Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Initial Site Investigation

Land West of Fiveways, Cannock Road, Heath Hayes, Staffordshire

February 2012

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 **F** 0121 7116749 **E** gareth.taylor@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
R622/106270/V1 /2011	17/02/12	First Issue	Name	Rebecca Hearn	Gareth Taylor	Colin Macdonald
			Position	Assistant Environmental Consultant	Principal Environmental Consultant	Director, Land Quality

© Grontmij 2012 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTRODUCTION	1
1.1	Terms of Reference	1
2	BACKGROUND INFORMATION	2
2.1	Site Setting	2
2.2	Previous Reports	3
3	EXPLORATORY SITE INVESTIGATION	6
3.1	Scope and Methodology	6
3.2	Results and Discussion	7
3.2.1	Ground Conditions	7
3.2.2	Adequacy of Investigation Depth and Spatial Extent	7
3.2.3	Field Evidence of Contamination	7
3.2.4	Soil Analysis Results and Discussion	8
3.2.5	Asbestos Containing Materials within Soils	11
3.2.6	Leachability Assessment	15
3.2.7	Ground Gas Assessment	17
3.2.8	Safety of Water Supply Pipes	17
4	UPDATED CONCEPTUAL SITE MODEL	19
4.1	Contaminants	19
4.2	Receptors	19
4.3	Pathways	19
5	SUMMARY AND CONCLUSION	23

FIGURES

Figure 2.1 – S	Site Location	3
----------------	---------------	---

TABLES

Table 2.1 – Site Setting	2
Table 2.2 - Potential Pollutant Linkages	4
Table 3.1 - Field Evidence of Potential Contamination	8
Table 3.2 - Soil Analysis Results Summary	9
Table 3.3 - Soil Leachate Analysis Results Summary	16
Table 3.4 - Summary of Gas Monitoring Data	17
Table 3.5- Tap Water Analysis Results	18
Table 4.1 - Pollutant Linkages, Post-Site Investigation	20
- · · · · · · · · · · · · · · · · · · ·	

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

APPENDICES

Appendix A	Initial Desktop Study and Site Walkover Report, January 2010
Appendix B	Limitations Statement
Appendix C	Exploratory Hole Logs
Appendix D	Laboratory Chemical Analysis Certificates
Appendix E	Gas Monitoring Data
Appendix F	Preliminary Screening Against UKWIR and WRAS Values
Appendix G	Severity and Probability of Risk (after CIRIA 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Contaminated Land is defined in Section 78(2) of Part 2A of the Environmental Protection Act 1990 as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that

- significant harm is being caused or there is a significant possibility of such harm being caused; or
- pollution of controlled waters is being, or is likely to be, caused.

Further information is provided in the above Act and associated statutory guidance (DEFRA Circular 01/2006 – EPA 1990, Part 2A: Contaminated Land).

Grontmij assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, located at Newlands Court and Newlands Lane, to the west of Fiveways, Cannock Road, Heath Hayes, Staffordshire (hereafter referred to as 'the site') was identified as a priority for inspection as:

- Environment Agency records indicate that the site operated as a landfill site between 1960 and 1965 the type of waste received is unspecified. Historic mapping contained in reports held by the council pertaining to adjacent sites indicate that the southern end of the site may also comprise an infilled railway cutting.
- The site is considered to be sensitive as residential properties with gardens and playing fields overly the inferred extent of landfill.

Following the completion of a desktop study (see Appendix A), Grontmij was subsequently appointed by the Council to implement an initial exploratory site investigation, which was undertaken in December 2010, with follow up work undertaken throughout 2011. This report presents the findings of the investigation and assesses the significance of the contaminant concentrations detected.

This report is subject to the limitations presented in Appendix B.

2 BACKGROUND INFORMATION

2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1.

Table 2.1	- Site	Setting
-----------	--------	---------

Data	Information
Address	Former landfill beneath Newlands Court / Lane, to the west of Fiveways, Cannock Road, Heath Hayes, Staffordshire, WS12 3HZ.
Current site use:	Residential houses and gardens. Houses appear to have been constructed in late 1980's/early 1990's
Grid Reference:	Centre of site located at NGR 401503,309907
Site Area:	Approximately 1.5 ha.
Topography:	Site is generally flat; surrounding area falls gently towards the south-east
Surrounding land use	North: Cannock Road adjacent, residential properties beyond East: Residential (flats) adjacent, tyre-fitting centre approx 50m South: Playing fields and open land West: Residential / telephone exchange / open land
Mapped Geology	British Geological Survey (BGS) mapping indicates that the site is underlain by glacial till over Middle Coal Measures. The likely thickness of deposits is not stated.
Hydrogeology	The Coal Measures are regarded as a secondary A aquifer by the Environment Agency.
Abstractions	Environment Agency website indicates that there are no public (i.e. EA licensed) potable water abstractions within a 1km radius of the site
Source Protection Zones (SPZs)	The Environment Agency website indicates that the site does not lie within a SPZ.
Surface Waters	A pond is located approximately 300m south east of the site. Streams are located approximately 300m east and 500m south west of the site.
Historical Land Use	Environment Agency records indicate that the site operated as a landfill site between 1960 and 1965, the type of waste received is unspecified. Historic mapping contained in previous reports (Section 2.1) indicate that the southern end of the site may also comprise an infilled railway cutting. The site was subsequently developed with residential properties with gardens.
Ecologically designated sites ¹	Multi Agency Geographical Information for the Countyside (MAGIC) search identified "Biddulph's Pool and No Man's Bank" SSSI, located approximately 800m to the east (assessed to be too distant to be credibly affected by the study site). The SSSI is designated due to its Dwarf Shrub Heathland habitat
Archaeologically important sites	Pastscape website (English Heritage) indicates that there are no Archaeologically important sites within 250m of the site

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright (not to scale)

2.2 Previous Reports

Grontmij has previously completed a desktop assessment of the site, as presented as Appendix A. The assessment included the review of on-line data resources, in-house mapping and records provided by the council, and a site walkover.

The desk study report included an initial Conceptual Site Model (CSM) of potential pollutant linkages, developed in accordance with the model procedures^{2,} and statutory guidance³. The CSM is re-presented as Table 2.2 overleaf.

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

Table 2.2 - Potential Pollutant Linkages

No. Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1 Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material and associated with use of former mineral railway. Off-site analysis has identified potentially elevated metals, TPH and PAH concentrations	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Likely	Moderate	Grass and/or topsoil coverage likely to mitigate risk to an extent – risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to enable application of statistics, speciate TPH and PAH results, and refine conclusion on risk
2 Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
3 Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) within landfill material and associated with use of former mineral railway.	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
4 Property (Structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Secondary A aquifer (Middle Coal Measures) beneath site	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material and associated with use of former mineral railway.	Leaching of soil contaminants to aquifer	Medium	Unlikely	Low	Cable percussive BHs advanced at a site 60m to east of the study site generally encountered layers of competent clay and mudstone prior to encountering a sandstone layer. Thus, leaching to the minor aquifer is unlikely (need to confirm presence of clay and mudstone at site, i.e. has not been quarried out)
6	Streams and pond (closest are 300m to south and east; inferred hydraulic gradient is towards south- east)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material and associated with use of former mineral railway.	Leaching of soil contaminants to aquifer and subsequent off-site migration to surface waters	Medium	Unlikely	Low	Cable percussive BHs advanced at a site 60m to east of the study site generally encountered layers of competent clay and mudstone prior to encountering a sandstone layer (need to confirm has not been quarried out). Thus, leaching to the minor aquifer is unlikely. Aquifer also likely to be too deep to be in continuity with surface watercourses. Distance of study site from surface waters also mitigates risk, i.e. significant opportunity for attenuation of contaminants prior to reaching watercourse
7			Direct migration to surface waters within perched groundwater unit at c. 3m bgl	Medium	Unlikely	Low	Unlikely that the perched groundwater unit extends beyond the extent of landfilling and thus, the water would not be in continuity with the off-site watercourses

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix G

3 EXPLORATORY SITE INVESTIGATION

In order to further examine the potential pollutant linkages identified in Table 2.2, an exploratory site investigation was undertaken on the 8th and 13th December 2010. This section describes the site investigation undertaken and results obtained.

3.1 Scope and Methodology

The intrusive site investigation undertaken in December 2010 to March 2011 included the following:

- A consultation exercise with residents living at the site, including a mailshot and a public open evening;
- Obtaining plans of underground services and CAT-scanning proposed drilling locations, using a Radiodetection CAT1 and signal generator;
- Drilling four hand held window sample holes (WS01 WS04) to a maximum depth of 2.5m bgl, at the locations shown on Drawing 1. The window sample holes, which were drilled by Sherwood Drilling Services, were positioned in the rear gardens of housing located above the extent of infill, as indicated on historical mapping and by anecdotal evidence. Window Sampler positions were selected on the basis of achieving representative initial coverage of the site. The purpose of the window sample holes was to examine shallow and deeper soil conditions (including determination of presence / otherwise of clay or mudstone beneath the made ground, to restrict leaching), enable the retention of samples for laboratory testing, and facilitate the installation of 50mm diameter dedicated gas monitoring wells in each window sample;
- Advancing five hand dug pits (HP01 to HP05) to a maximum depth of 0.7m, to examine shallow soil conditions and augment the coverage of the site provided by the above window sampler holes;
- Logging soil arisings in accordance with BS5930:1999, and additionally noting any visual or olfactory evidence of potential contamination;
- Retaining representative soil samples of the strata encountered, which were selected on the basis of field observations of potential contamination and the aim of achieving good spatial and depth coverage of the site;
- Submitting retained samples to Alcontrol Geochem in cooled coolboxes and under full chain of custody documentation, and instructing the analysis of samples, and;
- Undertaking four ground gas monitoring rounds, using a Gas Data Ltd GFM435 gas analyser with internal flow pod.

Based upon the findings of the intrusive investigation, discussed in this report section, the following additional fieldwork was undertaken:

- Obtaining six additional shallow soil samples on 18th May 2011, by means of hand pitting, from #6 Newlands Court, for laboratory analysis for asbestos;
- Collection of four representative made ground samples for leachability testing, by means of hand pitting, on 31st May 2011;
- Collection of four tap water samples on 31st May 2011, for screening against UK drinking water standards, and;
- Obtaining five additional shallow soil samples on 22nd November 2011, by means of hand pitting, from #6 Newlands Court, for laboratory analysis for asbestos.

6

The results of the entire fieldwork programme outlined above are discussed in the following sections.

3.2 Results and Discussion

3.2.1 Ground Conditions

The ground conditions encountered at the site comprised Made Ground only, as discussed in further detail below.

Made Ground

It was difficult to penetrate through the Made Ground with hand-held drilling equipment, resulting in the refusal of all four hand held window sampler holes at a maximum depth of 2.5m bgl (in WS02). All five hand dug pits were successfully advanced to 0.7m bgl.

The Made Ground was predominantly granular in nature, consisting of gravelly sand with occasional clay layers or pockets. The gravel content of the Made Ground was variable, including fine to coarse ash, glass, quartz, brick, ceramics, fabric, plastic, shale, concrete and metal fragments; whole bricks were also encountered in WS03. Ash was encountered in WS02 (2.2m to 2.5m bgl), WS03 (0.25m to 1.55m bgl) and WS04 (1.5m to 2.0m bgl). A 5cm-thick layer of concrete was encountered in WS01 and WS02 at 0.5m bgl.

Natural Deposits

Superficial deposits, residual soils or solid geology were not encountered during the investigation due to the shallow refusals in made ground strata.

Groundwater

Groundwater was not encountered during the advancement of the exploratory holes.

The above findings are discussed further in Section 4 (updated Conceptual Site Model). Exploratory hole logs, providing full details of the strata encountered, are included within Appendix C.

3.2.2 Adequacy of Investigation Depth and Spatial Extent

Superficial or residual deposits or solid geology was not encountered during this initial investigation, meaning that any contamination at greater depth within the made ground has not been intersected and the presence of low-permeability strata beneath the made ground has not been confirmed. Nonetheless, the investigation has enabled the sampling of shallow soils, most likely to pose a risk to human health, and an initial assessment of gas conditions within shallow soils at the site.

Therefore, although increased depth and spatial coverage of the site would be desirable in order to intersect the full depth of infill material, the investigation represents a good initial assessment of ground conditions at the site. The risk of contaminants leaching to controlled waters is discussed further in Section 3.2.6.

3.2.3 Field Evidence of Contamination

The drilling arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1:

Exploratory Hole	Depth from	Depth to	Visual and Olfactory Evidence of Contamination ¹		
WS01	0.15	0.5	Steel, glass, plastic		
WS01	0.7	1.15	Ash, plus fibrous material noted at 0.8m		
WS02	2.2	2.5	Ash, plus possible hydrocarbon staining at 2.4m		
WS03	0.25	1.55	Ash		
WS04	1.5	2.0	Ash		
HP01	-	-	(no evidence noted)		
HP02	0.5	0.7	Fragments of black stained timber, broken glass and		
			concrete.		
HP03	0.3	0.3	Plastic fragments at 0.30m bgl		
HP04	0.0	0.7	Fragments of metal pipe, cable and fabric.		
HP05	-	-	(no evidence noted)		

 Table 3.1 - Field Evidence of Potential Contamination

¹ Visual and olfactory evidence noted within the soil matrix

3.2.4 Soil Analysis Results and Discussion

Twelve samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to ALcontrol Geochem of Deeside. ALcontrol holds UKAS and/or MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve good spatial coverage of the site.

Table 3.2 presents a summary of the analysis results. The results have been compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used, in order of preference, comprise:

- 2009 Soil Guideline Values (SGVs) published by the Environment Agency / DEFRA, generated using the latest Contaminated Land Exposure Assessment (CLEA) model, version 1.06
- Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) or the Environmental Industries Commission (EIC), or calculated by Grontmij, all using CLEA
- SGVs published by the Environment Agency / DEFRA between 2002 and 2007, calculated using prior versions of the CLEA model (applies to lead only).

Full analytical testing results are included as Appendix D.

Determinand	No. of Samples Tested	Minimum Value	Maximum Value	SGV / GAC ¹	Locations where SGV or GAC are exceeded
Arsenic	12	5.6	15	32	-
Barium	12	68	450	1300	-
Bervllium	12	0.3	1.9	51	-
Boron (water-soluble)	12	<1	1.1	291	-
Cadmium	12	< 0.02	3.5	10	-
Chromium, hexavalent	12	<0.6	6.5	4.3	-
Chromium, total	12	9.4	39	3,000	-
Copper	12	15	200	2,330	-
Lead	12	24	400	450 ²	-
Mercury	12	<0.14	0.6	170 ³	
Nickel	12	6.2	40	130	-
Selenium	12	<1	<1	350	-
Vanadium	12	13	40	75	-
Zinc	12	76	1100	3,750	-
Asbestos screen	10	Asbestos-	containing n	naterial detected	HP03 0.7m bgl
			in one san	nple	
Benzene	12	<0.01	0.02	0.16	-
Toluene	12	<0.01	0.02	270	-
Ethyl Benzene	12	<0.01	0.02	150	-
Xylene	12	<0.01	<0.01	98 ⁴	-
TPH – CWG		None of the	banded aliphatic	aromatic TPH-CWG	
Hydrocarbons	7	screening crit	eria were exce	eded. Full speciated	-
		results are pre	esented in Appe	ndix D	
Polyaromatic	6	Several spe	eciated PAH scre	eening criteria were	-
Hydrocarbons (PAHs)		exceeded. F	ull speciated res	suits are presented in	
Bonz(a)anthracono	6	-0.01		47	WS04 1 2-1 5m bal
Beliz(a)alitiliacelle	6	<0.01	18	4.7	WS04 1.2-1.5m bgl HP02
Benzo(a)pyrene	0	<0.02	10	0.94	0.7m bal WS02 2 2-2 5m bal
Benzo(b)fluoranthene	6	<0.02	16	6.5	WS04 1.2-1.5m bal
Chrysene	6	<0.01	20	8	WS04 1.2-1.5m bgl
Dibenz(ah)anthracene	6	< 0.02	2.7	0.86	WS04 1.2-1.5m bgl
Indeno(123-cd)pyrene	6	< 0.02	7.9	3.9	WS04 1.2-1.5m bal
Volatile Organic Compounds	3	All laborator	v results below li	mit of detection with	-
and Semi-Volatile Organic	J. J	exception of below:			
Compounds (excl.above)					
Dichloromethane	3	<0.01	0.03	0.98	-
Tetrachloroethene	3	<0.005	0.02	2.1	-
Styrene	3	<0.01	0.02	19	-
bis(2-Ethylhexyl) phthalate	3	<0.1	0.5	610	-
n-Dibutyl phthalate	3	<0.1	0.2	31	-

Table 3.2 - Soil /	Analysis	Results	Summary
--------------------	----------	---------	---------

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding). Bold values indicate locations where observed concentrations exceed the screening value.

¹ Fifteen samples were tested for Soil Organic Matter (%SOM) content. A minimum value of <0.35% and a maximum of 6.14% were recorded, with a mean of 4.28% and a median of 4.24%. It is therefore justified, as a conservative measure, to use the SGVs and GAC generated using a 2.5% SOM value in CLEA in an initial screen, where the SGVs/GAC are SOM-dependant (mercury, phenol, PAHs, TPH-CWG and abovementioned VOCs and SVOCs). All other SGVs / GAC are not SOM-dependant

² SGV quoted was generated by DEFRA using earlier version of CLEA. An Environment Agency announcement on how lead will be addressed, including agreement of an acceptable "safe" level, and whether to consider an "uptake" model such as CLEA or alternative "intake" model, is awaited.

3 Testing results presented represent total mercury. SGV presented is for inorganic mercury, whereas SGV presented is for inorganic mercury. Although the most stringent of the SGVs is for elemental mercury, the Environment Agency SGV for mercury in soil science report SC050021/Mercury SGV indicate that in cases where preliminary risk assessment has not identified a mercury issue at the site or conditions such as peaty or flooded soils then 'For general surface contamination and to simplify the assessment, the SGVs for inorganic mercury can normally be compared with chemical analysis for total mercury content because the equilibrium concentrations of elemental and methyl mercury compounds are likely to be very low'. ⁴ SGV for para-xylene quoted (most stringent of the three isomers)

The concentrations of six PAH compounds within the sample taken from WS04, 1.2-1.5m exceeded the adopted Tier 1 screening values. However, this sample was taken at 1.2 to 1.5m bgl, at which dermal contact with soils and subsequent ingestion (directly or via contact with home-grown vegetables) is unlikely. The only likely means of human exposure to soil at >1.2m depth is via the volatilisation to indoor air pathway, but the identified PAHs are of low volatility - the LQM 2009 report⁴ presenting GAC for PAHs indicates, in Table 10-57, that the CLEA model predicts a <0.1% contribution to total exposure via the indoor air pathway for each of the six PAHs of concern. Therefore, in regard to human health, the PAH concentrations recorded in sample WS04, 1.2-1.5m bgl are not of concern.

The concentration of benzo(a)pyrene in two further samples was also greater than the adopted Tier 1 screening value. Similarly to above, one of these samples was taken at >1m depth, and is not considered to present a risk to human health. The remaining sample was taken at 0.7m bgl in HP02, where a benzo(a)pyrene concentration of 1.6mg/kg was recorded. While this concentration exceeds the adopted Tier 1 screening value of 0.94mg/kg, and thus is in excess of the GAC, which essentially represents a concentration at which risk to human health is negligible, it is unlikely to present an unacceptable risk to human health when the Margin of Exposure (MoE) is considered.

The MoE approach essentially involves:

- Re-examination of the "point of departure" (PoD) contaminant concentration, above which unacceptable human health risk is predicted to occur, used in the generation of GAC. The PoD used to generate published GAC is normally a conservative interpretation of the "fit" of dose-response data, to be definitively protective of human health. From conversations with the Institute of Occupational Medicine (IOM), the interpretation of "fit" can be highly subjective, and a less conservative interpretation resulting in a greater screening value would be equally justifiable.
- Comparison of the "new" PoD concentration with predicted exposure at the study site.

Allied to the above, it is also possible for the risk assessor to re-consider what level of human health risk is considered acceptable (or more accurately, at what soil concentration relative to typical background concentrations in UK soils does the human health risk become unacceptable). The UK approach to unacceptable risk has typically been to consider that a risk greater than one excess death in 100,000 to be unacceptable, while there is evidence to support a slightly lower threshold of one in 10,000 as acceptable (see Section 5.5 of IOM report referenced below, referring to Committee on Carcinogenity research).

In the case of benzo(a)pyrene, we are aware of a previous study undertaken by the IOM⁵ for a local authority, where a MoE-based screening value of between 1.7mg/kg and 3.6mg/kg for residential housing with gardens has been proposed as being unlikely to pose a Significant Possibility Of Significant Harm (SPOSH) to human health, on the basis of re-examination of toxicological evidence and the adoption of a "one excess death in 10,000" risk threshold. The maximum concentration of B(a)P recorded at the study site, at a depth of <1m where human exposure is credible, is 1.6mg/kg, lower than the proposed concentration range. On this basis, we consider that the B(a)P concentration recorded at the site is unlikely to pose a SPOSH to human health.

⁵ Toxicological Review of the Risks of Exposure to Soil Containing Polycyclic Aromatic Hydrocarbons. Institute of Occupational Medicine, March 2009

⁴ The LQM / CIEH Generic Acceptance Criteria for Human Health Risk Assessment (2nd Edn). Land Quality Press, 2009

Note: as the IOM "unlikely SPOSH" value of 1.7mg/kg to 3.6mg/kg is very similar to typical UK background soil concentrations of B(a)P cited in the above report, the IOM have further proposed that the "possibility of significant harm" to human health is only likely to become possibly "significant" (i.e. SPOSH) when B(a)P concentrations of around ten times the above concentrations (i.e. at least 17mg/kg) are recorded. This statement further reduces the perception of human health risk at the study site.

The recorded PAH concentrations in the two samples taken at >1m depth, while not considered to pose a risk to human health, are sufficiently high to potentially pose a leaching risk to controlled waters. Coupled with the fact that the exploratory holes all terminated in made ground without proving the presence of low-permeability soils, the observed concentrations suggest that leachability testing should be undertaken to confirm the risk to controlled waters (see Section 3.2.6).

The above opinions are based on a publically available qualitative assessment of recent work undertaken by others around the concentrations of polyaromatic hydrocarbons that may constitute SPOSH. It is not a detailed quantitative risk assessment (dQRA) for the Fiveways site. A dQRA to specifically consider the situation is beyond the scope of work agreed at this stage, but could be completed for Cannock DC if requested, to substantiate the views above and provide a more detailed review of SPOSH for the levels of polyaromatic hydrocarbons at the Fiveways site.

3.2.5 Asbestos Containing Materials within Soils

During the investigations at the site, asbestos containing material (ACM) was identified in two locations:

- During the original December 2010 investigation, where ACM was identified in HP3, 0.7m (rear garden of #6 Newlands Court).
- During the collection of a sample intended for leachate analysis from #11 Newlands Court on 31st May 2011. The sample was reported to be "typical of asbestos cement", and that it contained both crysotile and crocidolite asbestos fibres.

To examine whether the above two results were "chance positive" results of positioning the exploratory holes in particular locations in the gardens, or whether there was a potentially more significant presence of asbestos within the affected gardens, follow up sampling work was undertaken on 16th May 2011 (#6 Newlands Drive) and 22nd November 2011 (#11 Newlands Drive). Up to six additional soil samples were retained from each garden, by means of hand pitting. Disposable PPE suitable for work where asbestos could be encountered was worn by sampling personnel. The soil arisings obtained were placed on plastic sheeting and inspected for obvious visual evidence of possible ACM. Given the lack of obvious field evidence encountered, soil samples were taken from a variety of depths in the top 0.7m of the soil profile, and submitted for laboratory analysis.

The samples taken on 16/5/11 were submitted to Jones Environmental Laboratory (Jones) and the samples taken on 22/11/11 to Scientific Analysis Laboratories Ltd (SAL), both on the basis of the turnaround each laboratory was able to offer at the time. Both laboratories undertook an analysis in accordance with the UKAS accreditation in operation at the laboratory at the time. However the earlier analysis was undertaken prior to the laboratory's implementation of a more recent analytical method, meaning that the samples submitted to Jones have been screened for ACM only, while the samples submitted to SAL were screened for both ACM and free fibres in the soil matrix.

The two figures below indicate the locations from which soil samples were taken:

#6 Newlands Drive Results

Five hand pits (DD01 to DD05) were excavated within borders and flower beds to a maximum depth of 0.5m. Ground conditions typically comprised an indeterminate topsoil/made ground mix, comprising brown sand with gravel of quartz, brick, ash and breeze block, with some shallower rootlets. The material was notably compact and was difficult to penetrate into. A piece of possible asbestos-containing tile was noted in DD01 at 0.3m bgl.

Six samples of made ground were retained from a variety of depths for laboratory testing, including a sample of the possible asbestos-containing tile in DD01two samples retained from differing depths in pit DD1. The laboratory confirmed that none of the six samples contained asbestos-containing material.

#11 Newlands Drive Results

Five hand pits (G1 to G5) were excavated within borders and flower beds to a maximum depth of 0.55m. Ground conditions typically comprised brown sandy topsoil, to depths of between 0.05m and 0.25m bgl, over Made Ground, comprising brown slightly clayey gravelly sand. The gravel content of the made ground generally included brick and concrete, with glass, clinker and pieces of metal also noted. Black semi brittle material and gravel of broken tile was noted within sample G1 from 0.15 to 0.45m bgl – this material was suspected to be potentially asbestos-containing.

Five samples of made ground were retained from a variety of depths for laboratory testing. The samples included soil from G1 at 0.3m to 0.4m bgl, to include the material noted to be potentially asbestos-containing in the field.

The laboratory confirmed that the sample from G1 contained a piece of asbestos-containing cement and some asbestos-containing bitumen-backed roofing felt. "Free" asbestos fibres were not detected within the soil element of the sample. The remaining four samples did not contain any asbestos fibres or asbestos containing materials.

Assessment

At #6 Newlands Court, asbestos was identified in the form of asbestos-containing cement in the original HP3, 0.7m bgl sample; asbestos containing materials were not identified in any of the six samples submitted for testing during the follow-up soil sampling exercise.

At #11 Newlands Court, asbestos was found in two samples (the 31st May sample intended for leachate analysis, and in sample G1) in the form of pieces of asbestos-containing cement and a section of asbestos-containing bitumen-backed roofing felt. Asbestos fibres were not detected in the soil at #11 (at the limit of laboratory detection). It is unlikely that asbestos fibres will be liberated from the soil into the air, and potentially inhaled during gardening activities.

The nature of the asbestos-containing materials identified is such that asbestos fibres are likely to be bonded within the cement or roofing felt matrix, and are therefore less likely to be present in the soil itself, as the testing at #11 indicates. While the asbestos containing materials may slowly degrade in the soil, the testing results at #11 (i.e. lack of fibres in soil matrix) provide some evidence that the risk posed to human health at both properties is not high. There are also further reasons why the use of either garden by residents is unlikely to present an unacceptable health risk:

- Digging activities in a garden, and thus potential exposure to ACM in the soil, will be relatively infrequent. Excavation beyond the topsoil is unlikely to occur very often – typically if planting a larger shrub or tree. Thus, while exposure to asbestos in the soil cannot be ruled out, the likelihood of it occurring is comparably low, compared to other activities, such as industrial exposure to asbestos containing materials in poor condition.
- A gardener digging a hole may not encounter asbestos at all –four of the six samples tested at #11 did not contain any asbestos (at the limit of the laboratory's ability to find it).
- Asbestos fibres within soil only pose a potential health risk if liberated into the air when disturbed. It is possible that if asbestos is encountered in the garden, it may not be liberated into the air, as liberation is most likely in dry and windy conditions and in soils with low clay context (as clay tends to retain fibres). While the made ground soil in the garden of #11 has only a low clay content, UK subsoils in general tend to contain a degree of moisture, which will restrict the liberation of fibres.
- The topsoil cover in planted borders and the grass / paving cover elsewhere in the gardens is likely to prevent young children playing in the garden coming into contact with any asbestos containing materials in the made ground.
- Asbestos cement is generally regarded as being a lower risk "state" of asbestos. For example, Health and Safety Executive guidance document HSG247, paragraph 2.6, indicates that the removal of asbestos cement materials does not require a licence, while most other work with asbestos is considered to be more dangerous, and hence licensable.

