (aq)                                | TM176          |          | <1               | -          | <0.001     | <0.0      |
|                   |                                                              |                | mg/l     | <1<br><1         | -          |            |           |
|                   | CEN 2:1 - 2-Nitroaniline (aq)                                | TM176          | mg/l     |                  | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 2-Nitrophenol (aq)                                 | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 3-Nitroaniline (aq)                                | TM176          | mg/l     | <1               | -          | < 0.001    | <0.0      |
|                   | CEN 2:1 - 4-Bromophenylphenylether (aq)                      | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Chloro-3-methylphenol (aq)                       | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Chloroaniline (aq)                               | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Chlorophenylphenylether (aq)                     | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Methylphenol (aq)                                | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Nitrophenol (aq)                                 | TM176          | mg/l     | <1               | -          | <0.001     | <0.0      |
|                   | CEN 2:1 - 4-Nitroaniline (aq)                                | TM176          | mg/l     | <1               |            | < 0.001    | <0.0      |

| ГГ                                    |                                   |         | T    |      |          |          |         |
|---------------------------------------|-----------------------------------|---------|------|------|----------|----------|---------|
| CEN 2:1 - Az                          | obenzene (aq)                     | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Ac                          | enaphthylene (aq)                 | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Ac                          | enaphthene (aq)                   | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - An                          | thracene (aq)                     | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - bis                         | (2-Chloroethyl)ether (aq)         | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - bis                         | (2-Chloroethoxy)methane (aq)      | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - bis                         | (2-Ethylhexyl) phthalate (aq)     | TM176   | mg/l | <2   | -        | <0.002   | <0.002  |
| CEN 2:1 - Be                          | nzo(a)anthracene (aq)             | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Bu                          | tylbenzyl phthalate (aq)          | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Be                          | nzo(b)fluoranthene (aq)           | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Be                          | nzo(k)fluoranthene (aq)           | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
|                                       | nzo(a)pyrene (aq)                 | TM176   | mg/l | <1   | -        | < 0.001  | < 0.00  |
|                                       | nzo(g,h,i)perylene (aq)           | TM176   | mg/l | <1   | -        | < 0.001  | <0.00   |
| CEN 2:1 - Ca                          |                                   | TM176   | mg/l | <1   |          | <0.001   | <0.00   |
| CEN 2:1 - Ch                          | , <i>v</i>                        | TM176   |      | <1   |          | <0.001   | <0.00   |
|                                       |                                   |         | mg/l |      | -        |          |         |
|                                       | penzofuran (aq)                   | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
|                                       | Dibutyl phthalate (aq)            | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
|                                       | ethyl phthalate (aq)              | TM176   | mg/l | <1   | -        | <0.004   | <0.00   |
|                                       | penzo(a,h)anthracene (aq)         | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Di                          | methyl phthalate (aq)             | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - n-I                         | Dioctyl phthalate (aq)            | TM176   | mg/l | <5   | -        | <0.005   | < 0.00  |
| CEN 2:1 - Flu                         | ioranthene (aq)                   | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Flu                         | iorene (aq)                       | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - He                          | xachlorobenzene (aq)              | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - He                          | xachlorobutadiene (aq)            | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Pe                          | ntachlorophenol (aq)              | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
| CEN 2:1 - Ph                          | enol (aq)                         | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
| CEN 2:1 - n-I                         | Nitroso-n-dipropylamine (aq)      | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
| CEN 2:1 - He                          | exachloroethane (aq)              | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
| CEN 2:1 - Nit                         | robenzene (aq)                    | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
| CEN 2:1 - Na                          | phthalene (aq)                    | TM176   | mg/l | <1   | -        | <0.001   | < 0.00  |
|                                       | phorone (aq)                      | TM176   | mg/l | <1   | -        | <0.001   | <0.00   |
|                                       | exachlorocyclopentadiene (aq)     | TM176   | mg/l | <1   | -        | < 0.001  | < 0.00  |
|                                       | enanthrene (aq)                   | TM176   | mg/l | <1   |          | <0.001   | <0.00   |
|                                       |                                   | TM176   |      | <1   | _        | <0.001   |         |
|                                       | leno(1,2,3-cd)pyrene (aq)         | TM176   | mg/l |      | -        |          | <0.00   |
| CEN 2:1 - Py<br>Volatile Organic Com  |                                   | 1101176 | mg/l | <1   | -        | <0.001   | < 0.00  |
|                                       |                                   | T1 4000 |      |      |          |          |         |
|                                       | promofluoromethane**              | TM208   | mg/l |      | -        | -        |         |
| CEN 2:1 - To                          |                                   | TM208   | mg/l |      | -        | -        |         |
|                                       | Bromofluorobenzene**              | TM208   | mg/l |      | -        | -        |         |
|                                       | chlorodifluoromethane             | TM208   | mg/l | <7   | <0.007   | <0.007   | < 0.00  |
| CEN 2:1 - Ch                          | loromethane                       | TM208   | mg/l | <9   | <0.009   | <0.009   | <0.00   |
| CEN 2:1 - Vir                         | nyl chloride                      | TM208   | mg/l | <1.2 | <0.0012  | <0.0012  | <0.001  |
| CEN 2:1 - Br                          | omomethane                        | TM208   | mg/l | <2   | <0.002   | <0.002   | <0.00   |
| CEN 2:1 - Ch                          | loroethane                        | TM208   | mg/l | <2.5 | <0.0025  | <0.0025  | < 0.002 |
| CEN 2:1 - Tri                         | chlorofluoromethane               | TM208   | mg/l | <1.3 | <0.0013  | <0.0013  | < 0.001 |
| CEN 2:1 - 1,1                         | -Dichloroethene                   | TM208   | mg/l | <1.2 | <0.0012  | <0.0012  | <0.001  |
| CEN 2:1 - Ca                          | rbon disulphide                   | TM208   | mg/l | <1.3 | <0.0013  | <0.0013  | <0.001  |
| CEN 2:1 - Die                         | chloromethane                     | TM208   | mg/l | <3.7 | <0.0037  | <0.0037  | <0.003  |
|                                       | ethyl tertiary butyl ether (MTBE) | TM208   | mg/l | <1.6 | <0.0016  | <0.0016  | <0.001  |
|                                       | ns-1,2-Dichloroethene             | TM208   | mg/l | <1.9 | <0.0019  | < 0.0019 | <0.001  |
|                                       | -Dichloroethane                   | TM208   | mg/l | <1.2 | <0.0012  | <0.0012  | <0.001  |
| · · · · · · · · · · · · · · · · · · · | -1,2-Dichloroethene               | TM208   | mg/l | <1.2 | <0.0012  | < 0.0012 | <0.001  |
|                                       |                                   |         |      |      |          |          |         |
| · · · · · · · · · · · · · · · · · · · | 2-Dichloropropane                 | TM208   | mg/l | <3.8 | <0.0038  | <0.0038  | <0.003  |
|                                       | omochloromethane                  | TM208   | mg/l | <1.9 | < 0.0019 | <0.0019  | < 0.001 |
| CEN 2:1 - Ch                          | lorotorm                          | TM208   | mg/l | <1.8 | <0.0018  | <0.0018  | < 0.001 |