Conclusion

The Council's obligation within the Environmental Protection Act 1990, Part 2A is to determine whether there is a Significant Possibility Of Significant Harm (SPOSH), in this case to the health of residents, by virtue of contaminants on, in or under the land. Considering the factors outlined above, it is unlikely that a SPOSH to health is posed by the asbestos containing material identified in either garden.

3.2.6 Leachability Assessment

As the base of the made ground was not proven in the initial investigation (and hence, low permeability strata which may restrict leaching were not identified), and moderate PAH concentrations were recorded in the made ground, further soil samples were retained for leachability testing, in order to consider the potential risk to controlled waters at the site (secondary aquifer, and surface watercourse 300m from site).

Three soil samples were collected on 31st May 2011 and were submitted for soil leachate analysis (BS12457 2:1 single stage test, which supersedes the older NRA leachate test) at Alcontrol. The samples were taken from the most likely gardens to contain elevated contaminant concentrations, based upon earlier field observations and testing results, plus locations providing good site coverage. Sampling locations comprised numbers 5 and 9 Newlands Court and 1 Newlands Lane.

Table 3.3 presents a summary of the leachate analysis results. Where threshold values have been published, the testing results have been compared to the following:

- For the secondary aquifer, groundwater threshold values protective of general groundwater quality (not in a drinking water protected area) and of groundwater migrating to a surface watercourse, as quoted in the River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 ("WFD") and, where no WFD standard exists, UK Drinking Water Standards listed in the Water Supply (Water Quality) Regulations 2000 (as amended). It is noted that such screening values are potentially very conservative, assuming there are no private water abstractions in proximity to the site (there are no public groundwater abstractions for potable use within a 1km radius)
- For the closest surface water feature, 300m downgradient, the most stringent of Environmental Quality Standards published in the from The Surface Waters (Dangerous Substances)(Classification) Regulations 1989 and amendments (from 1992, 1997 and 1998) and standards protective of inland freshwaters in the above WFD.

Full analytical testing results are included in Appendix D.

Contaminant	NO OT	Minimum	Maximum	Adopted	Adopted			
	Samples	Value	Value	Groundwater	Surface Water			
	Tested			Screening	Screening			
				Value	Value			
Arsenic	3	2.2	22	7.5	50			
Boron	3	25	82	750	2000			
Cadmium	3	0.11	0.38	3.75	0.08 to 0.25**			
Chromium	3	3.3	12	50	3.4 (VI) / 4.7 (III)			
Copper	3	12	40	1500	1 to 28			
Lead	3	3.3	31	10	7.2			
Nickel	3	3.3	5.8	15	20			
Zinc	3	5.9	29	3750	8 to 250**			
Mercury	3	0.02	0.04	0.75	0.05			
Vanadium	3	3.5	19	n/s	20			
Benzene	3	<1.3	<1.3	0.75	10			
Toluene	3	<1.4	<1.4	51	50			
Xylenes	3	<4.2	<4.2	30	30			
Benzo(a)pyrene	3	<0.009	0.00978	0.01	0.05			
Naphthalene	3	<0.10	0.11	2.4	2.4			
Sum of								
Benzo(b)fluoranthene,								
benzo(k)fluoranthene,	2	-0.09	-0.09	0.10	n/n			
benzo(g,h,i)perylene,	3	<0.08	<0.06	0.10	1/5			
indeno(1,2,3-								
cd)pyrene*								
Sum								
Benzo(b)fluoranthene,	3	< 0.05	<0.05	n/s	0.03			
benzo(k)fluoranthene								
Sum								
benzo(g,h,i)perylene,	2	<0.02	-0.03	n/c	0.002			
indeno(1,2,3-	3	<0.03	<0.03	11/5	0.002			
cd)pyrene*								

 Table 3.3 - Soil Leachate Analysis Results Summary

Values are presented as ug/I and are rounded as applicable to the screening values used.

Bold values indicate locations where observed concentrations exceed the quoted screening value.

*There are no screening values in the WSWQ Regulations 2000 (as amended) for the remaining commonly analysed 16 PAH compounds

**Dependant on hardness of receiving surface watercourse

The maximum concentrations of arsenic, lead and benzene recorded exceed the adopted groundwater screening values – in the case of benzene, only because the laboratory method detection limit was greater than the adopted screening value. Coal measures strata can contain pyrite and arsenopyrites, which may account for the recorded arsenic and lead concentrations if any mixing of solid geology and made ground has occurred. In all three cases, given the lower sensitivity of the site (assuming there are no nearby private water abstractions), the recorded contaminant concentrations in leachate are considered to be acceptable; furthermore, we consider that it is unlikely that the Environment Agency would pursue any action at this site.

The maximum concentrations of four metals and two "sum of" PAH concentrations exceed the adopted surface waters screening values – in the case of the PAHs, only because the laboratory method detection limit was greater than the adopted screening value. Given that the recorded contaminant concentrations are not especially high, the 300m distance to the nearest surface water feature will allow some dilution, and the surface water features identified may not be in hydraulic continuity with groundwater in the secondary aquifer, it is again considered that

the recorded concentrations in leachate are acceptable, and that it is unlikely that the Environment Agency would pursue any action at this site.

3.2.7 Ground Gas Assessment

Four rounds of ground gas monitoring were undertaken, using a Gas Data Instrument GFM435 with internal flow pod. A summary of the maximum gas monitoring results recorded at each well is presented in Table 3.4, with full monitoring data in Appendix E:

Well	Maxim	um Val	alues Recorded During Monitoring Events:			ing	Gas ScreeningSituation "A"Value1 (I/hr)Characteristic			
	Peak CH₄ (%)	Stead CO₂ (1	dy %)	Steady CO (ppm)	Steady H₂S (ppm)	Flow (I/hr)		Situation ¹		
WS1	0.1	0.7		0	-10	0	<0.01	1		
WS2	0.1	1.6		0	-10	0.6	0.01	1		
WS3	0.1	0.8		0	-10	0.1	<0.01	1		
WS4	0.1	0.2		-1	-10	0.7	<0.01	1		
A	tmospheric	;	28/01/2011				1008mb			
Pressure:			11/02/2011				994mb			
			25/02/2011				1006mb			
				11/03/2	011		997mb			

Table 3 4 -	Summary	of	Gas	Monitoring	Data
1 abic 3.7 -	Summary	01	Jas	MOINTOINING	ναια

Readings obtained within a 3 minute measurement period, obtained with a GFM435 gas analyser. CO - carbon monoxide;

mbgl – metres below ground level l/hr - litres per hour. H_2S – hydrogen sulphide; mb – millibars

¹CIRIA Characteristic Situation based on methodology presented in CIRIA Report C665, Assessing Risks Posed by Hazardous Gases to Buildings. Where the flow rate recorded in the field is zero or negative, a flow of 0.01 l/hr is assumed

The summary data presented above indicates that, in regard to methane and carbon dioxide, CIRIA characteristic situation 1 should be applied to all of the wells. This is the lowest risk category (of six) presented in CIRIA report 665, and indicates that no special gas precautions would be required in the construction of new buildings. Additionally, zero hydrogen sulphide and carbon monoxide was recorded.

Note that natural strata were not encountered in the advancement of the 4 no. window sampler holes, meaning the total depth of fill has not been investigated and the gas monitoring undertaken may not be completely representative of the whole body of fill. However, the window sampler holes gave penetrated to a depth likely to be representative of gas conditions at / below the depth of the floor slabs. Additionally, the infilling of the site occurred approximately 50 years ago, potentially allowing significant degradation of materials to occur and suggesting that the current gassing potential of the site is not high. Therefore, ground gases are unlikely to pose a risk to the housing at the site.

3.2.8 Safety of Water Supply Pipes

As a preliminary assessment, soil quality data was screened against WRAS guidelines⁶ (current at the time of the initial investigation, but now superseded) and UKWIR parameters⁷. This preliminary assessment, included as Appendix F, indicated that the concentration of contaminants in soil could potentially permeate into water supply pipes. Note that the WRAS and UKWIR

^{10/}WM/03/21 Guidance for the Selection of Water Supply Pipes to be Use in Brownfield Sites. UK Water Industry Research, 2010 (as re-issued)

 CH_4 – methane; O_2 – oxygen; CO₂ carbon dioxide;

⁶ 9-04-03 The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land. Water Regulations Advisory Scheme, October 2002.

guidelines are conservative and are normally used for the selection of materials when laying new pipes.

To confirm whether the concentrations of contaminants in the shallow Made Ground pose a risk to drinking water quality at the site, samples of drinking water were collected from taps from four properties (5, 9 and 11 Newlands Court and 1 Newlands Lane) on 31st May 2011. The samples were taken from properties where the highest concentrations of contaminants were encountered in soil, i.e. at locations where the greatest risk to drinking water quality may be posed.

At the instruction of Cannock Chase Council, samples were obtained after allowing the tap to run for one minute. The samples were submitted to Alcontrol Laboratories for chemical analysis for metals and PAHs as commonly occurring contaminants and parameters for which drinking water standards can be applied. The results of the analyses are summarised in Table 3.5, along with a comparison to UK Drinking Water Standards (UKDWS) taken from the Water Supply (Water Quality) Regulations 2000 (as amended). Full testing results are included in Appendix D:

Contaminant	No of Samples Tested	Minimum Value µg/l	Maximum Value µg/l	UKDWS µg/l
Arsenic	4	1.9	2.2	10
Boron	4	81	110	1000
Cadmium	4	0.10	0.17	5.0
Chromium	4	8.2	17	50
Copper	4	49	270	2000
Lead	4	0.05	0.27	10
Nickel	4	0.56	1.8	20
Zinc	4	6.3	95	5000
Mercury	4	<0.01	<0.01	1.0
Sum of Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene*	4	0.08	0.08	0.10
Benzo(a)pyrene*	4	<0.009	< 0.009	0.01

Table 3.5- Tap Water Analysis Results

*There are no screening values in the WSWQ Regulations 2010 for the remaining commonly analysed 16 PAH compounds

**Limit of detection of analytical method

The maximum recorded metal and PAH concentrations within tap water did not exceed the corresponding UK Drinking Water Standards.

18

4 UPDATED CONCEPTUAL SITE MODEL

The CSM presented in the earlier Grontmij desk study report (Appendix A) has been updated, using the findings of the site investigation, as presented in the following sections.

4.1 Contaminants

The "contaminants" term in the conceptual model has been updated using the findings of the intrusive investigation. The following contaminants have been identified:

- Asbestos (identified as asbestos-containing material in the gardens of #6 and #11 Newlands Court)
- PAHs six compounds were identified in WS04, 1.2-1.5m bgl at concentrations in excess of Tier 1 screening values, while benzo(a)pyrene was additionally identified in HP02 0.7m bgl and WS02 2.2-2.5m bgl at concentrations above the Tier 1 screening value.
- Leachable concentrations of arsenic, lead and benzene were recorded at concentrations above the Tier 1 screening values adopted as being protective of groundwater
- Leachable concentrations of four metals and two "summed" PAH concentrations were recorded at concentrations above the Tier 1 screening values adopted as being protective of off-site surface waters

Low concentrations of ground gases were recorded, along with low gas flow rates.

Low concentrations of contaminants were found in the samples of tap water – all concentrations were less than the adopted drinking water standards.

4.2 Receptors

Table 4.1 indicates the receptors considered to be present at the site. The critical human receptor is the on-site resident; while off-site residents and commercial workers are also present, the concentrations of contaminants and, in the case of commercial workers, their exposure frequency and duration, is likely to be less than on-site residents, and are not considered further.

See Appendix A (desk study report) for a detailed discussion of the receptors included in the conceptual model.

4.3 Pathways

Pathways (pollutant linkages) are also examined as part of Table 4.1, overleaf.

Table 4.1 - Pollutant Linkages, Post-S	Site Investigation
--	--------------------

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	PAHs identified in WS04, 1.2-1.5m bgl at typically 5 x GAC (benzo (a)pyrene at 18 x GAC). Benzo(a)pyrene in WS02, 2.2-2.5m at less than 2 x GAC	Inhalation of vapours Dermal contact, direct or indirect ingestion, inhalation of tracked back dust	Medium	Unlikely	Low	The PAHs identified are of very low volatility (CLEA model indicates volatilisation makes <3% contribution to total exposure) and are unlikely to pose a significant volatilisation risk. Dermal, dust or ingestion exposure is not credible due to depth of contamination identified.
2	Residents of properties above infilled ground (including children playing in gardens)	Benzo(a)pyrene identified in HP02, 0.7m bgl at concentration of 1.6mg/kg (less than double the GAC)	Dermal contact and direct ingestion of soil, inhalation of dust/vapours, consumption of home-grown vegetables	Minor	Likely	Low	Concentration of benzo(a)pyrene identified is not considered to pose significant health risk on basis of similar studies at other sites (see discussion in Section 3.2.4)
3	Residents of properties above infilled ground (including children playing in gardens)	Asbestos containing material (not not fibres) identified in one sample (of seven) at #6 Newlands Court and two samples (of six) at #11 Newlands Court	Inhalation of fibres, potentially liberated by gardening activities	Medium (possibly severe, depends whether health effect viewed as chronic or acute)	Low	Low/moderate	Fibres present within bonded material, and not widespread in either garden; may not ever be liberated into air. Risk is not considered to be high (i.e. SPOSH). See discussion in Section 3.2.5.

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
4	Residents of properties above infilled ground	Decomposition gases including methane and carbon dioxide, generated by infill material (low gas concentrations and flow rates recorded)	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Low	Low/moderate	Exploratory holes did not penetrate to base of made ground; areas of material with greater gas generation potential may exist. However, exploratory holes are likely to be representative of gas concentrations at / below depth of floor slabs. Infilling dates from nearly 50 years ago, suggesting gas generation potential is not high.
5	Subsurface services serving the buildings (principally water supply)	Although contaminant concentrations in soil at likely pipe depth (up to 1.2m bgl) exceed WRAS/UKWIR thresholds, tap samples indicate dissolved concentrations below drinking water standard.	Chemical attack and tainting of water supply could occur at high contaminant concentrations	Medium	Unlikely	Low	Testing suggests that contaminants are not causing deterioration of pipework or tainting the supply.
6	Property (Structures) – sub-surface concrete	Sulphate (preliminary testing for sulphate only suggests that AC-2s concrete should be used for materials in contact with made ground)	Contact between contaminants and concrete	Mild	Low / likely	Low to moderate	Assuming that appropriate concrete was used to construct the housing at the site (as AC-2s is not the most basic concrete specification), it is unlikely that sulphate concentrations will cause significant damage to building foundations. Further assessment would be significantly intrusive, no residents complained of structural issues when the investigation was undertaken and no issues were noted. Thus, no further

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
7	Secondary A aquifer (Middle Coal Measures) beneath site	Leachable concentrations of arsenic, lead and benzene were recorded at concentrations above the Tier 1 screening values adopted as being protective of groundwater	Leaching of soil contaminants to aquifer	Mild	Low	Low	Benzene "failure" is only because lab detection limit exceeds Tier 1 value (i.e. significantly elevated concentration has not been recorded). Lower sensitivity of site and aquifer (secondary aquifer with no public potable abstractions within 1km) dictates concentrations are unlikely to be of concern to Environment Agency.
8	Streams and pond (closest are 300m to south and east; inferred hydraulic gradient is towards south- east)	Leachable concentrations of four metals and two "summed" PAH concentrations were recorded at concentrations above the Tier 1 screening values adopted as being protective of off-site surface waters	Leaching of soil contaminants to aquifer and subsequent off-site migration to surface waters	Medium	Low	Low / moderate	PAH "failures" are only because lab detection limit exceeds Tier 1 value (i.e. significantly elevated concentrations not recorded). Metals concentrations also judged not to be very high. Distance of study site from surface waters also mitigates risk, i.e. significant opportunity for attenuation of organics and dilution of all contaminants prior to reaching watercourses. Streams and ponds may not be in hydraulic continuity with groundwater beneath the site in the secondary aquifer (and no perched groundwater identified at site). Unlikely to be of concern to Environment Agency.

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix G for further details

5 SUMMARY AND CONCLUSION

- Part 2A of the Environmental Protection Act 1990 requires local authorities to inspect land which, due to an industrial legacy, may meet the definition of Contaminated Land due to possible health risks or potential environmental pollution.
- A review of historical mapping and EA records provided to Cannock District Council, plus anecdotal evidence obtained during public consultation, identified that a parcel of land west of Fiveways, Cannock Road, Heath Hayes, Staffordshire was infilled with unknown waste material. The material potentially posed a risk to the health of residents now living at the site, and a risk to the quality of controlled waters.
- An exploratory investigation identified ground conditions comprising a maximum of 2.5m of Made Ground, which included fine to coarse ash, glass, brick and metal fragments. It was difficult to penetrate into the Made Ground, and all exploratory holes ceased in the infill. The composition of underlying natural deposits was not proven.
- Moderately elevated polyaromatic hydrocarbon (PAH) concentrations were found in the Made Ground, but generally at depths where humans are unlikely to encounter the soil. Shallower PAH concentrations were much lower, and assessed as being unlikely to pose a health risk.
- Asbestos containing concrete and roofing felt was found in two gardens. Further sampling indicated that asbestos containing materials (ACM) were not widespread. While the presence of ACM is noted, it is unlikely to pose a Significant Possibility of Significant Harm (SPOSH) to human health, which is the assessment that the local authority must consider under the Part 2A legislation.
- Leaching tests identified moderate concentrations of leachable metals and hydrocarbons, but the lower sensitivity of the groundwater, from which there are no nearby potable abstractions, and the distance to the nearest surface watercourse, some 300m away, indicate that the leachable concentrations identified are tolerable. The Council should confirm that there are no private water abstractions on record in vicinity of the site.
- Gas monitoring within four wells has identified that the concentrations and flow rates of hazardous gases beneath the site are unlikely to pose a human health or explosion risk to the housing at the site.
- The concentrations of contaminants within drinking water in four samples tested are compliant with UK drinking water standards.

On the basis of the preceding assessment and the limitations listed in Appendix B, we do not consider that the site should be declared contaminated land under Part 2A of the Environmental Protection Act 1990. The council should confirm that there are no private water abstractions within 500m of the site boundary in order to confirm this assessment (the presence of any abstractions would not necessarily mean the site met the definition of contaminated land, but may mean that further assessment is needed). Further DQRA work to confirm the assessment could be undertaken if further assurance on human health risk is required by the Council.

DRAWINGS

				N	DTES					
	KE	<i>(</i> .								
		<u>.</u>	INFEI	RRED E	XTEN		= INFIL	LING.	j	
}										
5	ŴS1									
5		HP1	HAN	D PIT						
\searrow										
	-									
(REV		AME	NDMENTS		ORIG	CHK'D	APR'D	DATE	
		K (Gro	ntmij						
\backslash		3rd Flo	or, Rado	liffe House	Ð					
7		Lode L Solibul	ane I	L	Tel Fai	:+44 x:+44	(0)121	711 66	00 49	
		B91 2A	A		ww	w gro	ntmij.co	uk	+0 	
	CLIEN	VT	biin . Eainburg	n . Glasgow . Lee	as . London .	Peterbor	ougn . Reading	g . Soinuii .	wrexnam	
H/				Ľ	Cal	nna nas Cou	ock e inc i l			
					, ,					
	PRO	JECT								
				FIVF\	NAY	'S				
					.,	-				
		-								
L	11120	-								
		E	XPL	ORAT	OR	ΥH	OLE			
			LO	CATIO	ON F	PLA	N			
	STAT	us F	OR	INFO	DRM	1A ⁻				
	ORIG	INATOR M	IC	CHECKED	MJH		APPROV	ED G\	/T	
	DATE	31/0	3/11	DATE	31/03/	11	DATE	31/0	3/11	
	SCAL	E 1	:100	0 @	A3		original 297 x	DRAWIN 420	IG SIZE - A3	
	DRAV	VING No	10	<u> </u>	-00	 1		REV.		
						•				

F:\U3064\proj\106270 Cannock 2a batch 2\drawings\106270-001.dwg

APPENDIX A

Cannock Chase District Council

Environmental Protection Act 1990, Part IIa: Desktop Study and Walkover

Land West of Fiveways, Cannock Road, Heath Hayes, Staffordshire

August 2010

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 F 0121 7116749 E gareth.taylor@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
R470/103912/V1/2010	10/08/10	First Issue	Signature			
			Name	Mark Hiatt	Gareth Taylor	Gareth Taylor
			Position	Geotechnical Engineer	Principal Consultant	Principal Consultant

© Grontmij 2010 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTE	RODUCTION	. 1
	1.1 1.2	TERMS OF REFERENCE	. 1
2	PRE	VIOUS INVESTIGATIONS	. 4
	2.1 2.2	2004 GROUND INVESTIGATION	. 4
	2.3	SUMMARY	.6
	2.4	WALKOVER	. 6
3	PRE	LIMINARY CONCEPTUAL MODEL	. 8
	3.1	INTRODUCTION	. 8
	3.1.	1 Sources of Contaminants	. 8
	3.1.2	2 Receptors	. 8
	3.1.	3 Pathways	10
	3.1.4	4 Potential Pollutant Linkages	10
4	CLC	SING REMARKS	13

FIGURES

Figure 1.1 - Site Location	3
Figure 2.1 - Extent of 2004 ground investigation and relationship to site location	4

TABLES

Table 1.1 – Site Setting	2
Table 2.1 - Summary of analytical chemistry results, 2004 Austin Geotech investigation	5
Table 3.1 - Potential Receptors	9
Table 3.2 - Potential Pollutant Linkages	

APPENDICES

Appendix A	Limitations Statement
Appendix B	Austin Geotech Ltd Ground Investigation Report (July 2004)
Appendix C	Severity and Probability of Risk (after CIRIA report 552)

1 INTRODUCTION

1.1 Terms of Reference

In August 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Contaminated Land Inspection Strategy. Part IIa of the Environmental Protection Act 1990 (Part IIa) requires each local authority to inspect areas of land which it believes may comprise Part IIa Contaminated Land.

The scope of work agreed between Grontmij and the Council included:

- Prioritisation of an initial list of potentially contaminated sites for intrusive investigation work, based upon the sensitivity of each site, using existing limited desktop study data provided by the Council; and,
- Undertaking desktop reviews and walkovers, culminating in the production of reports for each priority site to improve the understanding of the sites and inform the planning of intrusive site investigations.

The prioritisation exercise identified an initial 12 sites requiring detailed desktop study and walkovers, including a former landfill site west of Fiveways, Cannock Road, Heath Haynes, Staffordshire. The site comprises an area of land previously infilled with waste material and developed with housing, and forms part of a wider area of infill. The site is considered to be sensitive as 18 residential properties with gardens overlie the inferred extent of the landfill and the site is underlain by a secondary A aquifer. Areas of the wider site have been subject to previous ground investigation which has identified evidence of infilling and has proven the presence of contaminants (see Section 2).

This report is subject to the limitations presented in Appendix A.

1.2 Site setting

The setting of the site is summarised in Table 1.1. The location of the site is shown on Figure 1.1, and Drawing 1 provides surrounding land-use details.

Table 1.1 – Site Setting

Data	Information
Address	Former landfill west of Fiveways, Cannock Road, Heath Hayes, Staffordshire, WS12 3HZ.
Current site use:	Residential houses and gardens. Houses appear to have been constructed in late 1980's/early 1990's
Grid Reference:	Centre of site located at NGR 401503,309907
Site Area:	Approximately 1.5 ha.
Topography:	Site is generally flat; surrounding area falls gently towards the south-east
Surrounding land use	North: Cannock Road adjacent, residential properties beyond East: Residential (flats) adjacent, tyre-fitting centre approx 50m South: Playing fields and open land West: Residential / telephone exchange / open land
Mapped Geology	British Geological Survey (BGS) mapping indicates that the site is underlain by glacial till over Middle Coal Measures. The likely thickness of deposits is not stated.
Hydrogeology	The Coal Measures are regarded as a secondary A aquifer by the Environment Agency.
Source Protection Zones (SPZs)	The Environment Agency website indicates that the site does not lie within a SPZ.
Surface Waters	A pond is located approximately 300m south east of the site. Streams are located approximately 300m east and 500m south west of the site.
Historical Land Use	Environment Agency records indicate that the site operated as a landfill site between 1960 and 1965, the type of waste received is unspecified. Historic mapping contained in previous reports (Section 2.1) indicate that the southern end of the site may also comprise an infilled railway cutting. The site was subsequently developed with residential properties with gardens.
Ecologically designated sites ¹	MAGIC search identified Biddulph's Pool and No Man's Bank SSSI, located approximately 800m to the east. The SSSI is designated due to its Dwarf Shrub Heathland habitat

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Figure 1.1 - Site Location

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright Plan is not to scale.

2 PREVIOUS INVESTIGATIONS

The wider landfilled area (comprising land to the east of the study site) has been subject to two ground investigations, as follows:

- Land immediately east of the study site, comprising a transport café and HGV parking area, was the subject of a desk study and ground investigation, undertaken in 2004 by Austin Geotech Ltd;
- Land approximately 60m east of the study site, beyond the former transport café, was investigated in 1998 by Geotechnical Environmental and Materials Services Ltd.

The extent of land investigated and its relationship to the study site is shown on Figure 1.2. Cannock Chase Council holds excerpts of the above reports in archive; these excerpts are included in Appendix B and summarised below.

Figure 2.1 - Extent of 2004 ground investigation and relationship to site location

2.1 2004 Ground Investigation

Land currently occupied by residential flats (bordered in red on Figure 2.1) was subject of a 2004 desk study and ground investigation, undertaken by Austin Geotech Ltd. A summary of the investigation is provided below:

- Inspection of historical maps identified that the Austin Geotech site {and additionally, the southern extent of the site subject to this 2010 desk study} was previously occupied by a mineral railway within a cutting. The cutting is first shown on the 1902 map, appears to be disused on the 1971 map and has been completely infilled by the time the 1992 map was created. As Coppice Colliery was located approximately 150m to the south, the material used to infill the colliery is likely to have comprised colliery spoil and other colliery waste;
- Eight machine dug trial pits were excavated to a maximum depth of 3.6 mbgl;

www.grontmij.co.uk

- The ground encountered comprised up 2.7 m of made ground over sand and gravels, to a maximum depth of 3.6 mbgl. The made ground included distinct layers of ash, burnt shale, concrete and brick;
- Selected soil samples were subjected to chemical analysis. A summary of analytical testing results is presented in Table 2.1.

Contaminant	No of Samples Analysed	Minimum Analysis Result (mg/kg)	Maximum Analysis Result (mg/kg)	SGV/GAC ^a using 6% SOM	GAC ^a using 1% SOM ^a value (where lower)	No. of samples exceeding SGV/GAC ^a
Arsenic	7	5.0	14	32	-	None
Boron	7	0.26	1.5	291	-	None
Cadmium	7	<0.50	1.2	10	-	None
Chromium ^b	7	16	150	4.3	-	7
Copper	7	18	64	2330	-	None
Lead ^c	7	28	100	450	-	None
Mercury ^d	7	<0.10	<0.10	1	0.17	None
Nickel	7	14	31	130	-	None
Selenium	7	0.25	0.78	350	-	None
Zinc	7	75	290	3750	-	None
Phenols	7	<0.50	1.3	420	180	
TPH (Total) [®]	7	<0.50	1300	n/s	n/s	-
Total PAHs ^e	7	<0.50	170	n/s	n/s	-

Table 2.1 - Summary of analytical chemistry results, 2004 Austin Geotech investigation

All above concentrations are presented in mg/kg, correct to two significant figures (unless greater level of accuracy is possible from analysis or published as a screening value). Numbers in **bold** indicate analysis results in excess of SGV or GAC. Values in *highlights with italics* are considered to be elevated, but cannot be directly compared to current screening values due to lack of speciation

a- Soil Guideline Values (SGV) published by DEFRA (see Environment Agency website) or Generic Assessment Criteria (GAC) published by Land Quality Management or derived internally by Grontmij using the latest version of the CLEA model.

b -Testing results are for total chromium, whereas quoted GAC is value for chromium(VI). The GAC for chromium (III) is 3000 mg/kg

c- SGV quoted was generated by DEFRA using earlier version of CLEA. DEFRA is currently evaluating the methodology used to define and measure acceptable human intake of lead. The outcome of this decision is needed in order to calculate a GAC using the latest version of CLEA, therefore in the meantime, the "old" lead SGV has been adopted

d -Testing results are for total mercury, while SGV/GAC for elemental mercury are presented (the most stringent of the elemental, inorganic and methyl mercury SGVs)

e -There are no SGV's or GAC values for total TPH's or PAH's only speciated. Therefore speciated analysis is required to ascertain any exceedence.

The chemical analysis included testing for total chromium; it is not known whether the chromium identified is present as Cr(III) or Cr(VI), and as such, it has to be assumed that the recorded concentration of chromium may exceed the current Cr(VI) SGV.

Additionally, Total Petroleum Hydrocarbons (TPH) and total Polyaromatic Hydrocarbons (PAH) analyses were scheduled, and potentially elevated results obtained. Current best practice requires comparison to SGVs or GAC derived for individual aromatic and aliphatic TPH bands and against individual PAH compounds. Therefore, while it is likely that banded TPH and individual PAH screening criteria may have been exceeded, a conclusion cannot be drawn.

2.2 1998 Ground Investigation

An investigation of the land currently occupied by a tyre fitting centre (bordered in green on Figure 2.1) was undertaken in 1998 by Geotechnical Environmental and Materials Services Ltd (GEM). The remit of the investigation appears to have been geotechnical, as no contamination assessment was undertaken. A summary of the investigation is provided below:

- The investigation consisted of five machine excavated trial pits and two cable percussive boreholes to a maximum depth of 9.6 mbgl;
- The ground conditions encountered comprised up to 6.9 m of made ground overlying superficial clays (possible glacial till) which in turn overlie weathered Coal Measures strata (weathered residual clays grading into mudstone and sandstone). The made ground comprised a mixed fill material containing colliery shale (burnt shale), coal, cinders and coke, crushed brick, stones and concrete, tarmac, ash (locally abundant), crushed limestone and some wood (locally abundant), rags, plastic and metal;
- Perched groundwater was encountered towards the base of the made ground (3.1m bgl to 5.0m bgl, and subsequent resting depths of 2.9m bgl to 4.3m bgl were recorded. Additional minor strikes were encountered in the underlying superficial clay, within sandier horizons.

Cannock Chase Council holds copies of Environment Agency correspondence, apparently as part of a planning consultation process. The report from the above investigation appears to have been submitted to the Agency for comment. The Agency recommended that a contaminated land desk study, soils investigation (to include leachability testing in regard to the underlying aquifer) and gas monitoring exercise should be undertaken. The Agency also noted the proximity of recorded landfill sites to the proposed tyre centre.

It is unclear whether a soils investigation was undertaken, as no records are held on file. GEM did, however, undertake ground gas monitoring of wells installed within the two original cable percussive boreholes. The monitoring detected carbon dioxide concentrations of up to 0.2%. Flow rates were noted to be 0 I/hr and methane was not detected at concentrations greater than the detection limit of the gas analyser.

2.3 Summary

The findings of the 1998 and 2004 ground investigation indicate that the landfill material across the wider site, including the subject site, is likely to contain material such as ash, burnt shale, metal and plastic suggesting that elevated concentrations of contaminants including metals and PAHs may be present.

Furthermore, the 2004 chemical analysis results indicate that the made ground across the wider site contains potentially elevated concentrations of chromium, hydrocarbons and PAHs, which may exceed current screening criteria adopted for residential properties with gardens.

As the subject site is located above the same inferred extent of landfill as the areas investigated in 1998 and 2004, it is likely that similar (or worse) conditions could be encountered beneath the subject site.

2.4 Walkover

The site has been subject of a walkover. No obvious evidence of contamination was identified during the inspection, carried out from the public highway, but such evidence is unlikely to be uncovered by the visual inspection of land occupied by residential properties.

www.grontmij.co.uk

3 PRELIMINARY CONCEPTUAL MODEL

3.1 Introduction

This section of the report presents a preliminary contaminated land assessment, on the basis of the available desktop data, previous reports and information gathered during the walkover. The assessment presents an evaluation of the potential risks posed, should contaminants be present in the soil or groundwater beneath the site.

In the context of the Environmental Protection Act 1990 (EPA90), the Water Act 2003 and associated guidance^{2,3}, a preliminary (contaminated land) risk assessment should focus on whether the land at a subject site meets the statutory definition of Contaminated Land. Part IIA of the EPA90, as amended by the Water Act 2003, defines Contaminated Land as:

"any land which appears to the local authority in whose area it is situated to be in such condition by reason of substances in, on or under the land, that:

significant harm is being caused or there is a significant possibility of significant harm

being caused; or

significant pollution of controlled waters is being caused or there is significant possibility of such pollution being caused".

The procedure for assessing contaminated land involves the development of a Conceptual Site Model (CSM) comprising the assessment of potential contaminants, pathways and receptors.

3.1.1 Sources of Contaminants

The "contaminants" term in the conceptual model has been evaluated by inspection of existing desktop study data provided by the Council, and a preliminary site walkover. The following potential sources of contaminants have been identified:

- An infilled area of land which could contain contaminants including but not limited to metals, hydrocarbons, PAHs, volatile and semi-volatile organic compounds (VOCs and SVOCs); and,
- Methane and carbon dioxide gas, from the decomposition of biodegradable landfilled material beneath the site.

3.1.2 Receptors

DEFRA Circular 02/2006 defines a Receptor as:

"either (a) a living organism, a group of organisms, an ecological system or a piece of property which (i) is in a category listed in Table A as a type of receptor, and (ii) is being, or could be, harmed, by a contaminant; or (b) controlled waters which are being, or could be, polluted by a contaminant".

Table 2.1 lists all of the receptors to be considered by a Part IIA or PPS23⁴ assessment, and assesses whether the receptors are likely to be present at the site.

⁴ Planning Policy Statement (PPS) 23: Planning and Pollution Control, Annex 2: Development on Land Affected by Contamination

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.

Table 3.1 - Potential Re	eceptors
--------------------------	----------

Receptor Type	Receptors	Present (√ /×)	Notes
	On-site residents	~	Residential properties (houses and gardens) above indicative extent of landfill. Gardens assumed to be used for growing food crops.
	Construction staff and site investigation personnel.	Х	No known redevelopment proposed.
Humans	Future occupants of the site	1	Level of risk same as current residents so not considered further.
	Off site commercial workers or residents	1	Possibly exposed to gases of leachable contaminants migrating off-site through permeable strata. Level of risk is inferred to be lower than that posed to on-site residents, and is not assessed further
Ecosystems	Any designated ecological system ⁵ , or living organism forming part of such a system	x	The closest designated site is Biddulph's Pool and No Man's Bank SSSI, located approximately 800m to the east. The distance of the SSSI from the study site indicates that the SSSI is unlikely to be adversely affected by leachate or ground gas originating from the study site
	Crops, including timber	Х	Not present.
	Produce grown domestically, or on allotments for consumption	1	Gardens assumed to be used for growing food crops. Risk posed is considered to be covered by human health (residential with gardens) pathway and is not considered further.
Property (Flora	Livestock	Х	Not present.
anu Fauna)	Other owned or domesticated animals	✓	Pets in residential properties. Risk posed is considered to be similar to that posed to on- site residents, and is not examined further
	Wild animals which are the subject of shooting or fishing rights	X	Not present.
Property (Buildings & Structures)	A 'building' means any structure, including any part below ground level, but does not include plant or machinery within a building.	V	Residential houses (and in particular, water service pipes and foundations) above indicative extent of landfill.
	Territorial waters	×	None feasibly close enough to be affected.
	Coastal waters	×	None feasibly close enough to be affected.
Controlled Waters ⁶	Inland Freshwaters	*	A pond is located approximately 300m south east of the site. Streams are located approximately 300m east and 500m south west of the site. The likely hydraulic gradient, based upon surface topography, is towards the south-east
	Groundwater	✓	Secondary A aquifer beneath site.

⁵ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR). ⁶ As defined in the Water Resources Act 1991 (Part III, Section 104). Generally includes most surface water bodies excluding drains

which discharge into sewers.

3.1.3 Pathways

DEFRA Circular 02/2006 defines a Pathway as:

"one or more routes or means by, or through, which a receptor: (a) is being exposed to, or affected by, a contaminant; or (b) could be exposed or affected"

Pathways are examined as part of Table 2.2.

3.1.4 Potential Pollutant Linkages

The pollutant linkages identified are presented in Table 2.2.

Table 3.2 - Potential Pollutant Linkages

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material and associated with use of former mineral railway. Off-site analysis has identified potentially elevated metals, TPH and PAH concentrations	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Likely	Moderate	Grass and/or topsoil coverage likely to mitigate risk to an extent – risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to enable application of statistics, speciate TPH and PAH results, and refine conclusion on risk
2	Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
3	Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) within landfill material and associated with use of former mineral railway.	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
4	Property (Structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Secondary A aquifer (Middle Coal Measures) beneath site	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material and associated with use of former mineral railway.	Leaching of soil contaminants to aquifer	Mild	Unlikely	Very low	Cable percussive BHs advanced at site 60m to east of the study site generally encountered layers of competent clay and mudstone prior to encountering a sandstone layer. Thus, leaching to the minor aquifer is unlikely
6	Streams and pond (closest are 300m to south and east; inferred hydraulic gradient is towards south- east)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material and associated with use of former mineral railway.	Leaching of soil contaminants to aquifer and subsequent off- site migration to surface waters	Medium	Unlikely	Low	Cable percussive BHs advanced at site 60m to east of the study site generally encountered layers of competent clay and mudstone prior to encountering a sandstone layer. Thus, leaching to the minor aquifer is unlikely. Aquifer also likely to be too deep to be in continuity with surface watercourses. Distance of study site from surface waters also mitigates risk, i.e. significant opportunity for attenuation of contaminants prior to reaching watercourse
7			Direct migration to surface waters within perched groundwater unit at c. 3m bgl	Medium	Unlikely	Low	Unlikely that the perched groundwater unit extends beyond the extent of landfilling and thus, the water would not be in continuity with the off-site watercourses

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix C

4 CLOSING REMARKS

Potential pollutant linkages affecting the health of on-site residents and property have been identified, and therefore an initial intrusive investigation should be carried out to examine the likelihood of significant pollutant linkages existing at the site.

www.grontmij.co.uk

APPENDIX A

Appendix A: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Grontmij Limited.
- 3. Observations were made of the site and of structures on the site as indicated within the report.
- 4. This report targets a parcel of land previously identified as potentially contaminated land by the Cannock Chase District Council, and does not seek to render an opinion on the quality of land outside the study area.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: *...the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.* We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The scope of this study, as agreed with Cannock Chase Council, comprised a review of available information, and data was not purchased from a proprietary database.

APPENDIX B

Dı Graham Austin 16 Park Lane Kingswinford West Midlands DY6 8AT

Tel/Fax: 01384 354553 Mobile: 07940 540012

Report

Site Investigation at Former Four Wynds Café, Heath Hayes, Cannock

July 2004

Austin Geotoch Limited Registered in England and Wales No 3923164 VAT Reg. No. 748 1775 95 Registered Office: 16 Park Lane, Kingswinlord, West Midlands DY6 8AT

Site Investigation at Former Four Wynds Café Heath Hayes, Cannock

Prepared By

ustin:

Graham Austin

Prepared for Fresh Space Developments Limited Beaconsfield House Sandford Street Lichfield Staffordshire WS13 6QA

July 2004

Document Ref gaR2210

Report

d

÷

C Austin Geotech Ltd

Contents

1.

놰

1. Introduction	I
1.1 Background	
1.2 Objectives of the Study	1
1.3 Components of the Work	1
2. Site Location & Description	
2.1 Site Location	
2.2 Site Description	
3. Geology and Mining	.2
3.1 Published Geology	
3.2 Mining	2
3.3 Mine Shafts	2
 Site Development and Environmental Setting 	
4.1 Site History	3
4.1.1 Past Editions of the Ordnance Survey	3
4.2 Environmental Information	3
4.3 Radon	3
5. Environmental Assessment	3
5.1 Introduction	۲
5.2 Risk Assessment Criteria	4
5.3 Possible Contaminants on the Site	5
6. Site Investigation	5
6.1 Ground Conditions	5
6.2 Contamination Testing	5
6.2.1 Poly Aromatic Hydrocarbons (PAH)	
6.2.2 Total Petroleum Hydrocarbons	6
6.2.3 General	6
7. Comments on the Ground Conditions in relation to Foundation Desi	on 6
7.1 Constraints to Development	6
7.2 Mining	
7.3 Mine Shafts	
7.4 Soil Gases	
7.5 Foundations General	······································
7.6 Ground Floor Slabs	
7.7 Remediation of Contamination	0
8 Surface Drainage	0 0
0 Summary and Conclusions	a
 Summary and Conclusions monomentation and an and an and an an	ченницина У

© Austin Geotech Ltd

Contents Continued

4

 \tilde{X}_{i}^{i}

		Appendix I	Coal Authority Mining Report	
ŧ		Appendix 2	Summary of Environmental Report	
1		Appendix 3	Records of Trial Pits	
		Appendix 3	Results of Chemical Analyses	
\$		Figure I	Site Location Plan	
		Figures 2 to 8	Past Editions of the Ordnance Survey	
1				
÷.				
Τ,				
ļ				
1				
Ŧ				
ak ar				
1				
1				
1				
1	4			
8			© Austin Geotech Ltd	2
d.				

I. Introduction

1.1 Background

Fresh Space Limited have instructed a site investigation to be carried out on property at the former Four Wynds Cafe. Heath Hayes which is to developed with apartments and car parking. This work has been carried out to assess the potential mining and environmental aspects of the site and to propose a foundation solution.

This report sets out the information obtained in relation to the proposed development.

1.2 Objectives of the Study

The purpose of this report is fourfold:

- Confirm the development history of the site and in particular whether contaminative activities may have taken place;
- To establish the ground conditions for foundation design;
- Analyse for potential contamination:
- To describe the mining setting and extent of any stabilisation works required.

1.3 Components of the Work

This report is based on a number of sources of information including the following:

- Past editions of the Ordnance Survey;
- The British Geological Survey mapping;
- "Sitescope" database, containing information on the site and surroundings for pollution, industrial use of land, and other environmental data;
- o Excavation of trial pits;
- o Contamination test results;
- Percolation Tests.

2. Site Location & Description

2.1 Site Location

The site, comprising a cafe building and car parking, together with an adjacent house, may be located from National Grid Reference SK 016 099. A site plan is presented as Figure 1.

C Austin Geotech Ltd

2.2 Site Description

The site is a trapezoidal parcel of land some 0.3ha in area. The land falls gently southwards and lies south of Cannock Road from which access is obtained.

The western margin of the site is presently occupied by a private house and garden. Adjacent to it, in the north western corner of the remainder, is the location of the café building. The balance of the site, including the frontage with Cannock Road, the entire eastern half of the site and the central southern area, is car parking. This is paved with concrete which, in the southern half of the site is poorly finished.

The site is bounded to the south by sports ground and to the east by a tyre depot. To the west the site is bordered by housing. Beyond Cannock Road to the north is recent housing and the Five Ways public house.

3. Geology and Mining

3.1 Published Geology

The geology has been assessed from the 1: 63,360 scale Geological Map of Lichfield. This map indicates that the site is underlain by Boulder Clay which is underlain in turn by the Coal Measures. These strata dip gently towards the south west. The Coppice Collicry is shown immediately south of the site and several more are located a short way to the north cast. In view of the presence of the former collicry there is a probability that mining has taken place at moderate to great depth.

3.2 Mining

The Coal Authority Mining Report is included as Appendix 1. Mining activity is common in this area. This report indicates that the site has been undermined at depths of 70m to 300m in seven seams, most latterly in 1962. Based upon the 1: 10,560 scale geological map the site is underlain at moderate depth by the Brooch Coal. At these depths any old workings are unlikely to affect the proposed dwellings. We understand that the site to the north has been recently developed and that investigation holes were drilled to establish whether there were any coal seams at significantly shallow depths. It is our understanding that shallow coal, and therefore workings, were absent.

3.3 Mine Shafts

The mining report confirms the absence of recorded shafts in, or within influencing distance of, the site.

C Austin Geotech Ltd

4. Site Development and Environmental Setting

4.1 Site History

4.1.1 Past Editions of the Ordnance Survey

These old maps are presented as Figures 2 to 8 and are to 1: 2,500 scale. The earliest available edition of the Ordnance Survey is dated 1884. This shows that there is no development at the site but by 1902 the rear of the site was occupied by a railway cutting deep enough to pass below Hednesford Road to the east. The site remains unchanged in both the 1918 and 1939 editions. By 1962 the café building and house are shown as is the playing field to the south. Little change is evident on the 1977 map other than the construction of a small outbuilding in the west of the site and the removal of the railway lines from the cutting. The 1992 map indicates that the railway cutting has been infilled. On this edition the houses located to the west are first shown but the land to the cast is still undeveloped at this time.

4.2 Environmental Information

The STL/Sitescope report indicates that the site is not within the proximity of any landfill or other environmental hazard. The summary of this report is given in Appendix 2.

4.3 Radon

11

e t

Reference to the DETR / BRE publication - Radon: guidance on protective measures for new Dwellings 1999 indicates that the site is not in an area where precautions against radon are automatically required. Neither is it in an area where a Geological Assessment is recommended.

Environmental Assessment

5.1 Introduction

Within the UK the assessment of soil borne contamination is now compared with the CLEA soil guidelines, which are based on the Contaminated Land Exposure Assessment Model 2002, for the available contaminant types. This model forms a technical basis for modelling exposure based on toxicological data and intake values for humans. It takes account of the most important exposure pathways for four different types of usage including domestic gardens with and without plant uptake. In this case there are no gardens and the site is to be hard surfaced throughout. It is important to check that the conceptual CLEA Model is appropriate to the conditions at the site, particularly in terms of soil type which influences contaminant retention and dust emission. However, the default parameters are set to reflect typical site conditions and

D Austin Geotech Ltd

the algorithms used for the model are provided so that adjustments can be made as necessary. It also has the advantage that other contaminants, not yet covered, can be dealt with provided a Tolerable Daily Intake or Index Dose can be derived from toxicological data.

For most other contaminants the assessment should no longer be carried out using generic guidelines published by the Department of the Environment Interdepartmental Committee for the Redevelopment of Contaminated Land, ICRCL Guidance Note 59/83. These guidelines have now been withdrawn.

Inevitably there are contaminants which are not covered by any UK standard appropriate to soil. In most cases in the past practitioners adopted Dutch guidelines, which are much more comprehensive for organic chemicals, for instance. The Dutch guidelines have a Target Level for contaminants and an Action Level. The Target Level is really an aspirational level, and is often set at concentrations which are difficult to analyse. The Action Level is a more realistic value based on health risk criteria. However, we are informed that these Dutch guidelines are now considered inappropriate and that any such guideline values should be derived from the CLEA model using available toxicological data. In practice this toxicological data is seldom available from sources which have currency in the UK. The only available data are often the UK Drinking Water Standards but these are not necessarily appropriate to other uptake paths and are conservative.

5.2 Risk Assessment Criteria

The presence of contaminated land is only of concern if there exists an actual or potentially unacceptable risk of harm either to humans, ecosystems, the water environment or the built environment.

The concept requires consideration of 'risk' and the evaluation of harm, either actual or potential, through the process of 'risk assessment'. Risk assessment is an iterative process involving the consideration of hazard assessment and evaluation, and risk assessment and evaluation. The critical component to risk assessment is the identification of so called *pollutant linkages* whereby the potential for harm to occur requires three conditions to be satisfied:

- The presence of substances that may cause harm (Source);
- The presence of a receptor which may be harmed, e.g. potable groundwater, including wells and the canal, or humans (Target); and
- The existence of a linkage between the source and the target (Pathway)

Without a pollutant linkage there is no risk. Therefore the presence of measurable concentrations of contamination within the ground does not automatically imply that a contamination problem exists and contamination must be defined in terms of pollutant linkages and unacceptable risk. The nature and importance of both the targets and pathways which are relevant to any particular site will vary according to its characteristics, the intended use of the site and its surroundings.

C Austin Geotech Ltd

In this case the proposed use of the site is for apartments and car parking with only limited landscaped beds. Therefore it is reasonable to use the CLEA SGVs for a Residential Use without Plant Uptake.

5.3 Possible Contaminants on the Site

Based upon the sources listed above the known potential sources of contamination which can be identified at the site are limited to the fills which have been deposited, as a result of the infilling of the railway cutting from the colliery. These appear to comprise sands and clays with a small rubble content.

The use of the property for vehicle parking could have brought with it the risk of hydrocarbon contamination.

6. Site Investigation

The near surface ground conditions have been investigated by 8 machine dug trial pits from which samples were taken for testing. Percolation tests were carried out in two of these, TPS 1 and TPS 2, by Sub Surface Midlands Limited. Trial Pits 1 to 4 were excavated by Austin Geotech Limited whilst a further 2 were excavated by Sub Surface Midlands. The locations of the pits are given on Figure 1. The records of the trial pits are included as Appendix 3. The results of the 7 contamination tests are included in Appendix 4.

6.1 Ground Conditions

The trial pits revealed fills throughout the site varying in depth from 0.7m to 2.7m. Beneath concrete Trial Pits 5,6 and S 1 and S2 revealed regulating layers of ash and burnt shale. At the margins of the site and below these layers, the site appeared to have been filled with a variety of materials including sands and gravel with quantities of building rubble. Two of the trial pits encountered pipes, preventing further investigation.

Natural ground comprised moderately compact red or orange brown sand and gravel to the full depths investigated of up to 3.1m.

6.2 Contamination Testing

14

Seven samples were tested for the ICRCL suite of chemicals. The results are presented in Appendix 3.

These results indicate that there was little contamination. However, one sample indicated an elevated level of TPH, in excess of 1,000mg/kg and two samples contained significant concentrations of PAH. These potential contaminants are discussed below.

C Austin Geotech Ltd

Ell

Memorandum

To:	Jackie Dryhurst Property Services	From:	John Ness Environmental Health	
Ref:		Ref:	ИС	
Cc:		Phone:	4264	
Date:	12 August, 2004			

Subject: CH/04/0417 Site Investigation For Wynds Café, Heath Hayes

Thank you for forwarding the above mentioned site report (ref gaR2210) from Austin Geotech Ltd.

I have perused the report which has identified contamination of the site ubiquitously with petroleum hydrocarbons, and also in part, poly aromatic hydrocarbons.

I would concur with the proposals given in sections 7.4 - 7.6 for protection against ingress of soil gases, principally carbon dioxide in this instance.

The remediation of contamination is discussed in section 7.7. I agree with the view that the provision of hard surfacing of the site will break potential source to receptor pathways. For landscaped areas, the compaction of fill together with the provision of 450mm of clean cover is considered to be an appropriate way forward.

Confirmation as to how the hydrocarbon contamination at TPS 1, together with contingency plans detailing how contaminated ground discovered during the redevelopment process will be dealt with should be required.

Signed

Tal all the Graham Fergues - First GF. AUDIN requised for a contric protection, 01902 700799 grahamefirsteity. Lo. UK.

ShTyping/Share/General/Gen3/Ness-Dryhurst13-RT063.doc

Page 1 of 1

Men	or	and	um
TATAT	101	HILL	UIII

 From:
 Mrs. J. Dryhurst
 To Mr. J. Ness (Planning)

 Ref:
 CH/04/0417
 Ref:

 Phone:
 E-mail:
 Jacquelinedryhurst/@Cannockchasedc.gov.uk

 Date:
 2nd August 2004

 Subject:
 4Wynds Café, Heath Hayes

Please find attached a site investigation report in respect of the above site. The report was required prior to the application being determined. I would be obliged for your comments.

CANNOCK C ENVIRONMEN PUBLIC F - 3 Å	HASE COUNCIL TAL HEALTH AND PROTECTION
PASSED TO	

6.2.1 Poly Aromatic Hydrocarbons (PAH)

Two samples exceeded the former ICRCL level for PAH. There is no CLEA guideline for PAH, the ICRCL values have been withdrawn and the Dutch Guidelines have been declared invalid by Defra. Given that the site has been filled with a variety of materials including rubble this may have been caused by fragments of tarmac with the likelihood that at least some of it derives from fuel spillage.

6.2.2 Total Petroleum Hydrocarbons

One sample contained significantly high levels of TPH, namely 1,300mg/kg, in TS1 at 0.5m. Most other samples contained significant TPH levels between 210mg/kg and 600mg/kg. These are most likely to be the result of fuel spillage due to the past use.

6.2.3 General

Although the use of the site as a transport café with the consequent numbers of parked vehicles brings with it the risk of fuel spillage, vehicles do not leak intentionally and most car/lorry parks are not contaminated in this way. The almost universal presence of TPH could indicate that the imported fills were brought to site in a contaminated state.

Hydrocarbons in these sorts of concentrations are usually attached to soils particles and unless there is free product it is most unlikely that migration would be an issue.

Comments on the Ground Conditions in relation to Foundation Design

7.1 Constraints to Development

These may be listed as follows:

- Made Ground with fill up to 2.7 metres thick;
- Possibility of low level soil gas from fill;
- Hydrocarbon contamination of fills;
- Possible mining at moderate depth.

These constraints are considered below and recommendations are made to address the contamination issues and foundation considerations.

7.2 Mining

1

The depth of the mined seams appears to be sufficiently deep not to pose a risk from void migration. General settlements should have ceased by now. The development across the road has similar geology and we understand that the investigation of that site concluded that the mined seams were too deep to affect the development.

O Austin Geotech Ltd

However, if pile foundations were proposed then it would be advisable to check the geology by drilling at least 3 rotary holes to check seam depths.

7.3 Mine Shafts

The Coal Authority Mining Report does not indicate the presence of any shaft within or within influencing distance of the site.

7.4 Soil Gases

21

The on site fills, particularly ash and coaly deposits are a potential source of soil gases, specifically low level Carbon Dioxide caused by oxidation of carbon in the fill. Hydrocarbon vapours are also a risk.

It is recommended that a 2000 gauge damp proof membrane is adopted throughout for the dwellings. This should extend across the cavities and all joins and service penetrations should be scaled using butyl tape. In addition it would be advisable to adopt a method of floor slab construction which permits a void beneath the slab to facilitate the venting of any gases.

7.5 Foundations General

The exploratory holes revealed fills to depths between 0.7m and 2.7m in depth. If the ground levels are to be raised to a level compatible with Cannock Road then the deeper fills would be considerably deeper still.

The fills are judged to be incapable of supporting foundation loadings even if rafts were to be adopted. This is because of the variability of the density and depth of the material. For a building of this complexity rafts would be unlikely to be economic in any case.

Therefore the foundations should be taken below the fills to bear on the underlying red or orange brown sands and gravels. An allowable net bearing pressure of 120kPa should be achievable for design purposes. If the fill/foundation depths are very variable then it would be prudent to lightly reinforce these foundations to bridge any inconsistencies. Based upon the proposed layout most of the structure would be constructed in the northern margin of the site where the fills are least deep.

Alternatively, it may be economic to adopt pile foundations. These would have the advantage of minimising excavation of the deeper fills and would be capable of supporting the relatively high structural loadings of three storey apartments.

If these foundations were considered then it would be necessary to drill rotary holes to ensure that the shallowest coal seam was sufficiently deep to pose no significant risk from void migration. Otherwise stabilisation works could be required.

C Austin Geotech Ltd

7.6 Ground Floor Slabs

Ground floor slabs should be of suspended construction in view of the depth of fill. If precast construction were adopted then this would bring the added benefit of providing more robust precautions against landfill gases, provided that the under slab void is adequately vented.

7.7 Remediation of Contamination

As described above the levels of hydrocarbon contaminants give rise to concern that there may be a significant risk to human health from Total Petroleum Hydrocarbons (TPH) and Polyaromatic Hydrocarbons (PAH).

By way of mitigation, the majority of the site which is not built over will be hard surfaced. Neither does the development include gardens and vegetable plots and this will prevent uptake of contaminants via the consumption of vegetables as discussed above. Without pollution linkages there is no risk to end users. Nevertheless a sufficient depth of clean cover should be adopted in the landscaped areas to prevent contact with contaminated soils and the nuisance of potential vapours.

However, before the remediation requirements can be agreed with the Local Authority it will be necessary to carry out further investigation after the site has been demolished and cleared. The hydrocarbon concentrations are significant and the contamination found in TS I is sufficient to be regarded as a hotspot of contamination. More detailed examination of the ground without the constraints imposed by the presence of buildings and the concrete surfacing could reveal hotspots of greater contamination. Moreover, the house forming the western margin of the site has yet to be investigated.