|                                         | TM200 |      | .4.0 | -0.0010  | .0.0010  | .0.0012  |
|-----------------------------------------|-------|------|------|----------|----------|----------|
| CEN 2:1 - 1,1,1-Trichloroethane         | TM208 | mg/l | <1.3 | < 0.0013 | < 0.0013 | < 0.0013 |
| CEN 2:1 - 1,1-Dichloropropene           | TM208 | mg/l | <1.3 | < 0.0013 | < 0.0013 | < 0.0013 |
| CEN 2:1 - Carbontetrachloride           | TM208 | mg/l | <1.4 | < 0.0014 | < 0.0014 | < 0.0014 |
| CEN 2:1 - 1,2-Dichloroethane            | TM208 | mg/l | <3.3 | < 0.0033 | < 0.0033 | < 0.0033 |
| CEN 2:1 - Benzene                       | TM208 | mg/l | <1.3 | < 0.0013 | < 0.0013 | < 0.0013 |
| CEN 2:1 - Trichloroethene               | TM208 | mg/l | <2.5 | < 0.0025 | < 0.0025 | < 0.0025 |
| CEN 2:1 - 1,2-Dichloropropane           | TM208 | mg/l | <3   | <0.003   | <0.003   | <0.003   |
| <br>CEN 2:1 - Dibromomethane            | TM208 | mg/l | <2.7 | <0.0027  | <0.0027  | <0.0027  |
| <br>CEN 2:1 - Bromodichloromethane      | TM208 | mg/l | <0.9 | <0.0009  | < 0.0009 | <0.0009  |
| <br>CEN 2:1 - cis-1,3-Dichloropropene   | TM208 | mg/l | <1.9 | <0.0019  | <0.0019  | <0.0019  |
| CEN 2:1 - Toluene                       | TM208 | mg/l | <1.4 | <0.0014  | <0.0014  | <0.0014  |
| CEN 2:1 - trans-1,3-Dichloropropene     | TM208 | mg/l | <3.5 | <0.0035  | <0.0035  | <0.0035  |
| CEN 2:1 - 1,1,2-Trichloroethane         | TM208 | mg/l | <2.2 | <0.0022  | <0.0022  | <0.0022  |
| CEN 2:1 - 1,3-Dichloropropane           | TM208 | mg/l | <2.2 | <0.0022  | <0.0022  | <0.0022  |
| CEN 2:1 - Tetrachloroethene             | TM208 | mg/l | <1.5 | <0.0015  | <0.0015  | <0.0015  |
| CEN 2:1 - Dibromochloromethane          | TM208 | mg/l | <1.7 | <0.0017  | <0.0017  | <0.0017  |
| CEN 2:1 - 1,2-Dibromoethane             | TM208 | mg/l | <2.3 | <0.0023  | <0.0023  | <0.0023  |
| CEN 2:1 - Chlorobenzene                 | TM208 | mg/l | <3.5 | <0.0035  | <0.0035  | <0.0035  |
| CEN 2:1 - 1,1,1,2-Tetrachloroethane     | TM208 | mg/l | <1.3 | <0.0013  | <0.0013  | <0.0013  |
| CEN 2:1 - Ethylbenzene                  | TM208 | mg/l | <2.5 | <0.0025  | <0.0025  | <0.0025  |
| CEN 2:1 - m,p-Xylene                    | TM208 | mg/l | <2.5 | <0.0025  | <0.0025  | <0.0025  |
| CEN 2:1 - o-Xylene                      | TM208 | mg/l | <1.7 | <0.0017  | <0.0017  | <0.0017  |
| CEN 2:1 - Styrene                       | TM208 | mg/l | <1.2 | <0.0012  | <0.0012  | <0.0012  |
| CEN 2:1 - Bromoform                     | TM208 | mg/l | <3   | <0.003   | <0.003   | <0.003   |
| CEN 2:1 - Isopropylbenzene              | TM208 | mg/l | <1.4 | <0.0014  | <0.0014  | <0.0014  |
| CEN 2:1 - 1,1,2,2-Tetrachloroethane     | TM208 | mg/l | <5.2 | <0.0052  | <0.0052  | <0.0052  |
| CEN 2:1 - 1,2,3-Trichloropropane        | TM208 | mg/l | <7.8 | <0.0078  | <0.0078  | <0.0078  |
| CEN 2:1 - Bromobenzene                  | TM208 | mg/l | <2   | <0.002   | <0.002   | <0.002   |
| CEN 2:1 - Propylbenzene                 | TM208 | mg/l | <2.6 | <0.0026  | <0.0026  | <0.0026  |
| CEN 2:1 - 2-Chlorotoluene               | TM208 | mg/l | <1.9 | <0.0019  | <0.0019  | <0.0019  |
| CEN 2:1 - 1,3,5-Trimethylbenzene        | TM208 | mg/l | <1.8 | <0.0018  | <0.0018  | <0.0018  |
| CEN 2:1 - 4-Chlorotoluene               | TM208 | mg/l | <1.9 | <0.0019  | <0.0019  | <0.0019  |
| CEN 2:1 - tert-Butylbenzene             | TM208 | mg/l | <2   | <0.002   | <0.002   | <0.002   |
| <br>CEN 2:1 - 1,2,4-Trimethylbenzene    | TM208 | mg/l | <1.7 | <0.0017  | <0.0017  | <0.0017  |
| CEN 2:1 - sec-Butylbenzene              | TM208 | mg/l | <1.7 | <0.0017  | <0.0017  | <0.0017  |
| CEN 2:1 - 4-iso-Propyltoluene           | TM208 | mg/l | <2.6 | <0.0026  | <0.0026  | <0.0026  |
| CEN 2:1 - 1,3-Dichlorobenzene           | TM208 | mg/l | <2.2 | <0.0022  | <0.0022  | <0.0022  |
| CEN 2:1 - 1,4-Dichlorobenzene           | TM208 | mg/l | <2.7 | <0.0027  | <0.0027  | <0.0027  |
| CEN 2:1 - n-Butylbenzene                | TM208 | mg/l | <2   | <0.002   | <0.002   | <0.002   |
| CEN 2:1 - 1,2-Dichlorobenzene           | TM208 | mg/l | <3.7 | <0.0037  | <0.0037  | <0.0037  |
| CEN 2:1 - 1,2-Dibromo-3-chloropropane   | TM208 | mg/l | <9.8 | <0.0098  | <0.0098  | <0.0098  |
| CEN 2:1 - 1,2,4-Trichlorobenzene        | TM208 | mg/l | <2.3 | <0.0023  | <0.0023  | <0.0023  |
| CEN 2:1 - Hexachlorobutadiene           | TM208 | mg/l | <2.5 | <0.0025  | <0.0025  | <0.0025  |
| CEN 2:1 - tert-Amyl methyl ether (TAME) | TM208 | mg/l | <1   | <0.001   | <0.001   | <0.001   |
| CEN 2:1 - Naphthalene                   | TM208 | mg/l | <3.5 | <0.0035  | <0.0035  | <0.0035  |
| CEN 2:1 - 1,2,3-Trichlorobenzene        | TM208 | mg/l | <3.1 | <0.0031  | <0.0031  | <0.0031  |
| CEN 2:1 - 1,3,5-Trichlorobenzene        | TM208 | mg/l | <10  | <0.01    | <0.01    | <0.01    |



Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode Iane Solihull West Midlands B912AA Attention:

Gareth Taylor

# **CERTIFICATE OF ANALYSIS**

| Date:                        | 08 November 2010  |             |        |
|------------------------------|-------------------|-------------|--------|
| Customer:                    | H_GRONTMIJ_SOL-35 |             |        |
| Sample Delivery Group (SDG): | 101028-122        | Report No.: | 102623 |
| Your Reference:              |                   |             |        |
| Location:                    | Woodfield         |             |        |