Based on current data, it is recommended that all garden areas are blanketed with at least 450mm depth of clean cover to prevent ingestion of contaminants via dust and direct ingestion. It is also recommended that the surface of the fill beneath the clean cover is compacted to discourage hand excavation and root penetration. In practice the raising of levels will provide adequate clean cover to the southern areas of the site.

This approach will need to be agreed with the Local Authority and NHBC, however.

8. Surface Drainage

台

Percolation tests were carried out in pits TS 1 and TS 2 by Sub Surface Midlands Limited. The results are presented in Appendix 5. These show that percolation was feasible for soakaways placed at the front of the site but the test to the rear did not soak away appreciably.

C Austin Geotech Ltd

9. Summary and Conclusions

- The site has been in use firstly, as open land crossed by a railway cutting and secondly, as a transport café, for a combined total of over 100 years;
- There is no evidence of any potentially contaminative activity at the site apart from the deposition of fill in the former cutting and vehicle parking. This filling has resulted in a depth of fill typically of up to 2.7m;
- In view of the type of fill there is a slight risk of Carbon Dioxide emission. It would
 nevertheless be prudent to take appropriate precautions to prevent ingress;
- The geological map indicates that there are seams of coal at moderate to great depth. However, the risk from void migration from those seams is considered to be insignificant. If pile foundations were to be adopted it would be necessary to drill exploratory rotary holes, however;
- If strip or trench fill foundations are adopted, these must be lightly reinforced. This
 will also reduce the risk from potential residual ground movements due to past
 mining;
- There is some hydrocarbon contamination and a clean cover layer should be applied to garden areas to prevent a risk to end users, subject to approval by the regulatory bodies.

O Austin Geotech Ltd

抸

Reproduced from OS map with the permission of The Controller of HMSO © Crown Copyright AL 0100031655

Reproduced from OS map with the permission of The Controller of HMSO @ Crown Copyright AL 0100031655

Reproduced from OS map with the permission of The Controller of HMSO © Crown Copyright AL 0100031655

Reproduced from OS map with the permission of The Cantroller of HMSO @ Crown Copyright AL 0100031655

Reproduced from OS map with the permission of The Controller of HMSO @ Crown Copyright AL 0100031655

, Mining Reports Office, 200 LICHFIELD LANE, BERRY HILL, MANSFIELD, NOTTINGHAMSHIRE, NGT8 4RG Telephone: 0845 762 6848 DX 716176 MANSFIELD 5 On-Line Service: www.coalminingreports.en.uk

DX 16087 CANNOCK

The Coal Automation Cost Gives p Prot V.A.4 4670 Total Received: 445.00 V.A.5. Rec Number 516 3630 68

This matter is being dealt with by Keith Pennington

Our Ref 496130-03

Your Ref: WJV SMARTS

Electronic Ref:

Date: 30 October 2003

Dear Sir.

Coal Mining Report FOUR WYNDS CAFE, CANNOCK ROAD, HEATH HAYES, CANNOCK, STAFFORDSHIRE, WS12 3HG

I refer to the enquiry dated 28th October 2003, received 29th October 2003, in connection with the above.

This report is based on and limited to the records in the possession of The Coal Authority at the time the search is answered.

Ordnance Survey (O.S.) is undertaking a Positional Accuracy Improvement Programme of its mapping data. The Coal Authority (CA) has no control over the timing of issue of Positionally Improved mapping data by O.S. or over users of that data. In some instances the relative position between surface features and coal mining features may alter as a consequence of this programme. The CA will ensure that the integrity of its database is maintained by replotting some mining information to sustain the relationship between that mining information and the improved O.S. surface positions, some of which are now being released. However, mining reports are currently being produced against pre improved O.S. mapping whilst the Authority updates its database in line with the O.S. changes.

Past Underground Mining

The property is within the likely zone of influence on the surface from workings in 11 seams of coal at 70m to 300m depth, the last date of working being 1962.

Ground movement from the above mentioned past coal workings should by now have ceased.

Present Underground Mining

The property is not within the zone of likely physical influence on the surface from any present underground coal workings.

Future Underground Mining

诏

The property is not within a geographical area for which a licence to extract coal by underground methods is awaiting determination by the Coal Authority.

The property is not within a geographical area for which a licence to extract coal by underground methods has been granted.

Page 1 of 6

The property is not within the zone of likely physical influence at the surface from plans of future workings in our possession.

However reserves of ceal exist in the locality which could be worked at some time in the future subject to feasibility, licences, and planning consents.

We have no record of any notice of the risk of the land being affected by subsidence being given under S.46 of the Coal Mining Subsidence Act 1991.

Shafts and Adits

We have no knowledge of any mine entries within, or within 20 metres of, the boundary of the property.

The fecords held by the Coal Authority may be incomplete. Consequently, there may exist in this locality nune entries of which we have no knowledge.

Surface Geology

Records in our possession do not disclose any fault or other line of weakness at the surface as having affected the stability of the property.

Past Opencast Mining

The property is not located within the geographical boundary of an opencast site from which coal has been extracted by opencast methods.

Present Opencast Mining

The property does not lie within 200 metres of the geographical boundary of an opencast site within which coal is being extracted by opencast methods.

Future Opencast Mining

The property is not within 800 metres of the geographical boundary of an opencast site for which a licence to extract coal by opencast methods is awaiting determination.

The property is within 800 metres of the geographical site boundary of the Bleak House Residual prospective opencast site for which a licence to extract coal by opencast methods was granted in October 1994. The grant of this licence is conditional on the applicant securing any other rights, permissions (including planning permissions) and consents to enable him to carry out his operations.

The property is within 800 metres of the geographical site boundary of the Bleak House Residual prospective opencast site for which a licence to extract coal by opencast methods was granted in October 1994. The grant of this licence is conditional on the applicant securing any other rights, permissions (including planning permissions) and consents to enable him to carry out his operations.

Subsidence

The records in our possession do not disclose any damage notice or claim having been given, made or pursued in respect of the property since 1 January 1984.

The records in our possession do not disclose any current "Stop Notice" affecting the property.

The records in our possession do not show any request having been made to execute preventative works under S.33 of the Coal Mining Subsidence Act 1991.

Page 2 of 6

496130-03

Page 3 of 6

Withdrawal of Support

The property lies within a geographical area in respect of which a notice of entitlement to withdraw support was published in 1945.

The property does not lie within a geographical area in respect of which a notice has been given under S.41 of the Coal Industry Act 1994, revoking the entitlement to withdraw support.

Working Facilities Orders

The property is not within a geographical area that is the subject of an Order made under the provisions of the Mines (Working Facilities and Support) Acts 1923 and 1966 or any statutory modification or amendment thereof.

Payments to Owners of Former Copyhold Land

The property is not within an area where a relevant notice has been published under the Coal Industry Act 1975/Coal Industry Act 1994,

Additional Remarks

These replies are prepared in accordance with the 2003 editions of the Coal Authority's Terms and Conditions, User Guide and the Law Society's Guidance Notes.

Copyright in coal mining reports and certificates and the information contained therein is with the Coal Authority. All rights are reserved and unauthorised use is prohibited. Copyright and other Intellectual Property is not transferred to external parties by possession of a mining report or certificate.

We acknowledge the receipt of your remittance in payment of our fee.

Yours faithfully

Inofina A

Albert Schofield

Director of Mining Information and Services

ŝ

÷

儲

Summary of Environmental Report

ŧ.

No

No.

Secti	ion A - Enquiries of Statutory Registers			
Enqui	rv	Reply		
	LANDFILL AND WASTE			
	Landfill Sites			
A.1	Are there any landfill sites licensed by the Environment Agency under Parl II of Environmental Protection Act 1990	No No	250-500m No	No No
	Scrapvards			
A.2	Are there any scrapyards licensed by the Environment Agency under Part II of Environmental Protection Act 1990	0-250m No	250-500m No	500-1000m No
	Waste Treatment and Disposal			
A.3	Are there any other sites licensed by the Environment Agency under Part II of Environmental Protection Act 1990 to treat, keep, or dispose of controlled waste	0-250m No	250-500m No	500-1000m No
	REGULATED INDUSTRIES			
	IPC and IPPC Regulations			
A.4	Are there sites authorised by the Environment Agency under Part I of the Environmental Protection Act 1990 to carry out processes subject to Integrated Pollution Control (IPC) and/or Integrated Pollution Prevention and Control (IPPC)	0-250m No	250-500m No	500-1000m No
	Keeping of Radioactive Substances			
A.5	Are there any sites registered by Environment Agency under the Badioactive Substances Act 1993 to keep or use radioactive materials	0-250m No	250-500m No	500-1000m No
	Storage of Hazardous Substances			1
A.6	Are there any siles subject to hazardous substances consents granted by the relevant local authority under the Planning (Hazardous Substances) Act 1990	0-250m No	250-500m No	500-1000m Na
	Storage of Dangerous Substances			
A.7	Are there any sites regulated by the Health and Safety Executive for storing specific dangerous substances under the NIHHS Regulations 1982	0-250m No	250-500m No	500-1000n No
3 	Control of Malor Accident Hazards			
A R	Are there any siles regulated by the Health and	0-250m	250-500m	500-1000m

Are there any siles regulated by the Health and Safety Executive under the Control of Major Accident Hazards (COMAH) Regulations 1999 0-250m A.8 No

Search Number: 911106

* +

14

12

۰.

13 November 2003

Page 3 of 53

i.

×

Report Summary

A.9	Emissions to Air			
A.9				
	Are there any sites subject to local air pollution control (LAAPC) under Part I of the Environmental Protection Act 1990	0-250m No Coverage	250-500m No Coverage	500-1000r No Coverage
	WATER ABSTRACTION AND DISCHARG	ES		
	Abstraction Licences			
A.10	Details of abstraction licences issued by the Environment Agency in accordance with the Water Resources Act 1991 (as amended or prescribed by Statutory Instrument or other notice)	0-250m No	250-500m No	500-1000r No
	Discharges to Water			
A.11	Are there any authorisations issued by the Environment Agency (and its predecessor, the National Rivers Authority) to discharges to the watercourse from non-IPC processes in accordance with the Water Resources Act 1991 (as amended or prescribed by Statutory Instrument or other notice	0-250m No Please refer to section for deta	250-500m No the Additional In ils of records for	500-1000r Yes dormation und.
Footho	Yes:			
Question of older I of the bir the Envir	A.1 The boundaries for examinat landfill sites have been digitised by the Environment of the base been digitized by Sitescope. Second a for ecords are older with we have not been able to precisely locate the extent of the landfill site withment Agency.	priment Agency and have a r they generally have a pre a have created a 200m but	a precision of 5 metri cision of 25m, When har around the grid of	as. The boundaries e because of the ag iference assigned (
Question collected	14.6 The response to this question is based on data supplied by the Departm by Local Planning Automities.	ent of Environment Transp	ort and the Regions	which has been
Question National	A.10 The response to this question is based on details of abstraction licence Rivers Autority).	is issued by the Environme	nt Agency (and its p	redecessor, the
	8.13 The menance to this sounding is based on debuts of second based on	y the Environment Agency	(and its predecessor	, the National River
Guestion Authority Question ascomple	14 Tri Con Indposes in the equation is based on consists of conserved issued of the discharges in the welfcoories from non-PC procession. 15 A. J., A.S., A.S., A.4, A.5, A.10, A.13 This data has been supplied by the Envir Na Starscope Ltd has updated them accordingly.	ranmert Agency, Where in	cords are downed to	o be inscrurato or
Question Authority Question Incomple	14.11 Contractions of the operation is based of conducts of conserved issued of the discharges in the welfcoories from non-IPC procession. 15.4.3, A.3, A.4, A.5, A.10, A.11 This calls has been supplied by the Envir Net Starscope Ltd has updated them accordingly.	nanmerit Agency, Whora w	cords are deeneed to) be instanulo or
Question Authority Question Incomple	A. I. Contraction of the operation is based of conducts of conserved issued of the discharges in the welfcoories from non-IPC procession. Its A. J., A.S., A.4, A.S., A.10, A.11 This obtain has been supplied by the Emit its Starscope Ltd has updated them accordingly.	mnmerit Agency, Where w	cords are desined to	o be insecurate or
Guestion Authority Duretice Incomple	14.11 (The imposite in the very question is based of consists of conserved issued of the discharges in the vertice/orising from non-IPC procession 15 A.3, A.3, A.4, A.5, A.10, A.13 This calts has been supplied by the Envi na Starscope Ltd has updated them accordingly.	nanmerit Agency, Where w	cords are devined to	o be instantulo or
Question Aucharith Question Incomple	14.11 (In imposite in the very question is based on consists or conserved issued of the discharges in the very consiste from non-IPC procession Is A.1, A.3, A.3, A.4, A.5, A.10, A.13 This data has been supplied by the Envi real Stanscope Ltd has updated them accordingly.	nanmerit Agency, Where w	cords are desined to	o be insecurate or
Guestion Authority Guestion autompte	1.4.1.1. (In imposite in the very objection is based of conducts of conserved issued of the discharges in the vertex origination mon-PC procession Is A.S. A.S. A.S. A.4. A.S. A.10, A.13 This data has been supplied by the Envi is Sterscope Ltd has updated them accordingly.	nanmerit Agency, Where w	cords ere dewneed to	o be instaurate or
Guestier Authority Guestier Isochripk	1.4.1.1. The imposes in the very question is based of conducts of conserved issued of the discharges in the vertice/oriene from non-IPC procession Is A.1, A.3, A.3, A.4, A.5, A.10, A.13 This data has been supplied by the Envi real Stanscope Ltd has updated them accordingly.	mnmerit Agency, Whora w	cords are desined to	o be insecurate or
Guestion Audenity Duretion Hoompile	1.4.1.1. Total insponse in the very operation is based on conducts of conserved issued of the discharges in the very conservation monol-PC procession. 19.4.3. A.S. A.S. A.4. A.5. A.10, A.13 This calls have been supplied by the Envir na Sterscope Ltd has updated them accordingly.	nanmerit Agency, Where w	cords are desined to	o be insecurate or

53

÷

1

13

Report Summary

	an y	Benly		
	INDUSTRIAL LAND WOR			
	Past Industrial Land Line			
B.1	Are there any industrial sites (indicating potentially contaminative fand use) shown on historical Ordnance Survey trace	0-250m Yes	250-500m Yes	500-1000m
	and anney maps	Please refer to section for dete	the Additional In its of records fou	formation nd.
	Current Industrial Land Liea			
B.2	Are there any industrial sites (indicating potentially contaminative land use) in Trade Listings	0-250m Yes	250-500m Yes	500-1000m
		Please refer to t section for detai	he Additional Infi is of records four	ormation nd.
Footno	tos:			
Ouestion Servey m	B.1 The response to this question is based on Historical Industrial Land Us ups during from the 1880s, as well as more report officers of the Output	e data which are the result of	a systematic analysis	s of Orchance
Evidence maps, wh	of past contumination is drawn from all least 4, and up to 6 historic map edit (ch date from between 1800 and 1890 and 1890 and as a contract of the second	ourvey National Grid Series Survey The first of these edition	15 will be the coulour	Crush Paul
third circa Duestion	1930, B 3 The social is a line for a scale of \$110,560. The s	second edition of County Seri	es maps dates from o	irca 1900, and the
VOAI, HE	Les the injuries to first question are based on industrial uses identified from supplied by the VOA to local authorities responsible for the billing and case	the 1995 Ratings List comple ction of business rates ("Billi	od by the Valuation D 10 Authorities").	ffice Agency
	je) Tr	ŕ,		
	2) 72	ń		
	2) 2) 22	6		
	2) 2) 22	6		
	2) 2) 22	ŝ		
	*) *) 22	6		
areh Nur	nber: 911106 13 November 2003	,		Page 5 of 23
areh Nur	nber: 911106 13 November 2003	•		Page 5 of 33
arch Nur	nber: 911106 13 November 2003	*		Page 5 of 33
Ireh Nur	nber: 911106 13 November 2003	6		Page 5 of 33
arch Nur	nber: 911106 13 November 2003			Page 5 of 33
areh Nur	nber: 911106 13 November 2003	6		Page 5 of 33
Ireh Nur	nber: 911106 13 November 2003			Page 5 of 33
Irah Nur	nber: 911106 13 November 2003	6		Page 5 of 33

Agency

60

.1

1

3

÷

1

1

ļ

1

1

]]

i.i

1020

Sussion C.1 Delaits taken from Nati Steacope by the Environment Agenc	ional Rivers Authority 1:100,000 roapping, as digitised for the Environment Agen by in accordance with its licenced data reselfer agreement.	cy. The information is supplied to
Duestion C.2 These groundwater so	urbes include private wells and bonsholes that supply water fit for human consum	uption.
Duestion C.3 Soulds Protection Zon mpact on a groundwater source, as	et relate to proundwater flow below the water table and measure the likely travel datamined by the Environment Agency.	time of pollutants which could
Juestion C.4 The General Ouality A anals. The Chemistry GQA scheme	stessment scheme (GOA) is the Environment Agency's cational method for class I han over 7,000 sampling alter which provide information for approximately 40.0	stlying water quality in rivers and 00 km of watercourses.
	-	
Search Number: 911105	13 Navamber 2003	Page 6 of 33
Search Number: 911105	13 Navamber 2003	Page 6 of 33
Search Number: 911105	13 November 2003	Paga 6 df 23
Search Number: 911105	13 Navamber 2003	Page 6 of 33
Search Number: 911108	13 November 2003	Page 6 of 33
Search Number: 911103	13 Mavamber 2003	Papa 6 of 23
Search Number: 911105	13 Navamber 2003	Paga 6 of 33
Search Number: 911105	13 Navamber 2003	Page 6 of 23
Search Number: 911109	13 Mawamber 2003	Page 6 of 23
Search Number: 911105	13 November 2003	Paga 6 of 23
Jeandt Number: 911105	13 November 2003	Page 6 of 33

10

-1

Report Summary

iry	Reply		
ENVIRONMENTALLY SENSITIVE AREAS			
Nitrate Sensitive Areas			
Are there any areas where sources of public drinking water contain high nitrate concentrations (Nitrate Sensitive Areas) or where the Department for Environment, Food and Rural Affairs (DEFRA) has imposed mandatory requirements from 1999 (Nitrate Vulnerable Zones)	0-250m No	250-500m No	500-1000n Na
Sites of Special Scientific Interest			
Are there any sites notified as Sites of Special Scientific Interest under section 28 of the Wildlife and Countryside Act 1981	0-250m No	250-500m No	500-1000m Yes
	No further deta	ils available	
Special Areas of Conservation			
Are there any sites nominated for designation as Special Areas of Conservation under the Conservation (Natural Habitats, etc.) Regulations 1994	0-250m No	250-500m No	500-1000n No
Special Protection Areas			
Are there any sites nominated for designation as Special Protection Areas under the European Communities Council Directive (79/409/EEC) on the Conservation of Wild Birds	0-250m No	250-500m No	500-1000n No
Environmentally Sensitive Areas			
Are there any areas of high environmental value designated by the Department for Environment, Food and Rural Affairs (DEFFA) within which farmers are encouraged to respect the environment by the adoption of certain agricultural practices	0-250m No	250-500m No	500-1000m No
Areas of Outstanding Natural Beauty			
Are there any areas designated as Areas of Outstanding Natural Beauty under the National Parks and Access to the Countryside Act 1949	0-250m No	250-500m No	500-1000m No
- I	1		
National Parks			
Are there any National Parks designated under the National Parks and Access to Countryside Act 1949	0-250m No	250-500m No	500-1000m No
	Nitrate Sensitive Areas Are there any areas whore sources of public drinking where contain high nitrate concentrations (Nitrate Sensitive Areas) or where the Department for Environment, Food and Rural Affairs (DEFRA) has imposed mandatory requirements from 1999 (Nitrate Vulnerable Zones) Siles of Special Scientific Interest Are there any siles notified as Sites of Special Scientific Interest Are there any siles notified as Sites of Special Scientific Interest Are there any siles notified as Sites of Special Scientific Interest under section 28 of the Wildlife and Countryside Act 1981 Special Areas of Conservation Are there any sites nominated for designation as Special Areas of Conservation under the Conservation (Natural Habitats, etc.) Regulations 1994 Special Protection Areas Are there any sites nominated for designation as Special Protection Areas under the European Communities Council Directive (79/409/EEC) on the Conservation of Wild Birds Environmentally Sensitive Areas An there any areas of high environmental value designated by the Department for Environment, Food and Rural Affairs (DEFRA) within which farmers are ancouraged to respect the environment by the adoption of certain agricultural practices Areas of Outstanding Natural Beauty Are there any areas dusignated as Areas of Outstanding Natural Beauty under the National Parks and Access to Countryside Act 1949 National Parks Are there any Antena Beauty under the National Parks and Access to Countryside Act 1949	Nitrate Sensitive Areas 0-250m Are there any areas where sources of public dinking water contain high nitrate concentrations (Nitrate Sensitive Areas) or where the Department for Environment, Food and Rural Affairs (DEFRA) has imposed mandatory requirements from 1999 (Nitrate Vulnerable Zones) 0-250m Siles of Special Scientific Interest Are there any siles notified as Sites of Special Scientific Interest and Countryside Act 1981 0-250m Special Areas of Conservation No Are there any siles notified as Sites of Special Scientific Interest under social 28 of the Wildlife and Countryside Act 1981 0-250m Special Areas of Conservation No Are there any siles nominated for designation as Special Areas of Conservation under the Conservation (Matural Habitats, etc.) Regulations 0-250m Special Protection Areas 0-250m Are there any sites nominated for designation as Special Protection Areas under the European Communities Council Directive (78/409/EEC) on the Conservation (Wild Birds 0-250m Environmentally Sensitive Areas 0-250m Are there any areas of high environment, Food and Bural Affairs (DEFRA) within which farmers are andoption of certain agricultural practices 0-250m Areas of Outstanding Natural Beauty ander the National Parks and Access to the Countryside Act 1949 0-250m No No No	Nitrate Sensitivo Areas Are there any areas whore sources of public drinking water contain high nitrate concentrations (Nitrate Sensitive Areas) or where the Department tor Environment, Food and Rural Affairs (DEFRA) has imposed mandatory requirements from 1999 (Nitrate Vulnerable Zones) 0-250m 250-500m Silles of Special Scientific Interest Are there any siles notified as Siles of Special Scientific Interest Mode Science

1

14

Search Number: 911109

ł

14

÷.

÷

Report Summary

Page 8 of 33

D.8	Are there any sites designated as National Nature Reserves under Section 19 of the National Parks and Access to the Countryside Act 1949 or Section 35 of the Wildlife and Countryside Act 1981	0-250m No	250-500m No	500-1000m No
	RAMSAR Sites			
D.9	Are there any sites designated as Ramsar Sites in accordance with the Convention on Watlands of International Importance, Especially as Watarfowl Habitat (commonly referred to as the Ramsar Convention)	0-250m No	250-500m No	500-1000m No

15 November 2003

12

 τ :

14

Report Summary

Enqu	iry	Reply
	SUBSIDENCE	
	Network Subaldance Black	
E.1	What is the risk to the property from natural subsidence?	There is very low risk of foundation damage to properties from natural subsidence hazards.
		Please refer to the Additional Information section for full details of how natural subsidence hazard is broken down into its component hazards, namely swelling clay, fandslip, gulls & cambering, ground dissolution and compressible ground. These are described below. Each hazard is rated here according to its contribution to the overall level of hazard in the postcode.
	MINING AND MINERAL EXTRACTION	
	Shallow Mining	
E.2	What is the risk to the property from shallow mining?	The risk of shallow mining is assessed to be low.
		Where the risk is moderate or above this does not necessarily mean that there is any risk of foundation damage as this also depends on the type of mining and the type of property involved. However we would recommend that specific advice is commissioned from a qualified member of the RICS.
E.3	Coal Mining Areas Is the property in a coal mining area or in an area (without past or present, deep or open-cast, coal mining activity) in which coal bearing strata are known or exceeded in be present?	The postcode is in or near the South Staffs Coal Area
		A coat mining search may be required.
	Mineral Extraction and Quarrying	
E.4	Are there sites where quarrying or mineral extraction activity is currently being carried out?	0-250m 250-500m 500-1000m Na Na Na
Footne	oles:	
Questio	n E.1 This assessment is based on postcode geohazard information suppl	ed by the BGS. A postcode unit contains on average 15 properties.
Questio ronsion Norard I Soal, su Coal Au	n E.2 This assessment is based on information supplied by the BGS and to e or Emotione extraction. Shallow mine workings lass than 40 metrics balo is they can sometimes produce potentially disributing surface collapses. Th is as isometries or kinestone extraction. This shallow mining search does o thorty mining search described at E.3.	skes into account many types of mining in addition to coal, such as with ground surface are considered to cause a particular subsidence is assessment takes into account many types of mining in addition to of take into account desperimining, which can be assessed through a
Questio	n E.3 The reply to this question is based upon 1 km square arreas	
Cluestio Wales s	n E.4. The reply to this question is based upon the BGS compendium of mi ince 1993. The original data was complied by BGS in 1993-94 primarily for	res, quarties and minoral size operating commensally in England and m BGS records and from information supplied by local automities,
Search	Number: 911106 13 November:	2003 Pape 9 of 53

÷ ÷ 9 8 Depth VS Time Time 8 9 Pit Dimensions: 0.65m x 1.95m x 2.28m depti Free space (gravel filled) = 30% ap50 = (2 x 0.65 x 0.65) + (2 x 1.95 x 0.65) + (0.65 x 1.95) = 5.6m2 -50 -100 -Depth -250 -300 -350 450 f = vp 75-25/up50 x tp 75-25 x 60 = 5.7 E-06 m3/svp 75-25 = 0.65 x 1.95 x 0.3 x (0.40 -.0.25)/2 Depth mm D -700 2 -700 3 -1400 3 -1400 3 -1400 -700 3 400 -410 -410 -410 -420 = 0.029 m3 0 Four Wynds, Heath Hayes Soakaway 1, First Test Mins tp 75-25-15min ł "| 2 1

÷ ÷ 8 8 **Depth vs Time** Time -\$ Pit Dimensions: 0.65m x 1.95m x 2.28m depti Free space (gravel filled) = 30%
$$\label{eq:mpsilon} \begin{split} np50 &= (2 \ge 0.65 \ge 0.67) + (2 \ge 1.95 \ge 0.67) + (0.65 \ge 1.95) \\ &= 5.69 m2 \end{split}$$
1 Depth Depth Depth -300 -350 -400 -450 f=vp~75-25/ap50~x~tp~75-25~x~60=2.06~E-06~m3/s----vp 75-25 - 0.65 x 1.95 x 0.3 x (0.37 -.0.23)/ 2 - 0.027m3 Depth mm 0 Four Wynds, Heath Hayes Soakaway 1, Second Test Mins tp 75-25 = 38min ÷ 1 -1

SUB SURFACE MIDLANDS LIMITED GEOTECHNICAL AND GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS

Trial Pit Record Sheet

Job No.	M2453
Site	Four Winds Café, Cannock Road, Heath Hayes, Staffordshire
Date	25/05/04
Pit No.	TP5
Weather	Dry

DEPTH	DESCRIPTION	SA	MPLE	S
GL-0.2	MADE GROUND: Concrete.			
0.2 - 2.1	MADE GROUND: Loose dark grey slity fine to medium sand with many angular fine to corse gravel sized fragments of concrte, brick and ash. occasional whole bick and cobbles of masonary below 0.8m concrete boulder at 0.9m	Jar Bulk Jar	0.3 0.8 1.5	862 863 864
2.1 - 3.6	Moderately dese red brown mottled light grey silty gravelly fine to medium SAND. Gravel is rounded fine to coarse quartz.	Jar Bulk Jar	2.2 2.5 3.0	865 866 867
Notes: Exc	avated using JCB 3CX excavator with toothless bucket.			

Water	Pit dry
Stability	Pit walls vertical and stable during excavation
Dim.	0.65 x 3.0 x 3.6
Orient	3300

Sketches: (none)

ł.

23

Holland House Bath Street, Walsall, WS1 3BZ Tel: (01922) 648709 Fax: (01922) 746819

SUB SURFACE MIDLANDS LIMITED GEOTECHNICAL AND GEOENVIRONMENTAL SITE INVESTIGATION SPECIALISTS AND CONSULTANTS

Trial Pit Record Sheet

.

.

Job No.	M2453
Site	Four Winds Café, Cannock Road, Heath Hayes, Staffordshire
Date	25/05/04
Pit No.	TP6
Weather	Dry

	mADE GROOMD. Tanisacadam surracing.	
Notes:		
Strong g Hand ex Hissing Reporte	as odour on removal of tarmacadam surfacing cavation to 0.12 revealed metal duct containing yellow gas gas d to Engineer, Instructed to backfill excavated pit.	pipe.
END @ 0.1	m	
Water		
Dim		
Orient		
Roman Gr	Ann Butin. Looks reported to	reading of premis
J Liu	Like respliced during redevelopment. 9.30 1250 Michael C	t hisonreal - are Rany 11-9-04
U i	Le regered during redevelopment. 9.30 1250 Midwel C North C	1 2000 11-3-04 11-3

ANALYSIS RESULTS PAGE 1 OF 3 PAGES

9 July 2004

.

SEVERN

Dr G Austin Austin Geotech Geo-Environmental Engineering 16 Park Lanes Kingswinford West Midlands DY6 8AT

Test Report : AG /98861

Dear Dr Austin

Please find enclosed the results of the analysis carried out on the samples submitted from Four Wynds Heath Hayes Cannock on 02 July 2004.

I trust you will find these satisfactory but should you have any queries please contact customer services.

Yours sincerely

11-2 XX

K Burrell AUTHORISED SIGNATORY

AGS

14

marked #, are outside the scope of UKAS accordination. Determinations marked \$ were acbcontracted. Unless otherwise stated, CAS Ltd was not responsible for sampling. Information shoul methods and performance characterizations of the determinations are available on request. Unless otherwise agreed, as incerved solar with be deposed of after 3D days, dried solar after 3S days and watersflee/hates after 4D days from the teace of the final monort. Sola enalysis is carried out on endied and ground leal periods of the sample.

Determinations marked * In this persistaatemice not included in the UKAS accordination achadule for our laboratory. Opinions and interpretations expressed herein, and

Repistered in England 2050581

City Analytical Services Limited Rayner House, 80 Lockhurst Lane, Caventry CV6 5P2 Tel +44 (0)24 7658 4800 Fax +44 (0)24 7658 4848 • info@cityanalytical.co.uk

Soil Analysis

PAGE 3 OF 3

AG /98861 Four Wynds Heath Hayes Cannock Your Reference:-Your Order:- AG/001

CAS Number:			527011	527012	527016
Sample Ref			TSI	TS2	TS2
Detname	Method	Units	0.50m	0.40m	0.60m
Arsenic (Total)	30/30C	mg/kg	14	5	6.7
Boron (Soluble)	6	mg/kg	1.3	0.98	1.5
Cadmium (Total)	30	mg/kg	1	< 0.50	0.88
Chromium (Hexavalent)	30B	mg/kg	N/S	N/S	N/S
Chromium (Total)	30	mg/kg	23	16	16
Copper (Total)	30	mg/kg	37	18	26 -
Lead (Total)	30	mg/kg	52	28	88
Mercury (Total)	30C	mg/kg	< 0.10	< 0.10	< 0.10
Nickel (Total)	30	mg/kg	31	15	16 /
Selenium (Total)	30C	mg/kg	0.78	0.28	0.37
Zinc (Total)	30	mg/kg	160	75	160
Cyanide (Total)	14	mg/kg	< 0.50	< 0.50	< 0.50
Phenols (Total)	40A	mg/kg	1.3	< 0.50	< 0.50
Sulphate (Total) as SO3	45	9%	0.29	0.04	0.06
Sulphide as S	47	mg/kg	< 5.0	< 5.0	< 5.0
pH	39	pH units	7.8	7.6	7.9
TPH (Total)	317	mg/kg	1300	210	600
Sulphur (Elemental)	51	mg/kg	< 100	< 100	< 100
PAH (Total)	307	mg/kg	170	7	G

AGS N/S - Not Scheduled I/S - Insufficient Sample

STL

 \cap

111

11

1

A part & Severa Trans Laboratories Limited Registerent in England 2050501 City Analytical Services Limited Rayner House, 80 Lockhurst Lano, Coventry CV6 5PZ Tel. +44 (0)24 7658 4800 Fax. +44 (0)24 7658 4848 • info@cityanalytical.co.uk

÷

Soil Analysis

PAGE 2 OF 3

AG /98861 Four Wynds Heath Hayes Cannock Your Reference:-Your Order:- AG/001

CAS Number:			527007	527008	527009	527010
Sample Ref			TP1	TP3	TP4	TP5
Detname	Method	Units	0.30m	0.20m	0.30m	0.80m
Arsenic (Total)	30/30C	mg/kg	7.2	5.4	5.1	14
Boron (Soluble)	6	mg/kg	0.57	0.26	0.33	1.5
Cadmium (Total)	30	mg/kg	0.63	1.2	0.68	0.72
Chromium (Hexavalent)	30B	mg/kg	< 0.10	< 0.10	2.2	< 0.10
Chromium (Total)	30	mg/kg	32	55	150	66
Copper (Total)	30	mg/kg	37	27	64	63
Lead (Total)	30	mg/kg	60	36	79	100
Mercury (Total)	30C	mg/kg	< 0.10	< 0,10	< 0.10	< 0.10
Nickel (Total)	30	mg/kg	17	21	14	28
Selenium (Total)	30C	mg/kg	0.41	0.38	0.25	0.68
Zinc (Total)	30	mg/kg	130	83	290	200
Cyanide (Total)	14	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50
Phenols (Total)	40A	mg/kg	< 0.50	< 0.50	< 0.50	< 0.50
Sulphate (Total) as SO3	45	%	0.05	0.06	0.03	0.23
Sulphide as S	47	mg/kg	< 5.0	< 5.0	< 5.0	< 5.0
pH	39	pH units	8	7.6	10.1	8
TPH (Total)	317	mg/kg	290	400	< 50	260
Sulphur (Elemental)	51	mg/kg	< 100	< 100	< 100	< 100
PAH (Total)	307	mg/kg	63	13	19	17

AGS N/S - Not Scheduled

STL

13

UÍ.

()

A part of Second Tiese Laboratives Livelant Registered in England 2010/561 City Analytical Services Limited Rayner House, 80 Lockhurst Lane, Coventry CV6 5P2 Tel +44 (0)24 7658 4800 Fax +44 (0)24 7658 4848 • info@cityanalytical.co.uk

Development Landscape and Conservation Manager John Heminsley BA(Hons) MRTPI

DX

16095

APPLICATION NO: CH/99/0092

TOWN AND COUNTRY PLANNING ACT 1990

PLANNING PERMISSION

HADEN RITCHIE PARTNERSHIP MANOR HOUSE LICHFIED STREET TAMWORTH STAFFS B79 7QF LOCKETT & CO LOCKETT HOUSE 30 NEW ROAD KIDDERMINSTER DY10 1AF

PROPOSAL:

NEW INDUSTRIAL UNIT AND ASSOCIATED CAR PARKING TO BE USED AS A TYRE SERVICE CENTRE

LOCATION: CANNOCK ROAD FIVE WAYS HEATH HAYES

Planning permission is granted for the above development as described on the accompanying plans (subject to the following conditions and reasons).

1 The development to which this permission relates must be begun not later than the expiration of five years beginning with the date on which this permission is granted.

Reason

To comply with the requirements of section 91 of the Town and Country Planning Act 1990.

2 The use of the development hereby permitted shall not Commence until a vehicular access 7.3 metres wide with 10 metre radii has been constructed in accordance with the specification shown on the enclosed drawing number CSR 93/36

Reason

In the interests of highway safety.

Development Landscape and Conservation Manager John Heminsley BA(Hons) MRTPI

Civic Centre PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG Tel. (01543) 462621 Fax (01543) 464512 DX 16095

APPLICATION NO:CH/99/0092

3 The use of the development hereby permitted shall not commence until those parts of the site shown on the approved drawing to be used by vehicles for access, parking, turning, loading and unloading have been constructed in concrete, bitumen or asphalt macadam, lined out, drained and lit.

> Thereafter, those parts of the site shall be available for their designated use at all times when the development is occupied.

Reason

In the interests of highway safety.

4 No materials shall be used for the external surfaces of the development other than those specified on the application, except with the written approval of the Local Planning Authority.

Reason

In the interests of visual amenity.

5 The approved landscaping works, including all planting, seeding and turfing, shall be carried out on the first planting and seeding seasons following the occupation of any buildings or the completion of the development whichever is the sooner. Any trees or plants which within a period of five years from the date of planting die, are removed or become seriously damaged or diseased, shall be replaced in the next planting season with others of similar size and species unless the Local Planning Authority gives written consent to any variations.

Reason

In the interests of the visual amenity of the area.

Development Landscape and Conservation Manager John Heminsley BA(Hons) MRTPI

Civic Centre PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG (01543) 462621 (01543) 464512 16095

APPLICATION NO:CH/99/0092

Fax DX

- 6 The development hereby permitted shall not be commenced until:-
- (a) a site investigation including recommendations for remedial treatment has been undertaken;
- (b) the Local Planning Authority has given approval in writing to the method of remedial treatment;
- (c) the approved remedial treatment has been carried out in full.

Reason

In order to enable the development to proceed in a safe environment and to protect the health and safety of its occupiers.

DATED 3007/1999

ON BEHALF OF THE SAID COUNCIL (SEE ACCOMPANYING NOTES)

GEOTECHNICAL ENVIRONMENTAL AND MATERIALS SERVICES LTD

Our Ref: 98/066/1

James Pritchard Esq Concept Project Management Willow Court 34 Thurmaston Lane Leicester LE5 0TE 3 Fellows Yard Plumtree Nottingham NG12 5NS

Tel and Fax 0115 937 7042 Mobile Phone 0976 258723 e mail; pitts@gems-ltd.co.uk

10 Decen	ber 1998 COUNCIL PLANNING SERVICES				
	-9 SEP 19	99			
nonitoria	letter book nu Me no:	passed to:			

Dear Mr Pritchard

FIVEWAYS, CANNOCK - GAS MONITORING

Further to our report of 2 December, we carried out the first gas monitoring visit on 8 December 1998 under the barometric pressure conditions which were required by Cannock Chase Council.

The gas monitoring was carried out using the instrument referred to in Section 3.5 of our report, namely a Geotechnical Instruments GA94A infra-red gas analyser (Serial No. G2751) with a flow pod attachment. Groundwater levels were also recorded in each borehole.

The results were as follows:

Borehole	Oxygen %	Methane v/v%	Methane LEL%	Carbon Dioxide %	Flow (1/h)	Ground- water (mbegl)
1	18.9	nd	nd	0.2	0	3.23
2	20.0	nd	nd	0.1	0	3.27

nd : not detected

Temperature: 11ºC

Barometric Pressure: 993mb and falling

Weather: Heavy and persistent rain; wind moderate SW with strong gusts Ground conditions: very wet

Please do not hesitate to contact us if you have any queries about our results.

Sincerely

John hto ?

Dr John Pitts Director <u>GEM Services Limited</u>

DIRECTORS: DR J PITTS L PITTS REGISTERED OFFICE: 3 FELLOWS YARD PLUMTREE NOTTINGHAM NG12 5NS REGISTERED NUMBER: 3217593

1.0 INTRODUCTION

- Ne An earlier investigation has been carried out based on trial pits and this report JP10381/PC16/AP, 26 October 1998) on behalf of Key Retail Limited and 98/066 of 25 November 1998). should be read in conjunction with the report of that investigation (Report No ATS to carry out additional ground investigation works at Fiveways, Cannock. were instructed by Concept Project Management (Ref:
- 1.2 The main aims of the additional ground investigation were:
- to determine the geotechnical properties of the soils in the southern part of the site in order to aid the design of foundations, that part of the site comprising a back filled cutting to a former mineral railway
- to identify whether special requirements would be required for concrete to be placed in direct contact with the ground or protection accorded to buried metals
- to determine whether contamination resulting from ground gases present arising from the presence of landfills around the site, details of the contents of which are few or absent, or arising from the inclusion of putrescible materials in the back fill to the cutting itself.
- ... Key Retail Limited and ATS. No responsibility will be accepted where this report, either in part or in its entirety is used by a third party. This report was prepared for Concept Project Management and their Clients.

2.0 THE SITE AND GEOLOGY

- 2.1 The site is located at National Grid Reference SK 016 099 on the southern side of a multiple road intersection known as Fiveways which is at Heath Hayes approximately 4km south-east of the town centre of Cannock (Appendix 1). The site forms the western margin of the road intersection with Cannock Road to the north and Hednesford Road to the east. To the west of the site is the car park of a café. The southern limit of the site is marked by mature bushes and semi-mature broadleaf trees.
- 2.2 The site itself if relatively flat lying covered with coarse grass and weeds around the periphery and tarmac in the central part. A raised concrete kerb topped with low bollards cuts the site diagonally from south-west to north-east and marks the northern limit of tarmac surfaced hard standing. The tarmac surface contains a marked depression in its south-eastern part. Standing water was present in the south-east corner of the site and the presence of typical wet ground grass species indicates that this is a common occurrence. At the north-eastern edge of the site is an inspection cover for Telecoms which revealed several lines, including fibre-optic cables at a depth of 1.6m. the lines were traced along the northern boundary of the site although extended up to 6m into the site from the Cannock Road boundary. The local telephone exchange is nearby to the west of the site. No other services were identified by the cable detector survey, although the main aim of the survey was to ensure that the trial pit positions were clear of services.
- 2.3 According to publications of the British Geological Survey, the site is underlain by strata of Middle Coal Measures (Upper Carboniferous) age overlain by boulder clay of Pleistocene age. The Middle Coal Measures are described as alternating mudstones, shales and siltstones with occasional sandstones, coal seams and seatearths. The boulder clay is describes and a sandy gravelly clay.
- 2.4 According to the Environment Agency 'Policy and Practice for the Protection of Groundwater: Groundwater Vulnerability of Leicestershire', the site is underlain by a minor aquifer (Soar alluvium and gravels) with soils of high leaching potential. The soils are designated HU, the U referring to an urban setting in which a worst case vulnerability is assigned to the soils until proven otherwise. The Mercia Mudstones are classified as a 'Non-Aquifer' except for skerries.

KEY RETAIL LTD & ATS

3.0 SITE WORK

- 3.1 Site work was carried out on 13 November 1998 and consisted of two light cable percussion boreholes advanced to a depth (nominally) of 10m below existing ground level. During the boring, samples were taken for descriptive and testing purposes. Standard Penetration Tests (SPT) were also carried out in each boreholes, nominally at a rate of one per metre to 5m and at an interval of 1.5m thereafter.
- 3.2 In each borehole, 50mm internal diameter HDPE standpipe was installed, slotted section from the base of the borehole to within one metre of the surface and surrounded with 10mm pea gravel, with plain section standpipe to close to the surface surrounded by a bentonite seal. A bung-fitting gas tap was placed in each standpipe and a stop tap box secured in place with concrete.
- 3.3 The site work was carried out in accordance with the requirements of BS5930: Code of Practice for Site Investigations. The gas monitoring points were installed in accordance with the recommendations given in Waste Management Paper 27.
- 3.4 The locations of the boreholes are shown on the plan extract in Appendix 2. The logs of the boreholes which contain details of the samples taken and the results of the SPTs are given in Appendix 3.
- 3.5 Gas monitoring visits to the site will be carried out on two successive occasions during times of low (<1000mb) and falling barometric pressure. Concentrations of oxygen, methane, and carbon dioxide will be measured as well as gas flow in the boreholes. An infra-red gas analyser (GA94A Serial No. G2751) with a gas flow pod attachment is used for the monitoring. Barometric pressure, prevailing weather and ground conditions are noted and the depth of any groundwater within the standpipes is also monitored. The results of the gas monitoring will be reported separately.

Report of an Additional Ground Investigation Fiveways, Cannock

4	4	4.0	
	-	5	I RE
The testing was carried out in accordance with the requirements of BS1377:1990 'Methods of test for soils for civil engineering purposes', Parts 1 and 3.	Two samples of groundwater were scheduled for testing for total available sulfate content and pH.	ABORATORY TESTING	ETAIL LTD & ATS Report of an Additional Ground Investigation
-> 5ť	Ø		13 *

KEY RETAIL LTD & ATS

5.0 CURRENT LEGISLATION AND GUIDANCE ON CONTAMINATED LAND

5.1 Environmental Protection Act, 1990

- 5.1.1 The Environmental Protection Act, 1990 (EPA) received Royal Assent on 1 November 1990 and has been implemented in stages. Within the EPA, contaminated land is addressed in Sections 79-82 Statutory Nuisances. The EPA lists eight matters which constitute statutory nuisance as defined by the Act. Of particular relevance in this context are:
 - any premises in such a state as to be prejudicial to health and nuisance;
 - any accumulation or deposit which is prejudicial to health or nuisance

Local Authorities can serve notices on an owner of a contaminated site requiring that the nuisance is abated and the EPA empowers aggrieved individuals to make complaints about statutory nuisance directly to a magistrates court.

5.2 Environment Act, 1995

The Environment Act, 1995 received the Royal Assent on 19 July 1995. The Act sets out extensive provisions concerning contaminated land which are retrospectively inserted into the EPA, 1990 and took effect as a new Part IIA in April 1996. The provisions include a definition of contaminated land which is:

"Land which appears to the Local Authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that:

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled water is being, or is likely to be caused."

Harm is defined as "harm to health of living organisms or interference with the ecological system of which they form part and, in the case of man, includes harm to his property".

The Act provides powers to the enforcing authority (which may be the local authority or the Environment Agency) to serve a remediation notice on the owner or the occupier of the contaminated land, closed landfills or special sites. In the first case, responsibility for remediation lies with the person or persons who caused or knowingly permitted the land to be contaminated. However, if after reasonable enquiry, no appropriate person can be found, the owner or occupier bears the responsibility for undertaking the remediation.

KEY RETAIL LTD & ATS 5.3.1 Guidance on controlling the effects of methane on new developments 5.3 The Building Regulations gassing ground is given in Approved Document C of the Building Regulations For commercial buildings the guidance is qualitative and is given as follows: sought. If the expert so advises, there should be a complete investigation into "In other cases and for non-domestic buildings, expert advise should be the nature of any hazardous gases and their source and the potential of the landfill site for future gas generation." Report of an Additional Ground Investigation Fiveways, Cannock on
6.0 GUIDANCE ON ASSESSMENT OF ANALYSES OF CONTAMINATION

Soil Gases

- Reference is made here to methane, carbon dioxide and oxygen. In 6.1 combination with air, methane forms a mixture which can explode when given a source of ignition and suitable conditions, in the range of concentrations from about 5% to 15% methane by volume in air. These values are termed the lower and upper explosive limits respectively. At concentrations below the lower explosive limit (LEL) there is insufficient methane to support and explosion; at concentrations higher than the upper limit, insufficient oxygen. Corresponding explosive limits in air for a gas mixture of 60% methane and 40% carbon dioxide are between 8% and 20% landfill gas by volume. Gas mixtures in which oxygen is deficient, whilst not explosive at their cores, present a potential explosion risk at their periphery on dilution with air. Poor mixing may enable volumes of flammable gas to exist even where the overall composition may register outside the explosive limits. Any gas mixture containing more than the LEL of flammable gas therefore represents a fire hazard irrespective of whether an explosion can occur.
- 6.2 Low concentrations of potentially explosive gases are often expressed as a percentage of the LEL, 5% of methane in air by volume is equivalent to 100% LEL while 1% methane by volume in air corresponds to 20% LEL. Depleted oxygen concentrations will depress the potential for a methane-containing mixture to explode and therefore reduce the percentage LEL reading recorded by some gas detection instruments.
- 6.3 Landfill gas also represents a major hazard in any restricted space due to a risk of asphyxiation by exclusion of air or to effects from carbon dioxide. A reduction in the oxygen concentration to below 18% is unacceptable and carbon dioxide concentrations of 0.5% and 1.5% have been adopted by the Health and Safety Executive as the maximum acceptable long term (8 hour) and short term (10 minute) exposure limits respectively.
- 6.4 Soil gases may also cause distress to or even kill vegetation. The symptoms of stressed vegetation include yellowing or browning of foliage, premature leaf and needle drop from trees, and, if concentrations of gas are sufficiently high, plant death. Stress may be due to increased carbon dioxide concentrations, oxygen deficiency and/or the presence of other toxic gases. Carbon dioxide is directly toxic to plants, whilst methane, although not directly toxic, will tend to displace soil oxygen.
- 6.5 The principal guidance document on the control of landfill gases is Waste Management Paper No. 27. This provides technical advice on monitoring.

8.0 GEOTECHNICAL ASSESSMENT

8.1 The expected ground conditions in the section of the site were confirmed in that a thick layer of made ground was present marking the back filled mineral line cutting beneath which were found strata of the Mercia Mudstones Group. In summary, the succession was as follows:

FORMATION	DEPTH (m)	THICKNESS (m)
MADE GROUND comprising mixed fill of topsoil, clay, colliery shale, coal, cinders and coke, crushed brick, stone and concrete, tarmac, ash, crushed limestone and some wood, rags, plastic and metal	6.1-6.9m	35
Firm sandy silty CLAY with some fine and medium gravel, with coarse gravel and cobbles in BH2	6.1-6.9	1.5-1.9
Stiff brownish grey silty CLAY becoming completely and highly weathered pale grey fissured and blocky MUDSTONE	8.3-8.8	0.7-1.3
Moderately weathered pale orangey brown thinly bedded fine SANDSTONE (BH1 only)	9.5	0.1 proven

- 8.2 The consistency of the made ground was predominantly very loose with the SPT rods falling under self weight in part of the sequence in BH1. The lower part of the made ground in BH1 appeared to become medium dense with higher blow counts over two tests. However, the individual increments for the two tests ranged for 5 to 11 for 75mm and 3 to 8 blows for 75mm. Therefore, although the fill may be slightly more dense, large fragments, probably wood were probably influencing the total value for the test.
- 8.3 The gravelly clay beneath the fill also showed a considerable range of undrained shear strength values. Using the relationship between SPT 'N' value and undrained shear strength developed by Stroud (1974) and assuming an f₁ value of 5 based on the assessment of plasticity characteristics, an undrained shear strength of 165kPa is indicated at a depth of 8m in BH1, whereas in the higher part of the stratum in BH2 (6.5m), the equivalent value is 95kPa.
- 8.4 Once the boreholes penetrated the Mercia Mudstones Group and rock grade material, albeit weathered, was identified, 'N' values of >50 were achieved very quickly. An 'N' value of 50 corresponds to an undrained shear strength of at least 250kpa for these strata.

KEY RETAIL LTD & ATS 8.5 8.6 Concentrations of soluble sulfate in the groundwater samples tested ranged from <0.2g/l in BH1 to 2.4g/l from the strike at 3.0m in BH2. The pH values groundwater level rose following the initial strike, 0.3m to 0.6m in BH1 and the in BH2 only one of which was within the made ground. In each case the A single groundwater strike was identified in BH1 with three separate strikes of the same samples were 7.9 and 7.8 respectively. appreciated that groundwater levels may vary as a result of seasonal and upper strike in BH2. However, in BH2, the strike at 8.3m rose 1.0m in 20 other factors. minutes and the strike at 6.4m rose 1.5m in 20 minutes. It should be Report of an Additional Ground Investigation Fiveways, Cannock

9.0 RECOMMENDATIONS AND CONCLUSIONS

- 9.1 An additional phase of ground investigation was carried out at the site of a proposed new ATS depot at Fiveways, Heath Hays, Cannock.
- 9.2 It is recommended that the proposed building is supported on piled foundations. Pre-cast concrete driven piles are recommended in order to avoid arisings being brought to the surface which, in parts of the site may represent a risk to human targets and which may also prove expensive to dispose of. Although a very conservative design for the northern part of the site, it is recommended that the piles are driven to the weathered mudstones characterised by an SPT 'N' value of at least 50. In addition, in view of the very mixed and loose nature of the made ground, it is recommended that the piles are designed for end bearing only. This should allow some capacity for the piles in the back filled railway cutting to accommodate any negative skin friction generated by subsequent settlement of the fill under self weight or if loaded by an external source.
- 9.3 For a 250mm square section pile driven to 9m, a working load based on end bearing of 58kN may be assumed for a minimum 'N' value of 52. This is based on an N_c value of 9 and a Factor of Safety on end bearing of 2.5.
- 9.4 A suspended slab is recommended for the new building as ground conditions vary very greatly between the northern part of the site which is underlain by granular fill over natural, mainly granular soils, and the southern part of the site occupied by the back filled railway cutting.
- 9.5 Concentrations of soluble sulfate in the groundwater samples tested were variable. Concrete to be placed in direct contact with the made ground back filling the railway cutting should be designed in accordance with the recommendations in BRE Digest 363 (1991) for Class 3 sulfate conditions. The pH values of the groundwaters from the back filled cutting were on the alkaline side of neutral. Therefore, no additional protection needs to be provided to buried metals associated with the redevelopment in that part of the site.
- 9.6 The data in this report are from a limited investigation carried out by Geotechnical Environmental and Materials Services Limited. The methods of investigation applied can examine only a small part of the subsurface conditions which may be affected by the construction and life of the proposed works. Therefore, although the values and opinions are given in good faith, subsequent excavation at the time of construction may reveal conditions which were not exposed during the site investigation and which could not therefore be taken into account. Where this report is to be included in contract documents, it should be made clear to tenderers that they shall make their own interpretation and obtain confirmation of the data.

APPENDIX 1

SITE LOCATION MAP

Contr	ract	: FIVEWAYS, CA	NNOCK	EMENT		Boreh	ole No :	2		
Equip Light (ment a	and Methods : percussion - 150mm dia.	Ground Level			Job Nu Dates	imber	98/06 13-11	6/1 -98	
Depth (m)	Thick ness	De	escriptions		Legend	Red. Level	in situ tests	Sample Taken	Sample Depth	Water Level
0.00		MADE GROUND comprising ta with a little coal, some clay, and	rmac surfacing over pa occasional rags	e grey ash fill			(0) 45	В	0-0.5	
		- becoming mixed fill of grey as ceramic, occasional wood and	sh, gravel, brick fragmei d rags at 1.0m	nts, concrete,			(C) 15	в	1.0-1.0	
							(C)6	В	2.0-2.5	
		 becoming wet dark grey mixe medium gravel, brick fragmen occasional plastic and metal a) wet dark grey mixed granular fill with som gravel, brick fragments, crushed concrete, s al plastic and metal at 2.8m				(C) 11	B W	3.0-6.0 3.0	⊻ ⊻
							(0)0		-	
							(C)7			T
6.1	6.1	Firm orangey brown slightly sa fine gravel - becoming soft to firm with so	ndy silty CLAY with a lit	tle rounded ravel at 6.5m			(C) 19	DB	6.1 6.5-7.0	⊻
7.6	1.5	- becoming pale grey and pale gravel at 7.5m	e brown with occasiona	limestone				D	7.5	
8.3	0.7	Firm brown sandy CLAY with	coarse gravel and cobb	les			(C) 30	В	8.0-8.5	⊥ ⊻
		- becoming completely weath at 9.3m	ered pale grey fissured	MUDSTONE			(C) 55/225	D	9.0 9.3	
9.6	1.3	En	d of Borehole					-		
Key Samı U - D -	ple Type Undistu Disturbe	In Situ Te S - SPT es C - SPT rbed ed Water Le	ests F(S) Value F(C) Value evels tter Level	General Re 1. Borehole 2. Standpip Plain se 3. All wate	marks e cased to be installed ction with b r strikes wit	8.0m to 9.6m; s entonite se h fast inflov	lotted section al vs	n with pe	a gravel to 1	.0m;
W -	Water No Rec	covery $(2 - 3)$	ater Strike andpipe Reading	Sheet No.	1 of 1		Appendix	c:4	Fig No	2

GEOTECHNICAL ENVIRONMENTAL AND MATERIALS SERVICES LTD

APPENDIX 3

LOGS OF BOREHOLES

quip	ment	and Methods : percussion - 150mm dia	Ground Level	:		Job Nu Dates	mber	98/06	6/1 -98	
pth n)	Thick		escriptions		Legend	Red. Level	In situ tests	Sample Taken	Sample Depth	Wate
00		MADE GROUND comprising d with much burnt colliery shale a - becoming dark grey ash fill w brick, clay and sandstone col	ark greyish brown topso nd occasional brick frag ith occasional burnt coll obles at 0.6m			(C)6	в	0-0.5 1.0-1.5		
		- becoming soft to firm dark g cinder and coke fragments a	ey sandy clay fill with o t 2.0m	ccasional			(C)7	в	2.0-2.5	
		- becoming soft dark greyish b	prown sandy gravelly cla	y fill at 3.0m			(C)0	В	3.0-3.5	
						1	(C)4	B W	4.0-4.5 4.3	2
		- becoming dark grey very we at 4.9m	t crushed brick, concret	e and stone fill			(C) 27	в	5.0-5.5	
		- becoming black ash and sa	nd fill with much wood a	t 5.8m				D	6.0	
		- becoming gritty ash with lim	estone fragments at 6.5	m			(C) 22	в	6.5-7.0	
5.9	6.9	Firm brown sandy CLAY with sub-angular gravel	some fine and medium	angular and				D	7.5	
		- becoming very stiff at 8.0m					(S) 33	В	8.0-8.5	
8.8	1.9	Highly weathered pale grey b	locky MUDSTONE				(S) 52	D	9.0	
9.5 9.6	0.7 0.1	Moderately weathered, pale of grained SANDSTONE	orangey brown thinly be d of Borehole	dded fin e				В	9.5-9.6	
(ey Samp J - 1 D - 1	Je Typ Jndistu Disturb	In Situ T S - SP In Situ T S - SP In Situ T C - SP In Situ T C - SP In Situ T S - SP In Situ S - S	ests T(S) Value T(C) Value evels ater Level	General Re 1. Borehol 2. Gas/gro 1.0m wi seal; sto 3. Chisellir	emarks e cased to undwater n th pea grav op tap box in ng from 6.61	7.5m nonitoring s el surround nstalled m to 6.9m.	tandpipe ins ; top metre i 0.5hours	talled to sin plain se	9.6m; slotted	d to
N -	Water		ater Strike andpipe Reading	Sheet No.	1 of 1		Appendi	x:4	Fig No	1

GEOTECHNICAL ENVIRONMENTAL AND MATERIALS SERVICES LTD

Our	ref:	UT\1999\000442\001
Your	ref:	CH/99/0092

Date: 19th May 1999

Cannock Chase Council	CANNOCLOS	CT PULLATION					
Civic Centre,	COUNC	SE DISTRIC					
P O Box 28,	PLANNING SE	ERVICES					
Beecroft Road	0.0 1511						
Cannock	Z 6 MAY	1999					
Staffordshire		201					
WS11 1BG	fetter book no. file no.	Dassed to:					

Dear Sir/Madam

NEW INDUSTRIAL UNIT AND ASSOCIATED CAR PARKING AT CANNOCK ROAD, FIVE WATS, HEATH HAYES

Thank you for referring the above application, which was received on 8 March 1999.