We received 2 samples on Thursday October 28, 2010 and 2 of these samples were scheduled for analysis which was completed on Monday November 08, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

enton

Iain Swinton Business Director - Land, UK & Ireland



| Validated                | ALcontrol Laboratories Analytical Services |            |               |  |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------|------------|---------------|--|--|--|--|--|--|--|--|
| SDG:                     | 101028-122                                 | Customer:  | Grontmij      |  |  |  |  |  |  |  |  |
| Job:                     | H_GRONTMIJ_SOL-35                          | Attention: | Gareth Taylor |  |  |  |  |  |  |  |  |
| Client Reference:        |                                            | Order No.: |               |  |  |  |  |  |  |  |  |
| Location:                | Woodfield                                  | Report No: | 102623        |  |  |  |  |  |  |  |  |
| Received Sample Overview |                                            |            |               |  |  |  |  |  |  |  |  |

|     | Received Sumple Overview |                      |          |           |              |  |  |  |  |  |  |
|-----|--------------------------|----------------------|----------|-----------|--------------|--|--|--|--|--|--|
| Lab | Sample No(s)             | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |  |  |  |  |  |  |
|     | 2309371                  | A                    |          |           | 26/10/2010   |  |  |  |  |  |  |
|     | 2309384                  | В                    |          |           | 26/10/2010   |  |  |  |  |  |  |

Only received samples which have had analysis scheduled will be shown on the following pages.

| Validated                              | ALcontrol Laboratories Analytical Services             |                       |           |                                      |             |                                     |  |  |  |  |
|----------------------------------------|--------------------------------------------------------|-----------------------|-----------|--------------------------------------|-------------|-------------------------------------|--|--|--|--|
| Job: H_GRON<br>Client Reference:       | -<br>101028-122<br>H_GRONTMIJ_SOL-35<br>:<br>Woodfield |                       |           | Custor<br>Attenti<br>Order<br>Report | on:<br>No.: | Grontmij<br>Gareth Taylor<br>102623 |  |  |  |  |
| LIQUID<br>Results Legend               | Lab Sample No(s)                                       |                       | 2309371   | 2309384                              |             |                                     |  |  |  |  |
| X Test<br>No Determination<br>Possible | Customer Sample R                                      | ef.                   | A         | œ                                    |             |                                     |  |  |  |  |
|                                        | AGS Ref.                                               |                       |           |                                      |             |                                     |  |  |  |  |
|                                        | Depth (m)                                              |                       |           |                                      |             |                                     |  |  |  |  |
|                                        | Container                                              | 11 green glass bottle | 11plastic | 1lplastic<br>1l green glass bottle   |             |                                     |  |  |  |  |
| Dissolved Metals by ICP-MS             | All NDP<br>Tests                                       | s: 2                  | x         | x                                    |             |                                     |  |  |  |  |
| Mercury Dissolved                      | All NDP<br>Tests                                       |                       | )         | ×                                    |             |                                     |  |  |  |  |
| Metals by iCap-OES Dissolved (W)       | All NDP<br>Tests                                       | s: 2                  | x         | ×                                    |             |                                     |  |  |  |  |

| Validated                         | ALcontrol Laboratories Analytical Services |                                       |                           |  |  |  |  |  |  |
|-----------------------------------|--------------------------------------------|---------------------------------------|---------------------------|--|--|--|--|--|--|
| SDG:<br>Job:<br>Client Reference: | 101028-122<br>H_GRONTMIJ_SOL-35            | Customer:<br>Attention:<br>Order No.: | Grontmij<br>Gareth Taylor |  |  |  |  |  |  |
| Location:                         | Woodfield                                  | Report No:                            | 102623                    |  |  |  |  |  |  |

## **Test Completion Dates**

| 2309371    | 2309384                                 |
|------------|-----------------------------------------|
| A          | В                                       |
|            |                                         |
|            |                                         |
|            |                                         |
| LIQUID     | LIQUID                                  |
| 03/11/2010 | 03/11/2010                              |
| 03/11/2010 | 03/11/2010                              |
| 08/11/2010 | 08/11/2010                              |
|            | A<br>LIQUID<br>03/11/2010<br>03/11/2010 |

| Validated                                                                                                                                                                                                                                                                                                      |                         | ALco                                                                                                  | ntrol Labo                                                        | oratorie                                                          | s Analy                  | tical  | Services | 5 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|--------|----------|---|--|
| SDG:<br>Job:                                                                                                                                                                                                                                                                                                   | 101028-1<br>H_GRON      |                                                                                                       |                                                                   |                                                                   | Customer:<br>Attention:  | Gron   |          |   |  |
| Client Reference:<br>Location:                                                                                                                                                                                                                                                                                 | Woodfiel                | d                                                                                                     |                                                                   |                                                                   | Order No.:<br>Report No: | 102623 |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
| Results Legend           #         ISO17025 accredited.           M         mCERTS accredited.           aq         Aqueous / settled sample.                                                                                                                                                                  | Customer                | Sample Ref.                                                                                           | А                                                                 | В                                                                 |                          |        |          |   |  |
| diss.filt Dissolved filtered sample.     tot.unfilt Total / unfiltered sample.     * subcontracted test.     * % recovery of the surrogate     standard to check the efficiency     of the method. The results of the     individual compounds within     the samples are not corrected     for this recovery. | Lab<br>A                | Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Sample No.(s)<br>GS Reference | Water(GW/SW)<br>26/10/2010<br>28/10/2010<br>101028-122<br>2309371 | Water(GW/SW)<br>26/10/2010<br>28/10/2010<br>101028-122<br>2309384 |                          |        |          |   |  |
| Component<br>Arsenic (diss.filt)                                                                                                                                                                                                                                                                               | LOD/Units<br><0.12 µg/l | Method<br>TM152                                                                                       | 0.833                                                             | 0.712                                                             |                          |        |          |   |  |
| Boron (diss.filt)                                                                                                                                                                                                                                                                                              | <9.4 µg/l               | TM152                                                                                                 | <b>#</b><br>332                                                   | 375                                                               | #                        |        |          |   |  |
| Cadmium (diss.filt)                                                                                                                                                                                                                                                                                            | <0.1 µg/l               | TM152                                                                                                 | <b>#</b>                                                          | <0.1                                                              | #                        |        |          |   |  |
| Chromium (diss.filt)                                                                                                                                                                                                                                                                                           | <0.22 µg/l              | TM152                                                                                                 | # 2.27                                                            | 2.27                                                              | #                        |        |          |   |  |
| Copper (diss.filt)                                                                                                                                                                                                                                                                                             | <0.85 µg/l              | TM152                                                                                                 | <b>#</b><br>2.55                                                  | 2.13                                                              | #                        |        |          |   |  |
| Lead (diss.filt)                                                                                                                                                                                                                                                                                               | <0.02 µg/l              | TM152                                                                                                 | 0.133                                                             | 0.147                                                             | #                        |        |          |   |  |
| Nickel (diss.filt)                                                                                                                                                                                                                                                                                             | <0.15 µg/l              | TM152                                                                                                 | # 3.74                                                            | 3.98                                                              | #                        |        |          |   |  |
| Vanadium (diss.filt)                                                                                                                                                                                                                                                                                           | <0.24 µg/l              | TM152                                                                                                 | # 1.02                                                            | 0.792                                                             | #                        |        |          |   |  |
| Zinc (diss.filt)                                                                                                                                                                                                                                                                                               | <0.41 µg/l              | TM152                                                                                                 | <b>#</b><br>9.79                                                  | 8.15                                                              | #                        |        |          |   |  |
| Mercury (diss.filt)                                                                                                                                                                                                                                                                                            | <0.01 µg/l              | TM183                                                                                                 | <0.01                                                             | <0.01                                                             | #                        |        |          |   |  |
| Hardness, Total as CaCO3                                                                                                                                                                                                                                                                                       |                         | TM228                                                                                                 | 230                                                               | 260                                                               | #                        |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                | <1 mg/l                 | 111/220                                                                                               | 230                                                               | 200                                                               |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |
|                                                                                                                                                                                                                                                                                                                |                         |                                                                                                       |                                                                   |                                                                   |                          |        |          |   |  |