I apologise for the delay in replying, and trust that the Agency's comments, as set out below, will still be taken into consideration.

The Agency has no objections to the proposed development but wishes to make the following comments:

According to our records there are 5 landfill sites within 250 metres of the applicaton site.

Landfill site ref CC 35 known as Cannock Chase 35, lies 120 metres to the north east of the application site. According to our records it was filled with unknown wastes.

Landfill site ref CC 17 known as Cannock Chase 17, lies 140 metres to the south of the application site. According to our records it was filled with colliery spoil.

Landfill site ref CC 4 known as Cannock Chase 4, lies 230 metres to the south east of the application site. According to our records it was filled with colliery waste.

Site 1 (ref S-O-T 53) is approximately 90 metres to the east and accepted household waste. Site 2 (ref S-O-T 49) is approximately 130 metres to the north east and accepted general wastes.

In view of the above landfill sites and the unknown previous uses of this site, we would recommend the following conditions on any planning permission granted:

Environment Agency Environment Agency Upper Trent Area, Sentinel House, Fradley Park,, Lichfield, Staffordshire WS13 8RR Telephone : 01543 444141 Fax : 01543 444161

CONDITION

No development approved by this permission shall be commenced until the application site has been subjected to a detailed scheme for the investigation and recording of contamination and a report has been submitted to and approved by the Local Planning Authority.

REASON

To prevent pollution of the water environment.

Information

Activities carried out at this site in the past may have caused contamination of soils, subsoils and groundwater. It is recommended that the site report includes the following:

(i) a desk study to identify historical land use with relation to potential ground contamination; and,

(ii) a limited soils investigation to identify the level of soil contamination on the site and the potential to cause pollution to the aquatic environment. The requirements of this investigation to be based upon previous land use information. In the event that contamination of this site is confirmed the developer should liaise with the Agency on measures required to protect surface water and groundwater interests.

The investigation shall include surveys to ascertain the presence of landfill gas, together with a report on the surveys to be submitted and approved by the Local Planning Authority. The report shall include the results of the survey and recommendations regarding any structural precautions to be incorporated into the development. The development shall be constructed in accordance with the approved details, unless otherwise agreed in writing by the Local Planning Authority.

The investigation shall also include leachability testing, as well as sampling of any groundwater encountered during the investigation.

CONDITION:

No development approved by this permission shall be commenced until a scheme for the provision and implementation of the method of working of the site has been approved by the Local Planning Authority.

The scheme shall be implemented in accordance with the approved details.

REASON:

To prevent pollution of the water environment.

In addition to the above, the Agency would also wish to see the following conditions:

CONDITION:

Prior to being discharged into any watercourse, surface water sewer or soakaway system, all surface water drainage from parking areas and hardstandings shall be passed through trapped gullies with an overall capacity compatible with the site being drained.

REASON:

To prevent pollution of the water environment.

Site operators should ensure that there is no possibility of contaminated water entering and polluting surface or underground waters.

The information relating to landfill sites has been compiled from records and files from various sources and of varying degrees of reliability. The Agency is not able to offer any warranty as to the accuracy or completeness of the information provided, nor can it accept any liability in respect thereof.

The Agency has only very limited records of colliery and coal wastes. Therefore, we recommend that your enquiries are addressed to The Coal Authority, Mining Reports Office, Bretby Business Park, Ashby Road, Burton - on - Trent, Staffs. DE15 0QD.

Yours faithfully

S Holland

Mr Cliff Dobson Customer Services Manager

Please ask for: Sharron Holland

APPENDIX C

Appendix C: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Situation	Severity	Description	Examples
	Category		
ACUTE PROBLEM	Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
SIGNIFICANT HARM TO SENSITIVE RECEPTOR	Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
SIGNIFICANT HARM TO LESS SENSITIVE RECEPTOR	Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non- aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
NON- SIGNIFICANT HARM	Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily-repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or
	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

		Sev	verity	
Probability	Severe	Medium	Mild	Minor
High	Very high	High	Moderate	Low/moderate
Likely	High	Moderate	Low/moderate	Low
Low	Moderate	Low/moderate	Low	Very low
Unlikely	Low/moderate	Low	Very low	Very low

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe.

16

www.grontmij.co.uk

APPENDIX B

Appendix B: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data

become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.

www.grontmij.co.uk

APPENDIX C

Gr Gr	ont	mij		V	VIN	DC	ow sa	MPLE L	OG	WS01	.⊏ N
Project							Client		Lc	ogged By	
West of Fi	ivewa	ys			T		Cannock C	hase District Counci	1	BJD	
Job No 106	270	Da	ate 0	8-12-10 8-12-10		Ground	l Level (m)	Co-ordinates	C	hecked By	
SAMPLE	ES & T	TESTS	5			STRATA					nent
Depth	Туре	Test Result	Wate	Reduced Level	Legend	Depth (Thickness)		DESCRIPT	ION		Instrun
0.10-0.10 0.30-0.30 0.70-0.70 1.50-1.50	ES ES ES					0.1 0.5 0.5 0.7 (0.45) 1.1 (0.60) 1.9	5 MADE GR MADE GR O coarse sub of reinforcii MADE GR Coarse sub MADE GR Coarse sub MADE GR Fibrous ma MADE GR Fibrous ma Fibrous ma Fi	DUND: (Turf over) Brown DUND: Brown very grave angular to subrounded b og steel, pottery, glass ar DUND: CONCRETE DUND: Brown very grave angular to subrounded b glass and plastic noted. DUND: Dark grey sandy terial noted at 0.8m DUND: Orange brown S. DUND: Orange brown Claye ium angular to subround a at 1.9m bgl.	I slightly sandy CLAY. I Ily clayey SAND. Grav rick, quartz and concre nd plastic noted. Ily clayey SAND. Grav rick, quartz and concre CLAY with ash. AND ay slightly gravelly SAN led sandstone and qua	(Topsoil). vel is fine to ete. Fragments vel is fine to ete. Fragments ID. Gravel is irtz.	
triko Denthi (m) -	G	roundwate	er		Gei	- heral Re	marks			Final Dep	 pt!
пке Depth: (m) R	one Er		ater Rer	TIARKS	1.90 Loca	m: Refusal - tion: Back ga	Concrete arden in lawn. No groun	dwater strike		1.9m b	bg
											_

6-									~~	WINDOW SAMPLI	ΕN
Y G	ont	tmij		V	VIN	DO	w sa		OG	WS02	
Project							Client			Logged By	
West of F	ivewa	iys					Cannock Cl	nase District Council		BJD	
Job No 106	3270	Da	ate 0	8-12-10 8-12-10		Ground I	Level (m)	Co-ordinates		Checked By	
SAMPL	ES &	TESTS						STRATA			ent
Depth	Туре	Test	Nate	Reduced	Legend	Depth		DESCRIPTI	ON		Istrum
0.10-0.10	ES		-			× 0.10	MADE GRO	UND: Brown sandy CLA	Y (topsoil)	/	
0.30-0.30	ES				\bigotimes	× (0.40) × 0.50	MADE GRO Gravel is fine	UND: Brown clayey grav e to very coarse angular	elly SAND with cor to subrounded qua	ncrete cobbles. artz, brick and	
0.70-0.70	ES					↑ <u>0.55</u>	Concrete.		uired breaking out	t with a drill	
					\bigotimes	<u>√ 0.90</u> _	MADE GRO	UND: Dark brown clayey	very gravelly SAN	ID. Gravel is	Ë
					\bigotimes		MADE GRO	to very coarse brick.	with fine to very co	/	
					\bigotimes	× × (1.30)	gravel of brid	:k	-	_	
					\bigotimes	* <					
2 20 2 50						2.20					
2.20-2.50	ES				\bigotimes	2.50	MADE GRO	UND: Dark brown grey g Im angular sandstone ar	ravelly SAND with d shale. Possible	n ASH. Gravel is	
						-	staining at 2 End of Hole	.4m at 2.5m bol.		/	
						-		Ū			
						-					
						-					
				-							
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						-					
						[
						-					
						-					
ike Depth: (m)	G Rising to:	(m) Groundwate	er vater Rei	narks	Ge 2.50					Final Dep	oth
١	lone E	ncountere	d		Loca	ation: Back gard	ien in lawn. No ground	vater strike		2.5m b	gl
Contractor	Sherw	ood Dril	ling		М	ethod/			All dime	ansions in metres Scale 1.50	
			5		PI	lant Used	Hand he	Id window sampling	All dime	snaiona in metres acide 1:50 Shoot 1	

Grontm	i	j
		•

WINDOW SAMPLE LOG

WINDOW SAMPLE No

Project							Client			Logged By	
West of Fi	vewa	iys					Cannock Cl	nase District Council		BJD	
Job No 106	270	Dat	te 08 08	8-12-10 8-12-10		Ground L	.evel (m)	Co-ordinates		Checked By	
SAMPLE	S&	TESTS	۶Ľ					STRATA			hent
Depth	Туре	Test Result	Nate	Reduced	Legend	Depth		DESCRIPTIO	N		nstrum Back
0 10-0 10	FS	Roourt	-	2010		- 0.25	MADE GRO	UND: Brown clayey SAND) (Topsoil).		
0.30-0.30	ES				<u>x1, x1</u>	<u>p </u>	MADE GRO	UND: Dark brown gravelly	SAND with ASH.	Gravel is fine to	
-					<u>17</u> · 77 · 14	√- 	very coarse recovered.	subangular to subrounded	quartz and brick	Whole bricks	
_ 0.70-0.70 -	ES				<u>\\</u> 	(1.30)					
-					11 41						
1.30-1.50	ES				1/ 1/ 1/	- - 1.55					
-						× (0.45)	MADE GRO	UND: Brown clayey slightly	y gravelly SAND.	Gravel is fine to	
-					\bigotimes	× (0.43) 2.00					_日
						-	End of Hole	at 2m bgl.			
-						-					
Ē											
-						-					
						-					
						-					
-						-					
						-					
-						-					
						Ę					
						-					
-						-					
						-					
- 3						-					
2-						-					
						-					
						-					
						-					
						-					
5						-					
						-					
						-					
-						-					
						-					
						ŀ					
<u>;</u>						-					
						-					
						-					
						Ę					
] - - -						-					
Strike Denth (m) D	ising to	Foundwate	r r		Ge	L neral Rem	larks			Final D)epth
) Suike Deptn: (m) Ri	ising to:	(III) Groundwa	ner Ker	IIdrkS	2.0m Loca	n: Refusal - Chip ation: Back gard	o board en in lawn. No ground	vater strike		2m	bal
	one E	ncountered									~ J'
Contractor S	Sherw	ood Drilli	ng		M Pl	ethod/ lant Used	Hand he	ld window sampling	All dime	nsions in metres Scale 1:50	eet 1 of 1

	Grontm	ij
--	--------	----

WINDOW SAMPLE LOG

WINDOW SAMPLE No

Project								Client			Logged By	
West of Fi	vewa	ays						Cannock C	hase District Counc	il	BJD	
Job No 106	270		Date	e 08 08	3-12-10 3-12-10		Ground L	.evel (m)	Co-ordinates		Checked By	
SAMPLE	ES &	TEST	ſS	Sr.					STRATA			nent
Depth	Туре	Tes	st ult	Nate	Reduced	Legend	Depth		DESCRIP	ΓΙΟΝ		nstrum Back
0 10-0 10	FS	1000		-		· <u>, 1 1, · , 1 1</u> ,	× 0.10	MADE GRO	OUND: (Turf over) Brown	n sandy CLAY (Top	soil)	=
0.30-0.30	ES					\bigotimes	×	MADE GRO	UND: Red GRAVEL of	fine to very coarse	angular shale.	
0.70-0.70	ES						(0.80)					
-							× 0.90	MADE GRO shale.	OUND: Red clayey sand	y GRAVEL of fine to	o medium angular	
_ 1.20-1.50 -	ES					\bigotimes	× (0.00) × 1.50					
- - -							(0.50)	MADE GRO gravel of qu	OUND: Black fine ASH wartz.	with rare fine to mee	lium subangular	
-							<u>- 2.00</u> -	End of Hole	at 2m bgl.			<u> ··日</u> .·
Ē							-		Ū			
-							-					
							-					
-							-					
-							-					
-							-					
-							-					
-							-					
-							-					
-							-					
-							-					
-							-					
							-					
14							-					
							-					
223 							-					
							-					
							-					
SHE							-					
							-					
							-					
ອ ອີ ອີ							-					
AYS							-					
							-					
b b							-					
- L							-					
2000 - 00000 - 00000 - 000							-					
062							-					
- - -							-					
v sav		Ground	water			Ge	[neral Rem	arks			Final Dr	epth
Strike Depth: (m) R	tising to:	(m) Gro	undwat	er Ren	narks	2.0m	n: Refusal - Der ation: Back gard	nse gravel en in lawn. No ground	lwater strike			- pr st t
	one E	ncount	ered								2m b	gi
Contractor S	Sherv	vood [Drillir	ng		M Pl	ethod/ lant Used	Hand he	eld window sampling	All dim	ensions in metres Scale 1:50 Shee	et 1 of 1

- Notes:Logged by BJD1. No groundwater was encountered within any of the below trial pits2. Sample frequency: 0.1m, 0.3m & 0.7m3. All pits undertaken on 13/12/2010

HP No: 1	House Address: 2 Newlands Court	Location of HP: Gravel area at front
Depth (M BGL):	Strata Description:	Additional notes:
0.00 - 0.70	MADE GROUND: Brown silty gravelly SAND with fragments of brick and concrete. Gravel is fine to very coarse angular to sub rounded quartz, brick and concrete.	No evidence of contamination
HP No: 2	House Address: 4 Newlands Court	Location of HP: Flower Bed in Rear Garden
Depth (M BGL):	Strata Description:	Additional notes:
0.00 - 0.50	MADE GROUND: Brown gravelly SAND. Gravel is fine to coarse sub angular to sub rounded quartz (Topsoil).	No evidence of contamination
0.50 - 0.70	MADE GROUND: Brown silty gravelly SAND. Gravel is fine to coarse sub angular to sub rounded quartz.	Fragments of black stained timber, broken glass and concrete.

HP No: 3	House Address: 6 Newlands Court	Location of HP: Flower Bed in Rear Garden
Depth (M BGL):	Strata Description:	Additional notes:
0.00 - 0.25	MADE GROUND: Brown silty SAND (Topsoil)	No evidence of contamination
0.25 0.70	MADE GROUND: Brown gravelly SAND. Gravel is	Plastic fragments at 0.30m bal
0.25 - 0.70	fine angular brick, concrete and glass.	Flastic fragments at 0.50m by

HP No: 4	House Address: 5 Newlands Lane	Location of HP: Turfed area in Front Garden
Depth (M BGL):	Strata Description:	Additional notes:
0.00 - 0.70	MADE GROUND: Turf over dark brown silty gravelly SAND with concrete cobbles. Gravel is fine to coarse angular to subrounded quartz, sandstone and brick.	Fragments of metal pipe, cable and fabric.

HP No: 5	House Address: 10 Newlands Court	Location of HP: Flower Bed in Rear Garden
Depth (M BGL):	Strata Description:	Additional notes:
	MADE GROUND: Brown gravelly SAND. Gravel is	
0.00 - 0.30	fine to coarse sub angular to sub rounded quartz	No evidence of contamination
	(Topsoil).	
0.20 0.70	MADE GROUND: Brown gravelly SAND. Gravel is	
0.30 - 0.70	fine angular brick and concrete.	

APPENDIX D

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode lane Solihull West Midlands B912AA

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 14 January 2011 H_GRONTMIJ_SOL 101210-8

Fiveways 111099

We received 16 samples on Friday December 10, 2010 and 7 of these samples were scheduled for analysis which was completed on Friday January 14, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

SDG:	101210-8	Location:	Fiveways	Order Number:	
Job:	H_GRONTMIJ_SOL-42	Customer:	Grontmij	Report Number:	111099
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2558268	WS01		0.10	08/12/2010
2558301	WS01		0.30	08/12/2010
2558326	WS01		0.70	08/12/2010
2558356	WS01		1.50	08/12/2010
2558384	WS02		0.10	08/12/2010
2558417	WS02		0.30	08/12/2010
2558459	WS02		0.70	08/12/2010
2558492	WS02		2.20 - 2.50	08/12/2010
2558525	WS03		0.10	08/12/2010
2558755	WS03		0.30	08/12/2010
2558791	WS03		0.70	08/12/2010
2558861	WS03		1.30 - 1.50	08/12/2010
2558887	WS04		0.10	08/12/2010
2558912	WS04		0.30	08/12/2010
2558948	WS04		0.70	08/12/2010
2558985	WS04		1.20 - 1.50	08/12/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol Laborate	ories	C	ER	T	IF	IC	А.	ΤЕ)F	A	N	٩L	.Y	SI	S		
SDG: 101210 Job: H_GROI Client Reference:	8 NTMIJ_SOL-42	Location Custome Attention	: r: 1:	F G G	ive Gro Gar	ewa ntm eth	ys ij Tay	ylor									Order Number: Report Number: Superseded Repor	t:
				T	Ē	es	t	S	cl	ne	ec	lu	le)				
SOLID Results Legend X Test	Lab Sample	No(s)		2558301		2558326		2558384		2558492		2558755		2558948		2558985		
No Determination Possible	Custome Sample Refe	er rence		WS01		WS01		WS02		WS02		WS03		WS04		WS04	1	
	AGS Refere	ence																
	Depth (m	1)		0.30		0.70		0.10		2.20 - 2.50		0.30		0.70		1.20 - 1.50		
	Containe	r	250g Amber Jar	400a Tub	250g Amber Jar	400g VOC	250g Amber Jar	200g Amber Jan 400g Tub	400g Tub	60g VOC	250g Amber Jar	400g VOC	250g Amber Jar	400g Tub	400g Tub	60g VOC		
Asbestos Containing Material Screen	All	NDPs: 0 Tests: 7	×			×		x	<u>,</u>			x		x x	<u>,</u>			
Boron Water Soluble	All	NDPs: 0 Tests: 7	×		v		v	· ·	• •		v		v	<u>, ,</u>				
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 4	^		^ ~		^		• •		^ ~		^					
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 4		-	× ~			/	(/		×			2	(/			
GRO by GC-FID (S)	All	NDPs: 0 Tests: 4			^					v	^				• 	v		
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 7		v		~ ~		v	v	<u>^</u>		~ ~		v	v	^		
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 7	x	<u>`</u>	x		X	^)	^ (•	X	<u>^</u>	X	<u>^</u>)	• •			
	Barium	NDPs: 0 Tests: 7	x		x		x	>	<mark>(</mark>		x		X)	<mark>(</mark>			
	Beryllium	NDPs: 0 Tests: 7	x		x		x	>	<mark>(</mark>		x		x)	<mark>(</mark>			
	Cadmium	NDPs: 0 Tests: 7	x		x		x	>	C		x		X		C			
	Chromium	NDPs: 0 Tests: 7	x		x		x)	<mark>(</mark>		X		X)	<mark>(</mark>			
	Copper	NDPs: 0 Tests: 7	x		x		x	>	C		x		X	>	C			
	Lead	NDPs: 0 Tests: 7	x		x		x	>	C		x		X	,	<mark>(</mark>			
	Mercury	NDPs: 0 Tests: 7	x		x		x	>	<mark>(</mark>		X		X)	<mark>(</mark>			
	Nickel	NDPs: 0 Tests: 7	x		x		x)	<mark>(</mark>		X		x)	<mark>(</mark>			
	Selenium	NDPs: 0 Tests: 7	x		x		x)	<mark>(</mark>		X		x)	<mark>(</mark>			
	Vanadium	NDPs: 0 Tests: 7	x		x		X)	<mark>(</mark>		X		X	>	<mark>(</mark>			
	Zinc	NDPs: 0 Tests: 7	×	,	×		x)	(X		x		<pre></pre>			
PAH by GCMS	All	NDPs: 0 Tests: 3					x				X) 	(

111099

ALcontrol Labo	ratories	CI	ER	TII	FIC	A	Е	OF	- 4	N.	AL	_Y	SI	5		
SDG: 1012 Job: H_G Client Reference:	210-8 RONTMIJ_SOL-42	Location: Custome Attention	r: :	Fiv Gro Ga	vewa ontrr ireth	ys iij Tay	lor								Order Number: Report Number: Superseded Report:	111099
SOLID Results Legend X Test	Lab Sample	• No(s)	2558301	00002	2558326	1000004	0000	2558492		2528755		2558948		2558985		
No Determination Possible	Custom Sample Refe	ier erence	TUSW	14004	WS01	200.44	WCCC	WS02		WSU3		WS04		WS04		
	AGS Refer	ence														
	Depth (r	m)	0.30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.70	0.10	0.00	2.20 - 2.50		0.30	2	0.70		1.20 - 1.50		
	Contain	ier	400g Tub 250g Amber Jar	250g Amber Jar	60g VOC 400g Tub	250g Amber Jar	250g Amber Jar	400g VOC	250g Amber Jar	400g Tub	250g Amber Jar	400g Tub	400g Tub	60g VOC		
рН	All	NDPs: 0 Tests: 7	×	< <	x) 	(X		x		x	X			
Sample description	All	NDPs: 0 Tests: 7	x	x		x	x		x		X	2	K			
Semi Volatile Organic Compound	is All	NDPs: 0 Tests: 2		x			x									
Total Organic Carbon	All	NDPs: 0 Tests: 7	x	x		x	x		x		X	2	<mark>K</mark>			
Total Sulphate	All	NDPs: 0 Tests: 3		x					x		x					
TPH CWG GC (S)	All	NDPs: 0 Tests: 4		x			x		x			2	K			
VOC MS (S)	All	NDPs: 0 Tests: 2			x			x								

CERTIFICATE OF ANALYSIS

Validated

SDG:	101210-8	Location:	Fiveways	Order Number:	111099
Job:	H_GRONTMIJ_SOL-42	Customer:	Grontmij	Report Number:	
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Sample Descriptions

Grain Sizes												
very fine	<0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	ı - 2mm co	oarse	2mm - 10	Omm	very coa	arse	>10mm
Lab Sample No	(s) Custor	ner Sample Ref	. Depth (m)	Col	our	Description	(Grain size	Incl	usions	Inclu	isions 2
2558301		WS01	0.30	Dark	Brown	Sand	0	0.1 - 2 mm	Ste	ones	E	Brick
2558326		WS01	0.70	Dark	Brown	Silty Clay	0.0	63 - 0.1 mm	Ste	ones	1	N/A
2558384		WS02	0.10	Dark	Brown	Loamy Sand	0	0.1 - 2 mm	Ste	ones	N	lone
2558492		WS02	2.20 - 2.50	Dark	Brown	Silty Sand	0.0	63 - 0.1 mm	Ste	ones	Crush	ed Brick
2558755		WS03	0.30	Dark	Brown	Sandy Loam	0	0.1 - 2 mm	Ste	ones	N	lone
2558948		WS04	0.70	Light	Brown	Sandy Loam	0	0.1 - 2 mm	Ste	ones	N	lone
2558985		WS04	1.20 - 1.50	Light	Brown	Sandy Silt Loar	m 0.0	63 - 0.1 mm	Ste	ones	Crush	ed Brick

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

	inoratories		CERTI	FICATE OF A	NALYSIS		L	vailuated
SDG: Job: Client Reference:	101210-8 H_GRONTMIJ	_SOL-42	Location: Fin Customer: Gr Attention: Gr	veways rontmij areth Taylor		Order Number: Report Number: Superseded Repo	111099 ort:	
Results Legend		Customer Sample R	WS01	WS01	WS02	WS02	WS03	WS04
M mCERTS accredited. M mCERTS accredited. S Non-conforming work. a Aqueous / sottled sample. diss.filt Dissolved / filtered sample. subcontracted test. w // recovery of the surrogat check the efficiency of the results of the individual co within the samples are not this recovery.	e standard to method. The impounds corrected for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.30 Soil/Solid 08/12/2010 10/12/2010 101210-8 2558301	0.70 Soil/Solid 08/12/2010 10/12/2010 101210-8 2558326	0.10 Soii/Solid 08/12/2010 10/12/2010 101210-8 2558384	2.20 - 2.50 Soil/Solid 08/12/2010 10/12/2010 10/12/2010 2558492	0.30 Soli/Solid 08/12/2010 10/12/2010 101210-8 2558755	0.70 Soii/Solid 08/12/2010 10/12/2010 101210-8 2558948
Component Asbestos Containing	LOD/Ur	TM001	No ACM Detected	No ACM Detected	No ACM Detected	No ACM Detected	No ACM Detected	No ACM Detected
Material Screen		TWOOT	NO ACIM Delected	NO ACM Delected	NO ACINI Delected	NO ACINI Delected	NO ACINI Delected	NO ACIVI Delected
Soil Organic Matter (SON	VI) <0.35	% TM132	3.65 #	4.5 #	2.86 #	4.07 #	3.74 #	<0.35 #
рН	1 pF Units	H TM133	8.08 M	8.29 M	6.18 M	8.46 M	8.07 M	8.41 M
Chromium, Hexavalent	<0.6 mg/k	5 TM151	<3 #	6.49 #	<1.2 #	<0.6 #	<1.2 #	<0.6 #
Arsenic	<0.6	5 TM181	10.6	14.7	5.63	9.71	7.4	7.53
Barium	mg/k <0.6	9 5 TM181	M 246	454 M	68.4	M 191	M 148	M 157
Beryllium	mg/k <0.0	9 1 TM181	# 1.16	# 0.961	# 0.252	# 0.558	# 0.728	# 1.16
Cadmium	mg/k <0.0	9 2 TM181	M 1.8	3.49	0.5	M 1.26	0.8	0.636
Chromium	mg/k <0.9	9 TM181	M 31.9	39.1	9.41	M 20.1	M 12.4	M 28.1
Copper	mg/k <1.4	а К ТМ181	M 78.9	172 M	M 14.5	M 37.4	M 27.7	M 19.1
Lead	mg/k <0.7	g 7 TM181	M 189	403	M 40.9	M 160	M 84.7	M 23.8
Mercury	mg/k <0.1	9 4 TM181	M <0.14	M <0.14	M <0.14	M <0.14	M <0.14	M <0.14
Nickel	mg/k <0.2	9 TM181	M 34.5	40.3	M 6.15	M 27.6	M 14.2	M 32.6
Selenium	mg/k <1 mg	q /kg TM181	M <1	M <1	M <1	M <1	M <1	M <1
Vanadium	<0.2	2 TM181	# 37.9	# 27.3	# 13.4	# 26.4	# 17.8	# 31.7
Zinc	mg/k <1.9	9 TM181	# 498	# 1060	# 77.5	# 144	# 178	# 75.9
Sulphate, Total	mg/k <48	g TM221	М	M 2220	M	M	M 755	M 123
Boron, water soluble	mg/k	g /kg TM222	<1 <1	M	<1 <1	د1	M	M
			M	M	M	M	M	M
				1				

	ALcontrol Laboratories							Validated	
SDG: 10 ⁻¹ Job: H_ Client Reference:	1210-8 GRONTMIJ	_SOL-42	Location: Fin Customer: Gin Attention: Ga	cation: Fiveways stomer: Grontmij ention: Gareth Taylor			Order Number: Report Number: 111099 Superseded Report:		
Results Legend Customer Sample R # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. * subcontracted test. ** % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for		WS04 1.20 - 1.50 Soii/Solid 08/12/2010 10/12/2010 10/12/2010 2558985							
Component	LOD/Ur	nits Method							
Asbestos Containing Material Screen	-	TM001	No ACM Detected						
Soil Organic Matter (SOM)	<0.35	5% TM132	2.93						
рН	1 pF Units	H TM133 S	8.43 M						
Chromium, Hexavalent	<0.6 mg/k	6 TM151 g	<0.6 #						
Arsenic	<0.6	6 TM181	13.5 M						
Barium	<0.6 mg/k	5 TM181 g	364 #						
Beryllium	<0.0 mg/k	1 TM181	1.44 M						
Cadmium	<0.0 mg/k	2 TM181 g	1.74 M						
Chromium	<0.9 mg/k	9 TM181 g	25.8 M						
Copper	<1.4 mg/k	1 TM181 g	39.3 M						
Lead	<0.7 mg/k	7 TM181 g	107 M						
Mercury	<0.1 mg/k	4 TM181 g	<0.14 M						
Nickel	<0.2 mg/k	2 TM181 g	35.6 M						
Selenium	<1 mg	J/kg TM181	<1 #						
Vanadium	<0.2 mg/k	2 TM181 g	39.7						
Zinc	<1.9 mg/k	9 TM181 g	788 M						
Boron, water soluble	<1 mg	J/kg TM222	<1 M						
	_								
	_								
	_								
	_								
	_								

(

CERTIFICATE OF ANALYSIS

Validated

PAH by GC	CMS									_		
# ISO1702	5 accredited.		Custon	ner Sample R	WS02		WS03		WS04			
M mCERTS	S accredited.											
aq Aqueous	s / settled sample.			Depth (m)	0.10		0.30		1.20 - 1.50			
diss.filt Dissolve	ed / filtered sample.			Sample Type	Soil/Solid 08/12/2010		Soil/Solid 08/12/2010		Soil/Solid 08/12/2010			
* subcont	racted test.		D	Date Received	10/12/2010		10/12/2010		10/12/2010			
** % recover	ery of the surrogate standar e efficiency of the method.	d to The		SDG Ref	101210-8		101210-8		101210-8			
results o	of the individual compounds		Lab S	Sample No.(s)	2558384		2558755		2558985			
this reco	le samples are not corrected overy.	l for	AG	GS Reference								
Component		LOD/U	nits	Method								
Naphthalene	-d8 %	%		TM218	106		95.4		104			
recovery**												
Acenaphther	ne-d10 %	%		TM218	105		93.8		102			
recovery**												
Phenanthren	ie-d10 %	%		TM218	100		95.6		107			
recovery**										_		
Chrysene-d1	2 %	%		TM218	94.9		93.8		110			
recovery**										_	 	
Perylene-d12	2 % recovery**	%		IM218	94.6		97.9		107			
No. 1 the store of		-0		T14040	.0		07.4		000	_		
Naphthalene		<9 µg	/кд	11/1218	<9	5.4	67.1	м	383	м		
Accorophthy	000	~11	,	TM210	<12	IVI	71 7	IVI	6100	IVI		
Acenaphiniyi	ene	>12 UQ/k		1111210	S12	М	11.7	м	0190	м		
Aconophthor	20		y v/ka	TM218	<u>_8</u>	IVI	32.6	111	300	IVI		
Acenaphiner		~o µg	/kg	111/2/10	-0	М	52.0	м	522	м		
Fluorene		<10)	TM218	<10	IVI	31.7	141	1900	141		
Thuorence		ua/k	, ,	1111210	10	М	01.7	м	1000	м		
Phenanthren	ie.	<15	5	TM218	52.3		453		23400			
		ua/k	a	1111210	02.0	М	100	м	20100	м		
Anthracene		<16	у)	TM218	<16		138		12100			
		ua/k	a			М		м		М		
Fluoranthene	9	<17	7	TM218	101		1530		49900			
		µg/k	a			М		М		М		
Pyrene		<15	5	TM218	82.7		1400		36300			
		µg/k	g			Μ		Μ		М		
Benz(a)anthi	racene	<14	1	TM218	63.8		757		26100			
		µg/k	q			М		М		М		
Chrysene		<10)	TM218	66.3		700		19900			
-		µg/k	g			M		М		М		
Benzo(b)fluo	ranthene	<15	5	TM218	125		919		16200			
		µg/k	g	T1 10 10		M		M	0010	Μ		
Benzo(k)fluo	ranthene	<14	ł	IM218	41.9		451		8810			
		µg/k	g -	TM040	70.0	IVI	000	IVI	10100	IVI		
Benzo(a)pyre	ene	<15		111/12/18	76.9		899		18100			
Indona(1.2.2	ad)auraaa	µg/K	g >	TM040	60 E	IVI	507	IVI	7970	IVI		
Indeno(1,2,3	-cu)pyrene			TIVIZ TO	03.5	М	100	м	7070	м		
Dibenzo(a h)	anthracene	μy/κ <2?	y 2	TM218	<23	IVI	168	111	2720	IVI		
Dibenzo(a,n)	antinacene	-20 Ua/k	, ,	1111210	~20	м	100	м	2120	м		
Benzo(a h i)r	pervlene	<24	ц ц	TM218	88.9		759		8010			
(3,,		ua/k	a			М		М		М		
Polyaromatic	;	<11	8	TM218	762		8970		238000			
hydrocarbon	s, Total	µg/k	q			Μ		М		М		
										_		
										_		
										_		
										_		

DTICICATE OF ANAL VOIC

Validated

			CERI	IFICATE OF A	NAL 1313					
SDG: 1012 Job: H_GF	10-8 RONTMIJ	_SOL-42	Location: F Customer: (Attention: (Fiveways Grontmij Gareth Tavlor	Order Number: Report Number: Superseded Repo	Order Number: Report Number: 111099 Superseded Report:				
Somi Volatilo Organic C	omnou	nde								
Results Legend	ompou	Customer Sample R	WS01	WS02						
# ISO17025 accredited. M mCERTS accredited.										
§ Non-conforming work. aq Aqueous / settled sample.		Depth (m)	0.70	2.20 - 2.50						
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 08/12/2010	Soil/Solid 08/12/2010						
* subcontracted test. ** % recovery of the surrogate stand	ard to	Date Received	10/12/2010	10/12/2010						
check the efficiency of the method	. The	Lab Sample No.(s)	2558326	2558492						
within the samples are not correct	ed for	AGS Reference								
Component		nits Method								
Phenol	<10	0 TM157	<100	<100						
	µg/k	q								
Pentachlorophenol	<10 ua/k	0 TM157 a	<100	<100						
n-Nitroso-n-dipropylamine	<10	0 TM157	<100	<100						
Nitrobenzene	µg/k <10	g 0 TM157	<100	<100						
laanharana	µg/k	g TM157	<100	<100						
Isophorone	×10 μg/k	q 1101157	<100	<100						
Hexachloroethane	<10	0 TM157	<100	<100						
Hexachlorocyclopentadien	<10	0 TM157	<100	<100						
e Hexachlorobutadiene	µg/k <10	g 0 TM157	<100	<100						
Hovoblershar	µg/k	g	-100	~100						
Hexachiorobenzene	<10 µg/k	q 1M157	<100	<100						
n-Dioctyl phthalate	<10 ug/k	0 TM157	<100	<100						
Dimethyl phthalate	<10	0 TM157	<100	<100						
Diethyl phthalate	<10	0 TM157	<100	<100						
n-Dibutyl phthalate	<10	0 TM157	177	<100						
Dibenzofuran	μ <u>g</u> /κ <10	0 TM157	<100	<100						
Carbazole	µg/k <10	q 0 TM157	<100	<100						
Butylbenzyl phthalate	µg/k <10	g 0 TM157	<100	<100						
bis(2-Ethylhexyl) phthalate	µg/k <10	g 0 TM157	515	<100						
bis(2-Chloroethoxy)methan	μ <u>g</u> /k <10	g 0 TM157	<100	<100						
e bis(2-Chloroethyl)ether	μ <u>q</u> /k <10	g 0 TM157	<100	<100						
	µg/k	g TM157	<100	<100						
	μg/k	g Thuis	100	100						
	<10 µg/k	g 1M157	<100	<100						
4-Nitroaniline	<10 µg/k	0 TM157 g	<100	<100						
4-Methylphenol	<10 ug/k	0 TM157	<100	<100						
4-Chlorophenylphenylether	<10 ug/k	0 TM157	<100	<100						
4-Chloroaniline	<10	0 TM157	<100	<100						
4-Chloro-3-methylphenol	<10 ug/k	0 TM157	<100	<100						
4-Bromophenylphenylether	<10 ua/k	0 TM157	<100	<100						
3-Nitroaniline	<10	0 TM157	<100	<100						
2-Nitrophenol	<10	0 TM157	<100	<100						
2-Nitroaniline	<10	0 TM157	<100	<100						
2-Methylphenol	<10	0 TM157	<100	<100						
1,2,4-Trichlorobenzene	<10 Un/k	0 TM157	<100	<100						
2-Chlorophenol	<10 Un/k	0 TM157	<100	<100						
2,6-Dinitrotoluene	<10 µa/k	0 TM157 g	<100	<100						
2,4-Dinitrotoluene	<10 µg/k	0 TM157	<100	<100						

CERTIFICATE OF ANALYSIS

Validated

Semi Volatile Organic Compounds

- Besults Legend		Customor Sample P	WED1	WEDD		
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work.			WS01	W302		
aq Aqueous / settled sample.		Depth (m) Sample Type	0.70 Soil/Solid	2.20 - 2.50 Soil/Solid		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	08/12/2010	08/12/2010		
* subcontracted test.	d to	Date Received	10/12/2010	10/12/2010		
check the efficiency of the method.	rhe	SDG Ref	101210-8	101210-8		
results of the individual compounds within the samples are not corrected	l for	AGS Reference	2330320	2330432		
this recovery.						
Component	LOD/U	nits Method				
2,4-Dimethylphenol	<10 ua/k	0 TM157 a	<100	<100		
2,4-Dichlorophenol	<10 µg/k	0 TM157 q	<100	<100		
2,4,6-Trichlorophenol	<10 ua/k	0 TM157 a	<100	<100		
2,4,5-Trichlorophenol	<10 µg/k	0 TM157 g	<100	<100		
1,4-Dichlorobenzene	<10 µg/k	0 TM157 g	<100	<100		
1,3-Dichlorobenzene	<10 µg/k	0 TM157 g	<100	<100		
1,2-Dichlorobenzene	<10 µg/k	0 TM157 g	<100	<100		
2-Chloronaphthalene	<10 µg/k	0 TM157 g	<100	<100		
2-Methylnaphthalene	<10 µg/k	0 TM157 g	<100	<100		
Acenaphthylene	<10 µg/k	0 TM157 g	<100	<100		
Acenaphthene	<10 µg/k	0 TM157 g	<100	<100		
Anthracene	<10 µg/k	0 TM157 g	<100	621		
Benzo(a)anthracene	<10 µg/k	0 TM157 g	508	1890		
Benzo(b)fluoranthene	<10 µg/k	0 TM157 g	852	1240		
Benzo(k)fluoranthene	<10 µg/k	0 IM157 g	573	1220		
Benzo(a)pyrene	<10 µg/k	0 IM157 g	/1/	1700		
Characha	<10 µg/k	0 IM157 g TM157	722	1710		
Eluoranthono	<10 µg/k	g TM157	022	1710		
Fluorene	<10 µg/k <10	g TM157	<100	<100		
Indeno(1.2.3 cd)pyrene	−10 µg/k	g TM157	560	\$30		
Phenonthrene	×10 μg/k	g TM157	371	1850		
Pyropo	×10 μg/k	g TM157	772	2940		
Naphthalene	<10 µg/k	0 TM157 g TM157	<100	<100		
	−10 µg/k	g TM157	177	176		
	µg/k	g				

ALcontrol Labo	oratories		CER [.]	Validated				
SDG: 101 Job: H_C Client Reference:	210-8 GRONTMIJ	_SOL-42	Location: Customer: Attention:	Fiveways Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repor	111099 t:	
TPH CWG (S)								
Kesuits Legend Kesuits Legend Kesuits Legend Mon-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. * % recovery of the surrogate stat check the efficiency of the meth results of the individual compou within the samples are not corre this recovery.	ndard to od. The unds acted for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.70 Soil/Solid 08/12/2010 10/12/2010 101210-8 2558326	WS02 2.20 - 2.50 Soii/Solid 08/12/2010 10/12/2010 101210-8 2558492	WS03 0.30 Soii/Solid 08/12/2010 10/12/2010 101210-8 2558755	WS04 1.20 - 1.50 Soil/Solid 08/12/2010 10/12/2010 1012/10-8 2558985		
Component	LOD/Ur	its Method						
GRO Surrogate %	%	TM089	59	73	68	49		
GRO >C5-C12	<44 µg/kg	TM089	464	24100	<44	393		
Methyl tertiary butyl ether (MTBE)	<5 µg	/kg TM089	<5	<5 # #	<5 #	<5 #		
Benzene	<10	TM089	<10	<10	<10 M	<10 M		
Toluene	<2 µg	/kg TM089	<2	2.38 M M	<2 M	<2 M		
Ethylbenzene	<3 µg	/kg TM089	<3	<3 M M	5.7 M	4.6 M		
m,p-Xylene	<6 µg	/kg TM089	<6	<6 M M	<6 M	<6 M		
o-Xylene	<3 µg	/kg TM089	<3		3.42 M	<3 M		
m,p,o-Xylene	<10 ug/kg	TM089	<10	<10	<10	<10		
BTEX, Total	<10 ug/kg	TM089	<10	<10	<10	<10		
Aliphatics >C5-C6	<10 ug/kg	TM089	45.3	<10	<10	<10		
Aliphatics >C6-C8	<10 ug/kg	TM089	146	30.9	<10	<10		
Aliphatics >C8-C10	<10 ug/kg	TM089	101	9160	<10	113		
Aliphatics >C10-C12	<10 ug/kg	TM089	62.2	5250	<10	113		
Aliphatics >C12-C16	<100) TM173	2150	3100	3720	8330		
Aliphatics >C16-C21	<100) TM173	4360	4780	6990	19700		
Aliphatics >C21-C35	<100 ug/kg) TM173	49300	29000	41500	109000		
Aliphatics >C35-C44	<100 ug/kg) TM173	27000	6490	16800	51700		
Total Aliphatics >C12-C44	<100 ug/kg) TM173	82800	43300	69000	189000		
Aromatics >EC5-EC7	<10 µa/ka	TM089	<10	<10	<10	<10		
Aromatics >EC7-EC8	<10 µg/ka	TM089	<10	<10	<10	<10		
Aromatics >EC8-EC10	<10 µa/ka	TM089	67.3	6110	13.7	80.5		
Aromatics >EC10-EC12	<10 µg/ko	TM089	41.4	3500	<10	74.8		
Aromatics >EC12-EC16	<100 µq/ka) TM173	2990	3700	1410	21900		
Aromatics >EC16-EC21	<100 µa/ka) TM173	14000	37300	14700	185000		
Aromatics >EC21-EC35	<100 µq/ka) TM173	105000	90900	84400	584000		
Aromatics >EC35-EC44	<100 µa/ka	D TM173	99400	37600	55000	246000		
Aromatics >EC40-EC44	<100 µq/ka) TM173	46900	14900	22600	92900		
Total Aromatics >EC12-EC44	<100 µa/ka) TM173	221000	169000	156000	1040000		
Total Aliphatics & Aromatics >C5-C44	<100 µa/ka) TM173	304000	237000	225000	1230000		
Total Aliphatics >C5-35	<100 un/ko) TM173	56100	51300	52200	137000		
Total Aromatics >C5-35	<100 µa/ka) TM173	122000	141000	101000	790000		
Total Aliphatics & Aromatics >C5-35	<100 µa/ka) TM173	178000	193000	153000	928000		
-

Validated

CERTIFICATE OF ANALYSIS									
SDG: 10 Job: H	1210-8 _GRONTMI、	J_SOL-42	Location: Customer:	Fiveways Grontmij			Order Number: Report Number:	111099	
Client Reference:			Attention:	Gareth Taylor			Superseded Report	rt:	
VOC MS (S) Results Legend		Customer Sample R	WS01	WS02					
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Disolved / filtered sample. tot.unfilt Total / unfiltered sample. * % recovery of the surrogate sicheck the efficiency of the meresults of the individual comp within the samples are not comp	tandard to thod. The ounds rected for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.70 Soil/Solid 08/12/2010 10/12/2010 101210-8 2558326	2.20 - 2.50 Soii/Solid 08/12/201 10/12/201 10/12/10-8 2558492	D 0 0				
this recovery.		nits Method							
Dibromofluoromethane**	%	TM116	162	141					
Toluene-d8**	%	5 TM116	96.7	99					
4-Bromofluorobenzene**	%	5 TM116	132	121					
Dichlorodifluoromethane	<4 µç	g/kg TM116	<4	<4 M	м				
Chloromethane	<7 µç	g/kg IM116	<7	<7 #	#				
Vinyi Chioride	<10 µg/k	J IM116	<10	<10 #	#				
Chloresthere	μ <u>μ</u> α/k		<13	M 114	м				
Trichlorofluorormothono	×14 μg/k		<14	M <14	м				
	~ο μ(~10	M <10	м				
Carbon Disulphide	μ <u>g</u> /k	g 1/kg TM116	<7	# <7	#				
Dichloromethane	<1	TM116	28.5	M <10	м				
Methyl Tertiary Butyl Ether	µg/k	<u>q</u> 1 TM116	<11	# <11	#				
trans-1-2-Dichloroethene	μg/k <1	ig 1 TM116	<11	M <11	м				
1 1-Dichloroethane	μg/k <8 μα	ig 1/kg TM116	<8	M <8	м				
cis-1-2-Dichloroethene	<5 u	a/kg TM116	<5	M <5	м				
2.2-Dichloropropane	<12	2 TM116	<12	M <12	м				
Bromochloromethane	µg/k <14	g 4 TM116	<14	M <14	М				
Chloroform	μ <u>α</u> /k <8 μα	g g/kg TM116	<8	M <8	M				
1.1.1-Trichloroethane	<7 μς	g/kg TM116	<7	M <7	M				
1.1-Dichloropropene	<1	1 TM116	<11	M <11	M				
	µg/k	g 1 TM116	<11	M <14	M				
1.2-Dichloroethane	µg/k	<u>q</u> 1/kg TM116	<5	M <5	м				
Benzene	<9 µ0	2/kg TM116	18.5	M <9	M				
Trichloroethene	<9 110	g/kg TM116	<9	M <9	м				
1.2-Dichloropropane	<12	2 TM116	<12	M <12	м				
Dibromomethane	μg/k <9 μα	g g/kg TM116	<9	M <9	M				
Bromodichloromethane	<7 u	x/ka TM116	<7	M <7	м				
cis-1-3-Dichloropropene	<14	4 TM116	<14	M <14	M				
Toluene	μg/k <5 μα	g j/kg TM116	24.4	M 9.67	M				
trans-1-3-Dichloropropene	<14	4 TM116	<14	M <14	M				
1.1.2-Trichloroethane	µg/k <10	g D TM116	<10	<10					
1.3-Dichloropropane	μg/k <7 μα	g g/kg TM116	<7	M <7	M				
Tetrachloroethene	<5 µ0	g/kg TM116	9.67	# 15.1	#				
Dibromochloromethane	<1:	3 TM116	<13	M <13	M				
	µg/k	g	-	М	М				

CERTIFICATE OF ANALYSIS

Validated

VOC MS (S)

VOC MS (S)							
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Disolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate standarcheck the efficiency of the method. utbt of the individual compounds within the samples are not corrected	rd to The s d for	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS01 0.70 Soli/Solid 08/12/2010 10/12/2010 10/12/2010 101210-8 2558326	WS02 2.20 - 2.50 Soli/Solid 08/12/2010 10/12/2010 101210-8 2558492			
this recovery.							
1.2-Dibromoethane	<12	TM116	<12	<12	м		
Chlorobenzene	<5 µg/kg	kg TM116	<5 M	<5	м		
1.1.1.2-Tetrachloroethane	<10 ug/kg	TM116	<10 M	<10	м		
Ethylbenzene	<4 µg/	kg TM116	14.8 M	11.1	м		
p/m-Xylene	<14 µg/kg	TM116	<14 #	<14	#		
o-Xylene	<10 µg/kg	TM116	<10 M	<10	м		
Styrene	<10 µg/kg	TM116	20.8 M	<10	м		
Bromoform	<10	TM116	<10	<10	м		
Isopropylbenzene	-5 μg/kg	kg TM116	<5 M	<5	м		
1.1.2.2-Tetrachloroethane	<10 ug/kg	TM116	<10 #	<10	#		
1.2.3-Trichloropropane	<17 ua/ka	TM116	<17 M	<17	м		
Bromobenzene	<10 µq/kq	TM116	<10 M	<10	м		
Propylbenzene	<11 µg/kg	TM116	<11 M	<11	м		
2-Chlorotoluene	<9 µg/	kg TM116	<9 M	<9	м		
1.3.5-Trimethylbenzene	<8 µg/	kg TM116	<8 #	<8	#		
4-Chlorotoluene	<12 µg/kg	TM116	<12 M	<12	м		
tert-Butylbenzene	<12 µg/kg	TM116	<12 #	<12	#		
1.2.4-Trimethylbenzene	<9 µg/	kg TM116	<9 #	<9	#		
sec-Butylbenzene	<10 µg/kg	TM116	<10 M	<10	м		
4-Isopropyltoluene	<11 µg/kg	TM116	<11 M	<11	м		
1.3-Dichlorobenzene	<6 µg/	kg TM116	<6 M	<6	м		
1.4-Dichlorobenzene	<5 µg/	kg TM116	<5 M	<5	м		
n-Butylbenzene	<10 µg/kg	TM116	<10 M	<10	м		
1.2-Dichlorobenzene	<12 µg/kg	TM116	<12 M	<12	м		
1.2-Dibromo-3-chloropropa ne	<14 µg/kg	TM116	<14 M	<14	м		
Tert-amyl methyl ether	<15 µg/kg	TM116	<15	<15			
1.2.4-Irichlorobenzene	<6 µg/	kg IM116	<6 #	<6	#		
Hexachlorobutadiene	<12 µg/kg	TM116	<12	<12			
Naphthalene	<13 µg/kg	TM116	<13 M	<13	м		
1.2.3- I richlorobenzene	<6 µg/	kg TM116	<6 M	<6	м		

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 101210-8
 Location:
 Fiveways
 Order Number:

 Job:
 H_GRONTMIJ_SOL-42
 Customer:
 Grontmij
 Report Number:
 111099

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 111099

Table of Results - Appendix

REPO	RT KEY						Result	s expressed a	is (e.g.) 1.03E-07 is equivalent to 1.03x10-7	
NDP	No Determinatio	on Possible	#	ISO 17025 Accredited			Subcontracted Test	М	MCERTS Accredited	
NFD	No Fibres Detec	ted	PFD	Possible Fibres Detected	>> Result previously reported (Incremental reports only)			EC	Equivalent Carbon (Aromatics C8-C35)	
Note: Meth	od detection limits	are not always achievable o	due to vario	us circumstances beyond our co	ntrol					
N	lethod No		Refe	ence			Description		Wet/Dry Surrogate Sample ¹ Corrected	
	PM001				Preparatio	on of San	nples for Metals Analysis			
	PM024	Modified BS 1377			Soil prepa soils for A	ration in sbestos	cluding homogenisation, moisture Containing Material	screens of	f	
	TM001	In - house Method			Determina solids	ation of a	sbestos containing material by sc	reening on		
	TM089	Modified: US EPA	Methods	8020 & 602	Determina BTEX (MT	ation of G TBE) com	asoline Range Hydrocarbons (GI pounds by Headspace GC-FID (RO) and C4-C12)		
	TM116	Modified: US EPA I 624, 610 & 602	Method 8	3260, 8120, 8020,	Determina GC-MS	ation of V	olatile Organic Compounds by He	eadspace /		
	TM132	In - house Method			ELTRA CS	S800 Op	erators Guide			
	TM133	BS 1377: Part 3 19	90;BS 6	068-2.5	Determina Meter	ation of p	H in Soil and Water using the GL	оН рН		
	TM151	Method 3500D, AW	/WA/API	HA, 20th Ed., 1999	Determina	ation of H	exavalent Chromium using Kone	analyser		
	TM157	HP 6890 Gas Chro HP 5973 Mass Sele	matogra ective De	oh (GC) system and etector (MSD).	Determina sonication	ation of S	VOC in Soils by GC-MS extracted Acetone	d by		
	TM173	Analysis of Petroler Environmental Mec Hydrocarbon Criter	um Hydr lia – Tota ia	ocarbons in al Petroleum	Determina Hydrocarb	ation of S oons in S	peciated Extractable Petroleum oils by GC-FID			
	TM181	US EPA Method 60	010B		Determina ICP-OES	ation of R	outine Metals in Soil by iCap 650	0 Duo		
	TM218	Microwave extraction	on – EPA	method 3546	Microwave	e extracti	on - EPA method 3546			
	TM221	Inductively Coupled Spectroscopy. An Winge, Fassel, Pet	d Plasma Atlas of erson an	- Atomic Emission Spectral Information: d Floyd	Determina Emission	ation of A Spectron	cid extractable Sulphate in Soils I neter	by IRIS		
	TM222	In-House Method			Determina Water:soil	ation of H) by IRIS	Hot Water Soluble Boron in Soils (Emission Spectrometer	10:1		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE C	OF ANALYSIS
---------------	-------------

Validated

SDG: Job:	101210-8 H_GRONTMIJ_SOL-42
Client Reference:	

Location: Fiveways Customer: Grontmij

Gareth Taylor

Order Number: Report Number: 111099 Superseded Report:

Test Completion Dates

				-			
Lab Sample No(s)	2558301	2558326	2558384	2558492	2558755	2558948	2558985
Customer Sample Ref.	WS01	WS01	WS02	WS02	WS03	WS04	WS04
AGS Ref.							
Depth	0.30	0.70	0.10	2.20 - 2.50	0.30	0.70	1.20 - 1.50
Туре	SOLID						
Asbestos Containing Material Screen	06-Jan-2011						
Boron Water Soluble	07-Jan-2011						
EPH CWG (Aliphatic) GC (S)		11-Jan-2011		10-Jan-2011	10-Jan-2011		10-Jan-2011
EPH CWG (Aromatic) GC (S)		11-Jan-2011		10-Jan-2011	10-Jan-2011		10-Jan-2011
GRO by GC-FID (S)		13-Jan-2011		09-Jan-2011	09-Jan-2011		09-Jan-2011
Hexavalent Chromium (s)	07-Jan-2011						
Metals by iCap-OES (Soil)	07-Jan-2011	07-Jan-2011	10-Jan-2011	10-Jan-2011	10-Jan-2011	07-Jan-2011	10-Jan-2011
PAH by GCMS			09-Jan-2011		10-Jan-2011		10-Jan-2011
pН	07-Jan-2011						
Sample description	05-Jan-2011	06-Jan-2011	06-Jan-2011	05-Jan-2011	06-Jan-2011	06-Jan-2011	05-Jan-2011
Semi Volatile Organic Compounds		10-Jan-2011		10-Jan-2011			
Total Organic Carbon	07-Jan-2011						
Total Sulphate		11-Jan-2011			11-Jan-2011	11-Jan-2011	
TPH CWG GC (S)		13-Jan-2011		10-Jan-2011	10-Jan-2011		10-Jan-2011
VOC MS (S)		11-Jan-2011		11-Jan-2011			