# **Table of Results - Appendix**

| G Nu                                                                     | imber: 1           | 01028-122                       |               | Client :                  | H_GRONTMIJ_S                                                     | OL            | C                                                        | lient Ref : |                                     |                        |
|--------------------------------------------------------------------------|--------------------|---------------------------------|---------------|---------------------------|------------------------------------------------------------------|---------------|----------------------------------------------------------|-------------|-------------------------------------|------------------------|
| PORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7 |                    |                                 |               |                           |                                                                  |               |                                                          |             |                                     |                        |
| NDP                                                                      | No Determinatio    | n Possible                      | #             | ISO 17025 Accredited      |                                                                  | *             | Subcontracted Test                                       | М           | MCERTS Accred                       | ited                   |
| NFD                                                                      | No Fibres Detec    | ted                             | PFD           | Possible Fibres Detected  |                                                                  | »             | Result previously reported<br>(Incremental reports only) | EC          | Equivalent Carbo<br>(Aromatics C8-C |                        |
| e: Metho                                                                 | d detection limits | are not always achievable       | due to vario  | us circumstances beyond o | our control                                                      | -             |                                                          |             |                                     |                        |
| N                                                                        | lethod No          |                                 | Refere        | nce                       |                                                                  |               | Description                                              |             | Wet/Dry<br>Sample <sup>1</sup>      | Surrogate<br>Corrected |
|                                                                          | TM152              | Method 3125B, AWW               | 4/APHA, 20th  | Ed., 1999                 | Analysis of Aqueous S                                            | Samples by IC | P-MS                                                     |             |                                     |                        |
|                                                                          | TM183              | BS EN 23506:2002, (E<br>38924 3 | 3S 6068-2.74: | 2002) ISBN 0 580          | Determination of Trac<br>Fluorescence Spectro                    |               |                                                          |             |                                     |                        |
|                                                                          | TM228              | US EPA Method 60108             | 3             |                           | Determination of Major Cations in Water by iCap 6500 Duo ICP-OES |               |                                                          |             |                                     |                        |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

# **APPENDIX**

## **APPENDIX**

- Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH<sub>4</sub> by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.
- 7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.
- 11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.
- 12. Results relate only to the items tested
- Surrogate recoveries Most of our organic methods include surrogates, the recovery of which is monitored and reported.
   For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 130 %.
- 14. **Product analyses** Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.
- 19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

| ANALYSIS                            | EXTRACTION SOLVENT | ЕХТКАСТІОN МЕТНОD                                  | SISATNA       |  |  |  |  |  |  |
|-------------------------------------|--------------------|----------------------------------------------------|---------------|--|--|--|--|--|--|
| PAH MS                              | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| EPH                                 | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| EPH CWG                             | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| MINERAL OIL                         | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC FID        |  |  |  |  |  |  |
| PCB 7 CONGENERS                     | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GC MS         |  |  |  |  |  |  |
| PCB TOTAL                           | HEXANE             | STIRRED EXTRACTION (STIR-BAR)                      | GS MS         |  |  |  |  |  |  |
| SVOC                                | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| FREE SULPHUR                        | DCM                | SOLID PHASE EXTRACTION                             | HPLC          |  |  |  |  |  |  |
| PEST OCP/OPP                        | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| TRIAZINE HERBS                      | DCM                | LIQUID/LIQUID SHAKE                                | GC MS         |  |  |  |  |  |  |
| PHENOLS MS<br>TPH by INFRA RED (IR) | DCM<br>TCE         | SOLID PHASE EXTRACTION<br>LIQUID/LIQUID EXTRACTION | GC MS<br>HPLC |  |  |  |  |  |  |
| MINERAL OIL by IR                   | TCE                | LIQUID/LIQUID EXTRACTION                           | HPLC          |  |  |  |  |  |  |
| GLYCOLS                             | NONE               | DIRECT INJECTION                                   | GC FID        |  |  |  |  |  |  |

| ANALYSIS                              | D/C OR WET | EXTRACTION SOLVENT | EXTRACTION METHOD           | ANALYSIS    |
|---------------------------------------|------------|--------------------|-----------------------------|-------------|
| Solvent Extractable Matter            | D&C        | DCM                | SOXTHERM                    | GRAVIMETRIC |
| Cyclohexane Ext. Matter               | D&C        | CYCLOHEXANE        | SOXTHERM                    | GRAVIMETRIC |
| Thin Layer Chromatography             | D&C        | DCM                | SOXTHERM                    | IATROSCAN   |
| Elemental Sulphur                     | D&C        | DCM                | SOXTHERM                    | HPLC        |
| Phenols by GCMS                       | WET        | DCM                | SOXTHERM                    | GC-MS       |
| Herbicides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| Pesticides                            | D&C        | HEXANE:ACETONE     | SOXTHERM                    | GC-MS       |
| EPH (DRO)                             | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| EPH (Min oil)                         | D&C        | HEXANE:ACETONE     | END                         | GC-FID      |
| EPH (Cleaned up)                      | D&C        | HEXANE:ACETONE     | END OVER<br>END             | GC-FID      |
| EPH CWG by GC                         | D&C        | HEXANE:ACETONE     | END OVER<br>END<br>END OVER | GC-FID      |
| PCB tot / PCB con                     | D&C        | HEXANE:ACETONE     | END                         | GC-MS       |
| Polyaromatic Hydrocarbons<br>(MS)     | WET        | HEXANE:ACETONE     | Microwave<br>TM218.         | GC-MS       |
| C8-C40 (C6-C40)EZ Flash               | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Polyaromatic Hydrocarbons<br>Rapid GC | WET        | HEXANE:ACETONE     | SHAKER                      | GC-EZ       |
| Semi Volatile Organic<br>Compounds    | WET        | DCM:ACETONE        | SONICATE                    | GC-MS       |

## **Identification of Asbestos in Bulk Materials**

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

## Visual Estimation Of Fibre Content.

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -

Trace – Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in

### MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

## Asbestos Type

## Common Name

Chrysotile Amosite Crocidolite Fibrous Actinolite Fibrous Anthophyllite Fibrous Tremolite White Asbestos Brown Asbestos Blue Asbestos --



Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode lane Solihull West Midlands B912AA

Attention: Gareth Taylor

## **CERTIFICATE OF ANALYSIS**

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 21 December 2010 H\_GRONTMIJ\_SOL 101214-15

Woodfield 108696

We received 5 samples on Tuesday December 14, 2010 and 5 of these samples were scheduled for analysis which was completed on Tuesday December 21, 2010. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager



### **CERTIFICATE OF ANALYSIS**

Validated

 SDG:
 101214-15
 Location:
 Woodfield
 Order Number:

 Job:
 H\_GRONTMIJ\_SOL-35
 Customer:
 Grontmij
 Report Number:
 108696

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:

## **Received Sample Overview**

| Lab Sample No(s) | Customer Sample Ref. | AGS Ref. | Depth (m) | Sampled Date |
|------------------|----------------------|----------|-----------|--------------|
| 2575468          | 1 WOODFIELD CLOSE    |          |           | 10/12/2010   |
| 2575471          | 10 WOODFIELD DRIVE   |          |           | 10/12/2010   |
| 2575469          | 14 WOODFIELD CLOSE   |          |           | 10/12/2010   |
| 2575470          | 17 WOODFIELD CLOSE   |          |           | 10/12/2010   |
| 2575472          | 23 WOODFIELD DRIVE   |          |           | 10/12/2010   |

Only received samples which have had analysis scheduled will be shown on the following pages.

| SDG:         10121           Job:         H_GR           Client Reference: | 4-15<br>ONTMIJ_SOL-35 | Location<br>Custome<br>Attention | r:                            | Gron                          | dfielo<br>tmij<br>th Ta       |                               |                               |       | Order Number:<br>Report Number:<br>Superseded Report: | 10869 |
|----------------------------------------------------------------------------|-----------------------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------|-------------------------------------------------------|-------|
|                                                                            |                       |                                  | •                             | Те                            | st                            | So                            | cho                           | edule |                                                       |       |
| LIQUID<br>Results Legend<br>X Test                                         | Lab Samp              | le No(s)                         | 2575468                       | 2575471                       | 2575469                       | 2575470                       | 2575472                       |       |                                                       |       |
| No Determination<br>Possible                                               | Custo<br>Sample Re    |                                  | 1 WOODFIELD<br>CLOSE          | 10 WOODFIELD<br>DRIVE         | 14 WOODFIELD<br>CLOSE         | 17 WOODFIELD<br>CLOSE         | 23 WOODFIELD                  |       |                                                       |       |
|                                                                            | AGS Ref               | erence                           |                               |                               |                               |                               |                               |       |                                                       |       |
|                                                                            | Depth                 | (m)                              |                               |                               |                               |                               |                               |       |                                                       |       |
|                                                                            | Conta                 | iner                             | Vial<br>1l green glass bottle |       |                                                       |       |
| Dissolved Metals by ICP-MS                                                 | All                   | NDPs: 0<br>Tests: 5              | x                             | x                             | x                             | X                             | x                             |       |                                                       |       |
| EPH (DRO) (C10-C40) Aqueous<br>(W)                                         | All                   | NDPs: 0<br>Tests: 5              | x                             | X                             | X                             | x                             | X                             |       |                                                       |       |
| GRO by GC-FID (W)                                                          | All                   | NDPs: 0<br>Tests: 5              | X                             |                               |                               |                               |                               |       |                                                       |       |
| Mercury Dissolved                                                          | All                   | NDPs: 0<br>Tests: 5              | x                             | x                             | x                             | X                             | X                             |       |                                                       |       |
| pH Value                                                                   | All                   | NDPs: 0<br>Tests: 5              | x                             | X                             | X                             | x                             | x                             | 1     |                                                       |       |

Validated

### **CERTIFICATE OF ANALYSIS**

Validated

| Results Legend                                                                | С                        | ustomer Sample R                   | 1 WOODFIELD CLO          | 14 WOODFIELD CL          | 17 WOODFIELD CL          | 10 WOODFIELD DR          | 23 WOODFIELD DR          |  |
|-------------------------------------------------------------------------------|--------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| # ISO17025 accredited.<br>M mCERTS accredited.                                | Ŭ                        | ustomer oumple it                  | SE                       | OSE                      | OSE                      | IVE                      | IVE                      |  |
| Non-conforming work.     aq Aqueous / settled sample.                         |                          | Depth (m)                          |                          |                          |                          |                          |                          |  |
| diss.filt Dissolved / filtered sample.                                        |                          | Sample Type                        | Water(GW/SW)             | Water(GW/SW)             | Water(GW/SW)             | Water(GW/SW)             | Water(GW/SW)             |  |
| tot.unfilt Total / unfiltered sample.<br>* subcontracted test.                |                          | Date Sampled<br>Date Received      | 10/12/2010<br>14/12/2010 | 10/12/2010<br>14/12/2010 | 10/12/2010<br>14/12/2010 | 10/12/2010<br>14/12/2010 | 10/12/2010<br>14/12/2010 |  |
| ** % recovery of the surrogate standar<br>check the efficiency of the method. | The                      | SDG Ref                            | 101214-15                | 101214-15                | 101214-15                | 101214-15                | 101214-15                |  |
| results of the individual compounds<br>within the samples are not corrected   | 3                        | Lab Sample No.(s)<br>AGS Reference | 2575468<br>TAP           | 2575469<br>TAP           | 2575470<br>TAP           | 2575471<br>TAP           | 2575472<br>TAP           |  |
| this recovery.                                                                |                          |                                    |                          |                          |                          |                          |                          |  |
| Component<br>Antimony (diss.filt)                                             | LOD/Units<br><0.16       | Method<br>TM152                    | 0.346                    | 0.512                    | 0.534                    | 0.684                    | 1                        |  |
|                                                                               | ×0.10<br>μg/l            | TWITE                              | 0.040<br>#               | 0.012<br>#               | 0.004<br>#               | #                        | #                        |  |
| Arsenic (diss.filt)                                                           | <0.12<br>µg/l            | TM152                              | 1.79<br>#                | 1.99<br>#                | 1.86<br>#                | 2.04<br>#                | 2.01<br>#                |  |
| Boron (diss.filt)                                                             | <9.4 µg/                 | I TM152                            | 114<br>#                 | 108<br>#                 | 111<br>#                 | 112<br>#                 | 127<br>#                 |  |
| Cadmium (diss.filt)                                                           | <0.1 µg/                 | I TM152                            | 0.128                    | 0.11 #                   | 0.122 #                  | <0.1                     | 0.157                    |  |
| Chromium (diss.filt)                                                          | <0.22<br>µg/l            | TM152                              |                          | "<br>11<br>#             | 10.8<br>#                | "<br>11<br>#             | 11.2<br>#                |  |
| Copper (diss.filt)                                                            | <0.85<br>μg/l            | TM152                              |                          | 122<br>#                 | 122<br>#                 |                          | 93.6<br>#                |  |
| Lead (diss.filt)                                                              | <0.02<br>μg/l            | TM152                              | 0.103<br>#               | 0.167<br>#               | 0.174<br>#               | 0.105<br>#               | 0.169<br>#               |  |
| Nickel (diss.filt)                                                            | <0.15<br>μg/l            | TM152                              | 1.08<br>#                | #<br>1.34<br>#           | 1.23<br>#                | 1.36<br>#                | 2.14<br>#                |  |
| Zinc (diss.filt)                                                              | <0.41                    | TM152                              | #<br>13.1<br>#           | #<br>15.6<br>#           | 10.7<br>#                | 10.6<br>#                | 16.2<br>#                |  |
| EPH Range >C10 - C40                                                          | μ <u>q</u> /l<br><46 μg/ | TM172                              | <46                      | #<br><46<br>#            | <46                      | #<br><46<br>#            | #<br><46<br>#            |  |
| (aq)<br>EPH Band >C10-C12 (aq)                                                | <10 µg/                  | TM172                              | #<br><10                 | #<br><10                 | #<br><10                 | #<br><10                 | #<br><10                 |  |
| EPH Band >C12-C16 (aq)                                                        | <10 µg/                  | TM172                              | <10                      | <10                      | <10                      | <10                      | <10                      |  |
| EPH Band >C16-C21 (aq)                                                        | <10 µg/                  | TM172                              | <10                      | <10                      | <10                      | <10                      | <10                      |  |
| EPH Band >C21-C28 (aq)                                                        | <10 µg/                  | TM172                              | <10                      | <10                      | <10                      | <10                      | <10                      |  |
| EPH Band >C35-C40 (aq)                                                        | <10 µg/                  | TM172                              | <10                      | <10                      | <10                      | <10                      | <10                      |  |
| EPH Band >C28-C35 (aq)                                                        | <10 µg/                  | TM172                              | <10                      | <10                      | <10                      | <10                      | <10                      |  |
| Mercury (diss.filt)                                                           | <0.01<br>µg/l            | TM183                              | <0.01<br>#               | <0.01<br>#               | <0.01<br>#               | <0.01<br>#               | <0.01<br>#               |  |
| рН                                                                            | <1 pH<br>Units           | TM256                              | 8.16<br>#                | 8.1<br>#                 | 8.14<br>#                | 8.28<br>#                | 8.17<br>#                |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |
|                                                                               |                          |                                    |                          |                          |                          |                          |                          |  |

### **CERTIFICATE OF ANALYSIS**

Validated

#### GRO by GC-FID (W)

(

| RO by GC-FID (W) Results Legend Customer Sample R 1 WOODFIELD CLO 14 WOODFIELD CL 17 WOODFIELD CL 10 WOODFIELD DR 23 WOODFIELD DR                                                                                                                                                                                                                    |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Kesuits Legend           #         ISO17025 accredited.           M         mCERTS accredited.           §         Non-conforming work.                                                                                                                                                                                                              |                           | Customer Sample R                                                                                          | 1 WOODFIELD CLO<br>SE                                                   | 14 WOODFIELD CL<br>OSE                                                  | 17 WOODFIELD CL<br>OSE                                                  | 10 WOODFIELD DR<br>IVE                                                  | 23 WOODFIELD DR<br>IVE                                                  |  |
| <ul> <li>aq Aqueous / settled sample.</li> <li>dis.filt Dissolved / filtered sample.</li> <li>tot.unfilt Total / unfiltered sample.</li> <li>subcontracted test.</li> <li>% recovery of the surrogate standar check the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.</li> </ul> | The<br>;                  | Depth (m)<br>Sample Type<br>Date Sampled<br>Date Received<br>SDG Ref<br>Lab Sample No.(s)<br>AGS Reference | Water(GW/SW)<br>10/12/2010<br>14/12/2010<br>101214-15<br>2575468<br>TAP | Water(GW/SW)<br>10/12/2010<br>14/12/2010<br>101214-15<br>2575469<br>TAP | Water(GW/SW)<br>10/12/2010<br>14/12/2010<br>101214-15<br>2575470<br>TAP | Water(GW/SW)<br>10/12/2010<br>14/12/2010<br>101214-15<br>2575471<br>TAP | Water(GW/SW)<br>10/12/2010<br>14/12/2010<br>101214-15<br>2575472<br>TAP |  |
| Component<br>GRO >C5-C12                                                                                                                                                                                                                                                                                                                             | <b>LOD/Unit</b><br><50 μg |                                                                                                            | <50                                                                     | <50                                                                     | <50                                                                     | <50                                                                     | <50                                                                     |  |
| Methyl tertiary butyl ether                                                                                                                                                                                                                                                                                                                          | <3 µg/                    | 1 TM245                                                                                                    | <del>#</del>                                                            | #<br><3                                                                 | #<br><3                                                                 | #<br><3                                                                 | #<br><3                                                                 |  |
| (MTBE)<br>Benzene                                                                                                                                                                                                                                                                                                                                    | <7 µg/                    | 1 TM245                                                                                                    | #<br><7                                                                 | #<br><7                                                                 | #<br><7                                                                 | #<br><7                                                                 | #<br><7                                                                 |  |
| Toluene                                                                                                                                                                                                                                                                                                                                              | <4 µg/                    | 1 TM245                                                                                                    | #<br><4<br>#                                                            | #<br><4<br>#                                                            | #<br><4<br>#                                                            | #<br><4<br>#                                                            | #<br><4<br>#                                                            |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                         | <5 µg/                    | 1 TM245                                                                                                    | #<br><5<br>#                                                            | #<br><5<br>#                                                            | #<br><5<br>#                                                            | #<br><5<br>#                                                            |                                                                         |  |
| m,p-Xylene                                                                                                                                                                                                                                                                                                                                           | <8 µg/                    | 1 TM245                                                                                                    | <8<br>#                                                                 | <8<br>#                                                                 | <8<br>#                                                                 |                                                                         | <8<br>#                                                                 |  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                             | <3 µg/                    |                                                                                                            | <3<br>#                                                                 | <3<br>#                                                                 | <3<br>#                                                                 | <3<br>#                                                                 | <3<br>#                                                                 |  |
| m,p,o-Xylene                                                                                                                                                                                                                                                                                                                                         | <10 µg                    |                                                                                                            | <10                                                                     | <10                                                                     | <10                                                                     | <10                                                                     | <10                                                                     |  |
| BTEX, Total                                                                                                                                                                                                                                                                                                                                          | <10 µg                    | /I TM245                                                                                                   | <10                                                                     | <10                                                                     | <10                                                                     | <10                                                                     | <10                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           | _                                                                                                          |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                      |                           |                                                                                                            |                                                                         |                                                                         |                                                                         |                                                                         |                                                                         |  |

| ALcon                          | trol Laboratories                      | CEF                                  | RTIFICATE OF ANAL                      | YSIS                                                  | Validated                                    |
|--------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------------------------|----------------------------------------------|
| SDG:<br>Job:<br>Client Referer | 101214-15<br>H_GRONTMIJ_SOL-35<br>nce: | Location:<br>Customer:<br>Attention: | Woodfield<br>Grontmij<br>Gareth Taylor | Order Number:<br>Report Number:<br>Superseded Report: | 108696                                       |
|                                | ,                                      | Table                                | of Results - Ap                        | •                                                     |                                              |
| REPORT KEY                     | ŕ                                      |                                      |                                        | Results expressed a                                   | s (e.g.) 1.03E-07 is equivalent to 1.03x10-7 |

| NDP<br>NFD | No Determination                |                                                                                    | #<br>PFD              | ISO 17025 Accredited Possible Fibres Detected | * Subcontracted Test M<br>Result previously reported EC<br>(Incremental reports only) |                                                                            |                                                                  |            | Equivalent Carbon  | •                  |  |  |
|------------|---------------------------------|------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|------------|--------------------|--------------------|--|--|
| ote: Meth  | od detection limits             | are not always achievable (                                                        | due to vario          | us circumstances beyond our co                | ontrol                                                                                |                                                                            | (incremental reports only)                                       |            | (Aromatics C8-C35) | (Aromatics C8-C35) |  |  |
|            | Method No Reference Description |                                                                                    |                       |                                               |                                                                                       |                                                                            | Surrogate<br>Corrected                                           |            |                    |                    |  |  |
|            | TM061                           | Method for the Det<br>EPH,Massachuset                                              |                       |                                               |                                                                                       | Determination of Extractable Petroleum Hydrocarbons by<br>GC-FID (C10-C40) |                                                                  |            |                    |                    |  |  |
|            | TM152                           | Method 3125B, AV                                                                   | /WA/APH               | IA, 20th Ed., 1999                            | Analysis o                                                                            | Analysis of Aqueous Samples by ICP-MS                                      |                                                                  |            |                    |                    |  |  |
|            | TM172                           | Analysis of Petrole<br>Environmental Meo<br>Hydrocarbon Criter                     | dia – Tota            |                                               | EPH in Waters                                                                         |                                                                            |                                                                  |            |                    |                    |  |  |
|            | TM183                           | BS EN 23506:2002<br>0 580 38924 3                                                  | 2, (BS 60             | 68-2.74:2002) ISBN                            |                                                                                       |                                                                            | ace Level Mercury in Waters an<br>ur Atomic Fluorescence Spectro |            | 3                  |                    |  |  |
|            | TM245                           | By GC-FID                                                                          |                       |                                               | Determina                                                                             | ation of G                                                                 | RO by Headspace in waters                                        |            |                    |                    |  |  |
|            | TM256                           | The measurement<br>the Laboratory dete<br>Natural, Treated ar<br>1978. ISBN 011 75 | erminatio<br>nd Waste |                                               | Determina<br>Meter                                                                    | ation of p                                                                 | H in Water and Leachate using th                                 | ne GLpH pH |                    |                    |  |  |

<sup>1</sup> Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

(

Job:

## **CERTIFICATE OF ANALYSIS**

Woodfield SDG: 101214-15 Location: Order Number: H\_GRONTMIJ\_SOL-35 Grontmij 108696 Customer: Report Number: Client Reference: Attention: Gareth Taylor Superseded Report:

## **Test Completion Dates**

| Lab Sample No(s)                | 2575468               | 2575469                | 2575470                | 2575471                | 2575472                |
|---------------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
| Customer Sample Ref.            | 1 WOODFIELD CLO<br>SE | 14 WOODFIELD CL<br>OSE | 17 WOODFIELD CL<br>OSE | 10 WOODFIELD DR<br>IVE | 23 WOODFIELD DR<br>IVE |
| AGS Ref.                        |                       |                        |                        |                        |                        |
| Depth                           |                       |                        |                        |                        |                        |
| Туре                            | LIQUID                | LIQUID                 | LIQUID                 | LIQUID                 | LIQUID                 |
| Dissolved Metals by ICP-MS      | 16-Dec-2010           | 16-Dec-2010            | 16-Dec-2010            | 16-Dec-2010            | 16-Dec-2010            |
| EPH (DRO) (C10-C40) Aqueous (W) | 21-Dec-2010           | 21-Dec-2010            | 21-Dec-2010            | 21-Dec-2010            | 21-Dec-2010            |
| GRO by GC-FID (W)               | 17-Dec-2010           | 17-Dec-2010            | 17-Dec-2010            | 17-Dec-2010            | 17-Dec-2010            |
| Mercury Dissolved               | 15-Dec-2010           | 15-Dec-2010            | 15-Dec-2010            | 15-Dec-2010            | 15-Dec-2010            |
| pH Value                        | 15-Dec-2010           | 15-Dec-2010            | 15-Dec-2010            | 15-Dec-2010            | 15-Dec-2010            |

#### **CERTIFICATE OF ANALYSIS**

| SDG:              | 101214-15         | Location:  | Woodfield     |
|-------------------|-------------------|------------|---------------|
| Job:              | H_GRONTMIJ_SOL-35 | Customer:  | Grontmij      |
| Client Reference: |                   | Attention: | Gareth Taylor |

## Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 108696 Superseded Report:

#### SOLID MATRICES EXTRACTION SUMMARY

| ANALYSIS                                 | D/C<br>OR<br>WET | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD | ANALYSS     |
|------------------------------------------|------------------|-----------------------|----------------------|-------------|
| SOLVENT EXTRACTABLE<br>MATTER            | D&C              | DOM                   | SOXTHERM             | GRAVIMETRIC |
| CYCLOHEXANE EXT.<br>MATTER               | D&C              | CYCLOHEXANE           | SOXTHERM             | GRAVIMETRIC |
| THIN LAYER<br>CHROMATOGRAPHY             | D&C              | DCM                   | SOXTHERM             | IATROSCAN   |
| ELEMENTALSULPHUR                         | D&C              | DOM                   | SOXTHERM             | HPLC        |
| PHENOLSBYGOMS                            | WET              | DOM                   | SOXTHERM             | GCMS        |
| HERBICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GCMS        |
| PESTICIDES                               | D&C              | HEXANEACETONE         | SOXTHERM             | GCMS        |
| EPH (DRO)                                | D&C              | HEXANEACETONE         | END OVEREND          | GCFD        |
| EPH (MNOL)                               | D&C              | HEXANEACETONE         | END OVEREND          | GCFD        |
| EPH (CLEANED UP)                         | D&C              | HEXANEACETONE         | END OVEREND          | GCFID       |
| EPH ONG BYGC                             | D&C              | HEXANEACETONE         | END OVEREND          | GCFID       |
| POB TOT / POB CON                        | D&C              | HEXANEACETONE         | ENDOWEREND           | GCMS        |
| POLYAROMATIC<br>HYDROCARBONS (MS)        | WET              | HEXANEACETONE         | MCROWAVE<br>TM218.   | GCMS        |
| 08-040(06-040) EZ<br>FLASH               | WET              | HEXANEACETONE         | SHAVER               | GCEZ        |
| POLVAROMATIC<br>HYDROCARBONS RAPID<br>GC | WET              | HEXANEACETONE         | SHAVER               | 900 EZ      |
| SEM VOLATILEORGANIC<br>COMPOUNDS         | WET              | DOMAGETONE            | SONICATE             | GCMS        |

#### LIQUID MATRICES EXTRACTION SUMMARY

| ANALYSIS             | EXTRACTION<br>SOLVENT | EXTRACTION<br>METHOD        | ANALYSIS |
|----------------------|-----------------------|-----------------------------|----------|
| PAHMS                | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| BH                   | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| EPHCWG               | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| MINERALOIL           | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCFID    |
| PCB 7 CONGENERS      | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| PCB TOTAL            | HEXANE                | STIRREDEXTRACTION(STIR-BAR) | GCMS     |
| SVOC                 | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| FREESULPHUR          | DOM                   | SOLID PHASE EXTRACTION      | HPLC     |
| PEST 00P/0PP         | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| TRIAZINE HERBS       | DOM                   | LIQUID/LIQUID SHAKE         | GCMS     |
| PHENOLSMS            | DOM                   | SOLID PHASE EXTRACTION      | GCMS     |
| TIH by INFRARED (IR) | TCE                   | LIQUID/LIQUID SHAKE         | HPLC     |
| MINERALOIL by R      | TCE                   | LIQUID/LIQUID SHAKE         | HFLC     |
| GLYCOLS              | NONE                  | DIRECT INJECTION            | GCMS     |

#### Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

| Asbestos Type        | Common Name   |
|----------------------|---------------|
| Chrysofile           | WhiteAsbestos |
| Amosite              | BrownAsbestos |
| Crodolite            | Blue Asbestos |
| Fibrous Adindite     | -             |
| Florous Anthophylite | -             |
| Fibrous Trendite     | -             |

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

# APPENDIX E

## Appendix E – Gas Monitoring Data

| Well | Monitoring<br>Date | Peak CH₄<br>(%) | Steady<br>O <sub>2</sub><br>(%) | Steady CO <sub>2</sub><br>(%)          | Steady<br>(ppm |                         | Average<br>Flow<br>(I/hr) |
|------|--------------------|-----------------|---------------------------------|----------------------------------------|----------------|-------------------------|---------------------------|
| WS1  | 28/07/2010         | 0               | 16.6                            | 1.3                                    | 0              | 0                       | - 0.2                     |
|      | 11/08/2010         | 0               | 16.9                            | 1                                      | 0              | 0                       | 0.1                       |
|      | 25/08/2010         | 0               | 16.4                            | 2.2                                    | 0              | 0                       | 0.0                       |
|      | 08/09/2010         | 0               | 16.4                            | 2                                      | 0              | 0                       | - 0.1                     |
| WS2  | 28/07/2010         | 0               | 16.2                            | 2                                      | 0              | 0                       | - 0.1                     |
|      | 11/08/2010         | 0               | 16.8                            | 7.3                                    | 0              | 0                       | 0.1                       |
|      | 25/08/2010         | 0               | 16.3                            | 3.3                                    | 0              | 0                       | 0.0                       |
|      | 08/09/2010         | 0               | 16.3                            | 2.3                                    | 0              | 0                       | - 0.1                     |
| WS3  | 28/07/2010         | 0               | 17.1                            | 7.8                                    | 0              | 0                       | 0.1                       |
|      | 11/08/2010         | 0               | 17.4                            | 7                                      | 0              | 0                       | - 0.1                     |
|      | 25/08/2010         | 0               | 16.7                            | 8                                      | 0              | 0                       | 0.1                       |
|      | 08/09/2010         | 0               | 16.5                            | 8.1                                    | 0              | 0                       | 0.1                       |
| WS4  | 28/07/2010         | 0               | 17                              | 2.7                                    | 0              | 0                       | 0.1                       |
|      | 11/08/2010         | 0               | 16.8                            | 2.5                                    | 0              | 0                       | - 0.1                     |
|      | 25/08/2010         | 0               | 16.6                            | 3.6                                    | 0              | 0                       | 0.0                       |
|      | 08/09/2010         | 0               | 16.4                            | 4.1                                    | 0              | 0                       | 0.1                       |
| WS5  | 28/07/2010         | 0               | 17.1                            | 2.9                                    | 0              | 0                       | 0.2                       |
|      | 11/08/2010         | 0               | 17.4                            | 2.4                                    | 0              | 0                       | - 0.1                     |
|      | 25/08/2010         | 0               | 16.5                            | 3.6                                    | 0              | 0                       | 0.1                       |
|      | 08/09/2010         | 0               | 16.6                            | 3.2                                    | 0              | 0                       | 0.1                       |
| WS6  | 28/07/2010         | 0               | 16.7                            | 2                                      | 0              | 0                       | 0.2                       |
|      | 11/08/2010         | 0               | 16.9                            | 0.2                                    | 0              | 0                       | 0.1                       |
|      | 25/08/2010         | 0               | 16.4                            | 0.2                                    | 0              | 0                       | - 0.1                     |
|      | 08/09/2010         | 0               | 16.3                            | 0.1                                    | 0              | 0                       | - 0.1                     |
| WS7  | 28/07/2010         | 0               | 14.7                            | 3.7                                    | 0              | 0                       | - 0.2                     |
|      | 11/08/2010         | 0               |                                 | •                                      | Not acc        | essible                 | •                         |
|      | 25/08/2010         | 0               | 17.4                            | 3.8                                    | 0              | 0                       | - 0.1                     |
|      | 08/09/2010         | 0               | 17.5                            | 4                                      | 0              | 0                       | - 0.1                     |
| WS8  | 28/07/2010         | 0               | 17.0                            | 3.5                                    | 0              | 0                       | 0.3                       |
|      | 11/08/2010         | 0               | 17.1                            | 3.2                                    | 0              | 0                       | -0.1                      |
|      | 25/08/2010         | 0               | 16.5                            | 3                                      | 0              | 0                       | 0                         |
|      | 08/09/2010         | 0               | 16.9                            | 2.1                                    | 0              | 0                       | 0.1                       |
| Atm  | nospheric Pressur  | e:              | 28/                             | 07/2010                                | (              | 96mb (steady trend th   | roughout dav)             |
|      |                    | -               |                                 | 11/08/2010 991mb (steady itend through |                |                         |                           |
|      |                    |                 |                                 | /08/2010                               |                | 93mb (falling trend th  |                           |
|      |                    |                 |                                 | /09/2010                               |                | 982mb (rising trend thr |                           |

Readings obtained with a Geotechnical Instruments GA2000 gas analyser plus flow pod. $CH_4$  – methane; $O_2$  – oxygen; $CO_2$  carbon dioxide;CO – carbon monoxide; $H_2S$  – hydrogen sulphide;mbgl – metres below ground levelmb – millibarsl/hr – litres per hour.

## APPENDIX F

## Appendix F: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

| Situation                                               | Severity<br>Category | Description                                                                                                                                                                                                                                                                                          | Examples                                                                                                                                                                                           |
|---------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACUTE<br>PROBLEM                                        | Severe               | Acute risk to human health likely to<br>result in "significant harm" as<br>defined in EPA90, catastrophic<br>damage to buildings or property,<br>acute risk of major pollution of<br>controlled waters, acute risk of<br>harm to ecosystems (as defined in<br>Contaminated Land Regulations<br>2006) | High cyanide concentrations at<br>the surface of a recreation<br>area<br>Major spillage into controlled<br>waters<br>Explosion, causing building<br>collapse                                       |
| SIGNIFICANT<br>HARM TO<br>SENSITIVE<br>RECEPTOR         | Medium               | Chronic risk to human health likely<br>to result in "significant harm" as<br>defined in EPA90, chronic pollution<br>of sensitive controlled waters,<br>significant change at a sensitive<br>ecosystems or species, significant<br>damage to buildings or structures                                  | Contaminant concentrations at<br>a site in excess of SGVs, GAC<br>or similar screening values<br>Leaching of contaminants to<br>sensitive aquifer<br>Death of a species within a<br>nature reserve |
| SIGNIFICANT<br>HARM TO<br>LESS<br>SENSITIVE<br>RECEPTOR | Mild                 | Pollution of non-sensitive waters,<br>significant damage to buildings,<br>structures, services or crops,<br>damage to sensitive buildings,<br>structures, services or the<br>environment, which nonetheless<br>result in "significant harm"                                                          | Pollution to (former) non-<br>aquifer or to non-controlled<br>surface watercourse.<br>Damage to building rendering<br>it unsafe to occupy (e.g.<br>foundation or structural<br>damage)             |
| NON-<br>SIGNIFICANT<br>HARM                             | Minor                | Harm, not necessarily resulting in<br>"significant harm" but probably<br>requiring expenditure to resolve or<br>financial loss. Non-permanent<br>risks to human health that are<br>easily mitigated, e.g. by wearing<br>PPE. Easily-repairable damage to<br>structures or services                   | Contaminant concentrations<br>requiring the wearing of PPE<br>during site work, but no other<br>long-term mitigation.<br>Discolouration of concrete                                                |

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

| Category | There is a pollution linkage and:                                               |  |  |
|----------|---------------------------------------------------------------------------------|--|--|
| High     | Event is likely in the short term and almost inevitable over the long term. Or, |  |  |
|          | there is evidence of actual harm at/to the receptor                             |  |  |
| Likely   | Event is possible in the short term and likely over the long term               |  |  |
| Low      | Event is unlikely in the short term and possible over the long term             |  |  |
| Unlikely | Event is unlikely, even in the long term                                        |  |  |



www.grontmij.co.uk

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

|             | Severity     |              |              |              |  |
|-------------|--------------|--------------|--------------|--------------|--|
| Probability | Severe       | Medium       | Mild         | Minor        |  |
| High        | Very high    | High         | Moderate     | Low/moderate |  |
| Likely      | High         | Moderate     | Low/moderate | Low          |  |
| Low         | Moderate     | Low/moderate | Low          | Very low     |  |
| Unlikely    | Low/moderate | Low          | Very low     | Very low     |  |

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- $\circ\,$  Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