Attention:

CERTIFICATE OF ANALYSIS

SDG:	101210-8	Location:	Fiveways
Job:	H GRONTMIJ SOL-42	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylor

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 111099 Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (MNOL)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH ONG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
PCB TOT / PCB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLYAROMATIC HYDROCARBONS RARD GC	WET	HEXANEACETONE	SHAVER	900 EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID'LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST 00P/0PP	DOM	LIQUID'LIQUID SHAKE	GCMS
TRAZINE HERES	DOM	LIQUID'LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID'LIQUID SHAKE	HPLC
MINERALOIL by IR	TCE	LIQUID'LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Crodidalite	Blue Asbestos
Fibrous Adindite	-
Florous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode lane Solihull West Midlands B912AA

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 13 January 2011 H_GRONTMIJ_SOL 101214-5

Fiveways 110765

We received 15 samples on Tuesday December 14, 2010 and 5 of these samples were scheduled for analysis which was completed on Thursday January 13, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

_					
SDG:	101214-5	Location:	Fiveways	Order Number:	
Job:	H_GRONTMIJ_SOL-42	Customer:	Grontmij	Report Number:	110765
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2649431	HP01		0.10	13/12/2010
2649432	HP01		0.30	13/12/2010
2649433	HP01		0.70	13/12/2010
2649435	HP02		0.10	13/12/2010
2649437	HP02		0.30	13/12/2010
2649438	HP02		0.70	13/12/2010
2649440	HP03		0.10	13/12/2010
2649441	HP03		0.30	13/12/2010
2649442	HP03		0.70	13/12/2010
2649444	HP04		0.10	13/12/2010
2649445	HP04		0.30	13/12/2010
2649446	HP04		0.70	13/12/2010
2649447	HP05		0.10	13/12/2010
2649448	HP05		0.30	13/12/2010
2649450	HP05		0.70	13/12/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

	aboratories		FP	-151	C	ΔΤΓ	: ^)F 4	<u> </u>		s				Validated
SDG: Job: Client Reference:	101214-5 H_GRONTMIJ_SOL-42	Location Custome Attentior	- r (; ;;	Fivev Gron Gare	vay tmij th 1	rs j Tayloi	- -		~11		5	Order N Report N Superse	umber: lumber: ded Report:	110765	
			•	Те	st	t S	cł	ne	dı	Jle					
SOLID Results Legend	Lab Sample	e No(s)	2649431		2649438		2640441	2649444		2649446					
No Determinat Possible	tion Custon Sample Ref	ner ference	HP01		HP02		HDD3	HP04		HP04					
	AGS Refe	rence													
	Depth ((m)	0.10		0.70	0.00	05.0	0.10		0.70					
	Contaiı	ner	400g Tub 250g Amber Jar	400g Tub 250g Amber Jar	60g VOC	400g Tub 250g Amber Jar	250g Amber Jar	60g VOC 400g Tub	250g Amber Jar	400g Tub					
Asbestos Containing Materi	ial All	NDPs: 0													
Boron Water Soluble	All	NDPs: 0				X		X		X					
EPH CWG (Aliphatic) GC (S) All	Tests: 5 NDPs: 0	X	x		X	X		X	_					
EPH CWG (Aromatic) GC (S) All	Tests: 3 NDPs: 0		X		X	X								
GRO by GC-FID (S)	All	NDPs: 0		X		X	X			_					
Hexavalent Chromium (s)	All	NDPs: 0			X		X	X		_					
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0	X	X		X		X		X					
	Barium	Tests: 5 NDPs: 0 Tests: 5	x x	x x		x x	x	<u>.</u>	x x						
	Beryllium	NDPs: 0 Tests: 5	x	X		X	X		X						
	Cadmium	NDPs: 0 Tests: 5	x	x		x	x		x						
	Chromium	NDPs: 0 Tests: 5	Y	x		x	y		Y						
	Copper	NDPs: 0 Tests: 5		×		×									
	Lead	NDPs: 0 Tests: 5		×		×				_					
	Mercury	NDPs: 0 Tests: 5	X	X		X	X		X	_					
	Nickel	NDPs: 0	X	X		X	X		X	_					
	Selenium	NDPs: 0	X	X		X	X		X	_					
	Vanadium	NDPs: 0	X	X		X	X		X	_					
	Zinc	Tests: 5 NDPs: 0	X	X		X	X		X						
PAH by GCMS	All	Tests: 5 NDPs: 0	X	X		X	X		X	-					
рН	All	NDPs: 0				X	X		X	_					
Sample description	All	Tests: 5 NDPs: 0	X	X		X		x		×					
Semi Volatile Organic Com	pounds All	Tests: 5 NDPs: 0	x	x		x	X		x						
		Tests: 1	\vdash	x											

ALcontrol Lab	oratories	CE	ERT	TIFIC	CAI	ΓE (OF /	AN/	LYSIS		Validate
SDG: 10 Job: H_ Client Reference: 10)1214-5 _GRONTMIJ_SOL-42	Location: Customer Attention:	 : (Fivew Gronti Gareti	ays nij n Tay	/lor			Order Number: Report Number: 1107 Superseded Report:	65	
SOLID Results Legend	Lab Sample I	lo(s)	26494	10	10196	26494	26494	26494			
X Test			31	Č	22	41	44	146			
No Determination Possible	n Custome Sample Refer	r ence	HP01	÷	LIBUS	HP03	HP04	HP04			
	AGS Refere	nce									
	Depth (m)	0.10	ç	0 70	0.30	0.10	0.70			
	Containe	r	400g Tub 250g Amber Jar	400g Tub 250g Amber Jar	250g Amber Jar	60g VOC	400g Tub	400g Tub 250g Amber Jar			
Total Organic Carbon	All	NDPs: 0 Tests: 5	×		v			×			
Total Sulphate	All	NDPs: 0 Tests: 3	X	×	X			*			
IPH CWG GC (S)	All	NDPs: 0 Tests: 3		x	X		<hr/>				
VOC MS (S)	All	NDPs: 0 Tests: 1									

CERTIFICATE OF ANALYSIS

Validated

SDG:	101214-5	Location:	Fiveways	Order Number:	110765
Job:	H_GRONTMIJ_SOL-42	Customer:	Grontmij	Report Number:	
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Sample Descriptions

Grain Sizes																
very fine	<0.0	063mm	fine	0.06	63mm - 0.1mm	me	edium	0.1mm	- 2mm	coar	se	2mm - 1	0mm	very coa	arse	>10mm
Lab Sample N	o(s)	Custom	er Sample R	ef.	Depth (m)	1	Co	lour	Descript	tion	Gi	rain size	Inclu	usions	Inclus	sions 2
2649431			HP01		0.10		Dark	Brown	Sanc	ł	0.	1 - 2 mm	Sto	ones	N	/A
2649438			HP02		0.70		Dark	Brown	Sand	ł	0.	1 - 2 mm	Sto	ones	N	/A
2649441			HP03		0.30		Dark	Brown	Sandy L	oam	0.1	1 - 2 mm	Sto	ones	Crushe	ed Brick
2649444			HP04		0.10		Dark	Brown	Sandy Lo	oam	0.1	1 - 2 mm	Sto	ones	Crushe	ed Brick
2649446			HP04		0.70		Dark	Brown	Sandy L	oam	0.1	1 - 2 mm	Sto	ones	Crushe	ed Brick

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	101214-5		Location:	Fiv	veways			Order Number:	440705	
Job: Client Reference:	H_GRONTMI	J_SOL-42	Customer: Attention:	Gr	ontmij ireth Taylor			Report Number: Superseded Rep	110765 ort:	
								· · ·		
Results Legend # ISO17025 accredited.		Customer Sample R	HP01		HP02		HP03	HP04	HP04	
M mCERTS accredited. § Non-conforming work.		Dopth (m)	0.10		0.70		0.30	0.10	0.70	
aq Aqueous / settled sample diss.filt Dissolved / filtered sample	e. Ie.	Sample Type	Soil/Solid		Soil/Solid		Soil/Solid	Soil/Solid	Soil/Solid	
tot.unfilt Total / unfiltered sample.		Date Sampled	13/12/2010		13/12/2010		13/12/2010	13/12/2010	13/12/2010	
** % recovery of the surrog	ate standard to	SDG Ref	101214-5		101214-5		101214-5	101214-5	101214-5	
results of the individual of	ompounds	Lab Sample No.(s)	2649431		2649438		2649441	2649444	2649446	
this recovery.	ot corrected for	AGS Reference								
Component	LOD/U	nits Method								
Aspestos Containing Material Screen	-	TMUU1					NO ACM Detected	NO ACM Detected	NO ACM Detected	
Soil Organic Matter (SC	OM) <0.3	5 % TM132	4.24		6.14	ш	4.59	4.97	5.38	
pH	1 p	H TM133	8.44	#	7.71	#	7.72	7.69	8.17	
	Unit	ts		М		М	M	N	M	
Chromium, Hexavalent	<0. mg/l	6 IM151 kg	<0.6	#	<0.6	#	2.09	<0.6	<0.6	
Arsenic	<0.	6 TM181	6.64		10.3		7.06	9.82	11	
Barium	mg/ł <0.	kg 6 TM181	134	IVI	218	IVI	236 M	143 N	162 M	
Beryllium	mg/ł	(<u>g</u>)1 TM191	1 06	#	1 85	#	#	# 0 079	#	
	~0.0 mg/ł	(g	1.00	М	1.00	М	0.573 M	0.970 N	M	
Cadmium	<0.0 ma/l	02 TM181 kg	0.694	М	1.23	м	0.243 M	<0.02 N	0.28 M	
Chromium	<0.	9 TM181	27.2	N.4	24.5	M	17.6	30.1	21.5	
Copper	<1.	4 TM181	55.5	171	205	111	37.3	32.3	38.9	
Lead	mg/ł <0.	kg .7 TM181	81.7	М	132	١٧I	M 206	58.7	62.5	
Mercury	mg/l <0 ^	<u>kg</u> 14 TM181	<0 14	Μ	0 591	М	M <0.14	N <0.14	M	
Niekel	mg/ł	(g	45	М	00.7	М	M	N	M	
NICKEI	<0. mg/l	2 1M181 (g	15	М	23.7	м	12.1 M	30.3 N	30.1 M	
Selenium	<1 m	g/kg TM181	<1	#	<1	#	<1 #	<1 #	<1 #	
Vanadium	<0.	2 TM181	27.8	#	33.2	#	23.6 #	32.8	32.7	
Zinc	<1.	9 TM181	212		381		232	118	162	
Sulphate, Total	mg/i <4	8 TM221	1190	IVI		IVI	4820	542	IVI	
Boron, water soluble	mg/i <1 m	kg g/kg TM222	1.05	М	1		M <1	N <1	<1	
				М		М	M	N	M	

Component Naphthalene-d8 %

recovery**

recovery** Phenanthrene-d10 %

Acenaphthene-d10 %

LOD/Units

%

%

%

Method

TM218

TM218

TM218

109

109

110

97.6

97.7

99.1

98.6

98.5

99.8

recovery**									
Chrysene-d12 %	%	TM218	106	98.1		98.2			
Perylene-d12 % recovery**	%	TM218	110	100		99.6			
Naphthalene	<9 µg/kg	TM218	26 M	39	м	34.5	м		
Acenaphthylene	<12 ug/kg	TM218	46.4 M	49	м	55.4	м		
Acenaphthene	<8 µg/kg	TM218	<16 M	11.3	м	11.9	м		
Fluorene	<10 ug/kg	TM218	<20 M	12.6	м	17.8	м		
Phenanthrene	<15 ug/kg	TM218	205 M	275	м	389	м		
Anthracene	<16 ua/ka	TM218	96.1 M	80.5	м	85.9	м		
Fluoranthene	<17 ua/ka	TM218	627 M	816	м	1030	М		
Pyrene	<15 ua/ka	TM218	591 M	744	м	938	м		
Benz(a)anthracene	<14 µq/kq	TM218	330 M	483	м	485	м		
Chrysene	<10 µg/kg	TM218	306 M	504	м	499	м		
Benzo(b)fluoranthene	<15 µg/kg	TM218	670 M	754	м	767	М		
Benzo(k)fluoranthene	<14 µg/kg	TM218	243 M	354	М	381	М		
Benzo(a)pyrene	<15 µg/kg	TM218	532 M	671	м	663	М		
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	373 M	450	м	443	М		
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	103 M	121	М	116	М		
Benzo(g,h,i)perylene	<24 µg/kg	TM218	480 M	602	М	570	М		
Polyaromatic hydrocarbons, Total	<118 µg/kg	TM218	4630 M	5970	М	6480	М		
06:07:19 13/01/2011								 	

ALcontrol Labo	ratories	3	CER		NALYSIS			Validated
SDG: 1012 Job: H_G Client Reference:	214-5 RONTMIJ	J_SOL-42	Location: Customer: Attention:	Fiveways Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repor	110765 't :	
Semi Volatile Organic	Compou	Inds				i		
Kushis Legend Koshis Legend Koshis Legend M mCERTS accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate stan check the efficiency of the methor results of the individual compour within the samples are not correct	dard to vd. The tds :ted for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.70 Soii/Solid 13/12/2010 14/12/2010 101214-5 2649438					
Component	LOD/U	nits Method						
Phenol	<10	0 TM157	<100					
Pentachlorophenol	μg/k <10	g 0 TM157 g	<100	_				
n-Nitroso-n-dipropylamine	<10	0 TM157	<100					
Nitrobenzene	<10 ug/k	0 TM157 a	<100					
Isophorone	<10 ug/k	0 TM157 a	<100					
Hexachloroethane	<10 ug/k	0 TM157 a	<100					
Hexachlorocyclopentadien e	<10 ug/k	0 TM157 a	<100					
Hexachlorobutadiene	<10 ug/k	0 TM157 a	<100					
Hexachlorobenzene	<10 ug/k	0 TM157 a	<100					
n-Dioctyl phthalate	<10 µg/k	0 TM157 q	<100					
Dimethyl phthalate	<10 ug/k	0 TM157 a	<100					
Diethyl phthalate	<10 ua/k	0 TM157 a	<100					
n-Dibutyl phthalate	<10 ug/k	0 TM157 a	<100					
Dibenzofuran	<10 ug/k	0 TM157 a	<100					
Carbazole	<10 ua/k	0 TM157 a	<100					
Butylbenzyl phthalate	<10 ug/k	0 TM157 a	<100					
bis(2-Ethylhexyl) phthalate	<10 ua/k	0 TM157 a	229					
bis(2-Chloroethoxy)methan	<10 ug/k	0 TM157 a	<100					
bis(2-Chloroethyl)ether	<10 µg/k	0 TM157 q	<100					
Azobenzene	<10 ug/k	0 TM157 a	<100					
4-Nitrophenol	<10 µg/k	0 TM157 q	<100					
4-Nitroaniline	<10 µg/k	0 TM157 g	<100					
4-Methylphenol	<10 µg/k	0 TM157 g	<100					
4-Chlorophenylphenylether	<10 µg/k	0 TM157 g	<100					
4-Chloroaniline	<10 µg/k	0 TM157 g	<100					
4-Chloro-3-methylphenol	<10 µg/k	0 TM157 g	<100					
4-Bromophenylphenylether	<10 µg/k	0 TM157 g	<100					
3-Nitroaniline	<10 µg/k	0 TM157 g	<100					
2-Nitrophenol	<10 µg/k	0 TM157 g	<100					
2-Nitroaniline	<10 µg/k	0 TM157 g	<100					
2-Methylphenol	<10 µg/k	0 TM157 g	<100					
1,2,4-Trichlorobenzene	<10 µg/k	0 TM157 g	<100					
2-Chlorophenol	<10 µg/k	0 TM157 g	<100					
2,6-Dinitrotoluene	<10 µg/k	0 TM157 g	<100					
2,4-Dinitrotoluene	<10 µg/k	0 TM157 g	<100					

CERTIFICATE OF ANALYSIS

Semi '	Volatile Organic Co	ompoui	nds				
	Results Legend		Customer Sample R	HP02			
#	ISO17025 accredited.						
M 8	mCERIS accredited.						
aq	Aqueous / settled sample.		Depth (m)	0.70			
diss.filt	Dissolved / filtered sample.		Sample Type	Soil/Solid			
tot.unfilt	Total / unfiltered sample. subcontracted test.		Date Sampled	13/12/2010			
**	% recovery of the surrogate standard	d to	SDG Ref	101214-5			
	check the efficiency of the method. 1	Гhe	Lab Sample No (s)	2649438			
	results of the individual compounds within the samples are not corrected	for	AGS Reference				
	this recovery.						
Compo	nent	LOD/Un	its Method				
2 4-Dii	methylphenol	<100) TM157	<100			
2,1 01	neuryphoner		1111107	100			
040	a b la na m b a m a l	μų/κu -100		-100			
2,4-Di	chiorophenoi	<100	111157	<100			
		µg/kg					
2,4,6-	Frichlorophenol	<100) TM157	<100			
		µg/kg			 	 	
2,4,5-7	Frichlorophenol	<100) TM157	<100			
		ua/ka					
1 4-Di	chlorobenzene	<100	TM157	<100			
.,							
4 0 Di		μų/κu -100		-100			
1,3-DI	chiorobenzene	<100	111157	<100			
		µg/kg			 		
1,2-Dio	chlorobenzene	<100	TM157	<100			
		µg/kg				 	
2-Chlo	ronaphthalene	<100	TM157	<100			
		µa/ka					
2-Meth	vlnaphthalene	<100) TM157	<100			
- 10100		100	10107	-100			
A	a la tha al a sa a	μς/κς	T14457	.400			
Acena	pninyiene	<100	IM157	<100			
		µg/kg					
Acena	phthene	<100) TM157	<100			
		µg/kg					
Anthra	cene	<100	TM157	214			
/		ua/ka					
Bonzo	(a)anthracana	<pre></pre>	TM157	1100			
Delizo	(a)antinacene	<100	1111137	1100			
_		µg/kg					
Benzo	(b)fluoranthene	<100) TM157	1390			
		µg/kg					
Benzo	(k)fluoranthene	<100) TM157	1140			
	. ,	ua/ka					
Benzo		<100	TM157	1630			
Denzo	(a)pyrene	<100 		1000			
-		µд/ка		(
Benzo	(g,h,i)perylene	<100) IM157	1320			
		µg/kg				 	
Chryse	ene	<100) TM157	1110			
		µq/kq					
Fluora	nthene	<100	TM157	2050			
		ua/ka					
Eluoro	20	μy/kg		<100			
Fluore	ne	<100	111157	<100			
		µg/kg					
Indend	o(1,2,3-cd)pyrene	<100	TM157	1140			
		µg/kg					
Phena	nthrene	<100) TM157	720			
		µg/ka				 	
Pyrene	9	<100) TM157	2120			
,		ua/ka		-			
Nanhti	nalene	<100) TM157	<100			
april		100	10107	-100			
Dihar	ro(a h)anthrasar-	μų/KQ		000			
toenz	co(a,n)anthracene	<100	IN1157	238			
		µg/kg					

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 101214-5 SDG Location: Fiveways Order Number: Job: H_GRONTMIJ_SOL-42 Customer: Grontmij Report Number: 110765 **Client Reference:** Attention: Gareth Taylor Superseded Report: TPH CWG (S) Customer Sample R HP04 s Leae HP02 HP03 ISO17025 accredited mCERTS accredited. Non-conforming work Depth (m) 0.70 0.30 0.10 Aqueous / settled sample diss filt Dissolved / filtered samp Total / unfiltered sample Sample Type Soil/Solid Soil/Solid Soil/Solid tot.un Date Sampled 13/12/2010 13/12/2010 13/12/2010 subcontracted test. % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds 14/12/2010 14/12/2010 Date Received 14/12/2010 ... SDG Ref 101214-5 101214-5 101214-5 2649441 2649444 Lab Sample No.(s) 2649438 AGS Reference within the samples are not corrected for this recovery. LOD/Units Component Method GRO Surrogate % 109 47 TM089 35 % recovery** GRO >C5-C12 <44 TM089 <44 <44 <44 µg/kg Methyl tertiary butyl ether <5 µg/kg TM089 <5 <5 <5 (MTBE) Ħ ± Ħ <10 TM089 <10 <10 <10 Benzene Μ Μ Μ ua/ka TM089 <2 Toluene <2 <2 <2 µg/kg Μ Μ Μ Ethylbenzene TM089 <3 <3 <3 <3 µg/kg Μ Μ Μ TM089 <6 <6 m,p-Xylene <6 µg/kg <6 Μ Μ Μ o-Xylene TM089 <3 <3 <3 <3 µg/kg Μ Μ Μ TM089 <10 m,p,o-Xylene <10 <10 <10 µq/kq BTEX, Total <10 TM089 <10 <10 <10 ua/ka Aliphatics >C5-C6 TM089 <10 <10 <10 <10 µg/kg Aliphatics >C6-C8 <10 TM089 <10 <10 <10 µg/kg Aliphatics >C8-C10 TM089 <10 <10 <10 <10 µg/kg Aliphatics >C10-C12 <10 TM089 <10 <10 <10 ua/ka Aliphatics >C12-C16 TM173 8630 4800 10300 <100 µg/kg Aliphatics >C16-C21 <100 TM173 27400 7860 4960 ua/ka 166000 37600 Aliphatics >C21-C35 TM173 52100 <100

17900

82600

<10

<10

<10

<10

5270

27700

130000

61100

24200

224000

306000

64800

163000

227000

16000

68900

<10

<10

<10

<10

8560

14100

102000

49800

20600

174000

243000

52900

125000

178000

Aliphatics >C35-C44

Aromatics >EC5-EC7

Aromatics >EC7-EC8

Aromatics >EC8-EC10

Aromatics >EC10-EC12

Aromatics >EC12-EC16

Aromatics >EC16-EC21

Aromatics >EC21-EC35

Aromatics >EC35-EC44

Aromatics >EC40-EC44

Total Aromatics

Total Aliphatics &

Total Aliphatics &

Aromatics >C5-35

Aromatics >C5-C44

Total Aliphatics >C5-35

Total Aromatics >C5-35

>EC12-EC44

Total Aliphatics >C12-C44

µg/kg

<100

µq/kq

<100 µg/kg

<10

ua/ka

<10 µg/kg

<10

µq/kq

<10 µg/kg

<100

µg/kg

<100 µg/kg

<100

µg/kg

<100 µg/kg

<100

µg/kg

<100

µg/kg

<100

µg/kg

<100 µg/kg

<100

µg/kg

<100

µg/kg

TM173

TM173

TM089

TM089

TM089

TM089

TM173

109000

311000

<10

<10

<10

<10

4980

51000

307000

263000

121000

626000

937000

202000

363000

565000

ALcontrol Lal	boratories	;	CER				Validated
SDG: 1 Job: H	01214-5 I_GRONTMIJ	_SOL-42	Location: Customer:	Fiveways Grontmij Gareth Taylor	 Order Number: Report Number: Superseded Repo	110765	
VOC MS (S)			Automation		Cupologica liopo		
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settied sample. diss.fitt Dissolved / fittered sample. tot.unfitt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate check the efficiency of the n results of the individual con within the samples are not c this recovery.	standard to nethod. The spounds corrected for	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	HP02 0.70 Soil/Solid 13/12/2010 14/12/2010 101214-5 2649438				
Component	LOD/U	nits Method	110				
Dibromotiuorometnane**	%	TM116	110				
Toluene-d8**	%	TM116	94.3				
4-Bromofluorobenzene**	%	TM116	141				
Dichlorodifluoromethane	<4 µg	/kg TM116	<4	M			
Chloromethane	<7 µg	/kg TM116	<7	#			
Vinyl Chloride	<10) TM116	<10	#			
Bromomethane	<13	3 TM116	<13	π			
Chloroethane	μ <u>α</u> /κ <14	g F TM116	<14				
Trichlorofluorormethane	µg/k <6 µg	g /kg TM116	<6	M			
1.1-Dichloroethene	<10) TM116	<10	M			
Carbon Disulphide	μg/kg <7 μα	g /kg TM116	<7	#			
Dichloromethane	<10) TM116	30.6	M			
Methyl Tertiary Butyl Ethe	µg/k	g	<11	#			
trans 1.2 Dichloroothone	µg/k	g TM116	~11	м			
	µg/k			м			
	<8 µg	/kg 11/1116	<8	м			
cis-1-2-Dichloroethene	<5 µg	/kg TM116	<5	м			
2.2-Dichloropropane	<12 μg/k	2 TM116 g	<12	м			
Bromochloromethane	<14 ug/k	+ TM116	<14	м			
Chloroform	<8 µg	/kg TM116	<8	M			
1.1.1-Trichloroethane	<7 µg	/kg TM116	<7	M			
1.1-Dichloropropene	<11	TM116	<11	M			
Carbontetrachloride	μg/κ <14	4 TM116	<14				
1.2-Dichloroethane	μg/κ <5 μg	y /kg TM116	<5				
Benzene	<9 µg	/kg TM116	16				
Trichloroethene	<9 µg	/kg TM116	<9	M			
1.2-Dichloropropane	<12	2 TM116	<12	M			
Dibromomethane	µд/к <9 µg	g /kg TM116	<9	M			
Bromodichloromethane	<7 µg	/kg TM116	<7	м			
cis-1-3-Dichloropropene	<14	TM116	<14	M			
Toluene	μg/k <5 μg	g /kg TM116	16.3	M			
trans-1-3-Dichloropropene	e <14	TM116	<14	M			
1.1.2-Trichloroethane	μg/k <10	g) TM116	<10				
1.3-Dichloropropane	μg/k <7 μg	g /kg TM116	<7	M			
Tetrachloroethene	<5 µg	/kg TM116	18.4	#			
Dibromochloromethane	<13	3 TM116	<13	M			

CERTIFICATE OF ANALYSIS 101214-5 SDG: Location: Fiveways Order Number: Job: H_GRONTMIJ_SOL-42 Customer: Grontmij Report Number: 110765 Superseded Report: **Client Reference:** Attention: Gareth Taylor VOC MS (S) ults Legend Customer Sample R HP02 Results Legend ISO17025 accredited. MCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. # M § Depth (m) 0.70 Sample Type Soil/Solid 13/12/2010 diss.filt Total / unfiltered sample Date Sampled tot.unfilt subcontracted test. Date Received 14/12/2010 ** % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for SDG Ref 101214-5 2649438 Lab Sample No.(s) AGS Reference this recovery. Component LOD/Units Method 1.2-Dibromoethane <12 <12 TM116 Μ µg/kg TM116 Chlorobenzene <5 µg/kg <5 Μ 1.1.1.2-Tetrachloroethane <10 TM116 <10 µg/kg М Ethylbenzene <4 µg/kg TM116 15.2 Μ p/m-Xylene <14 TM116 <14 # µg/kg o-Xylene <10 TM116 <10 µg/kg Μ Styrene TM116 <10 <10 М µg/kg Bromoform TM116 <10 <10 µg/kg Μ Isopropylbenzene TM116 <5 <5 µg/kg М 1.1.2.2-Tetrachloroethane <10 TM116 <10 # µg/kg 1.2.3-Trichloropropane <17 TM116 <17 М µg/kg Bromobenzene TM116 <10 <10 µg/kg Μ Propylbenzene TM116 <11 <11 Μ µg/kg 2-Chlorotoluene TM116 <9 µg/kg <9 Μ 1.3.5-Trimethylbenzene TM116 <8 <8 µg/kg # 4-Chlorotoluene TM116 <12 <12 µg/kg Μ tert-Butylbenzene TM116 <12 <12 # µg/kg 1.2.4-Trimethylbenzene TM116 <9 <9 µg/kg # sec-Butylbenzene <10 TM116 <10 Μ µg/kg 4-Isopropyltoluene TM116 <11 <11 µg/kg Μ 1.3-Dichlorobenzene TM116 <6 <6 µg/kg Μ 1.4-Dichlorobenzene <5 µg/kg TM116 <5 Μ n-Butylbenzene <10 TM116 <10 Μ µg/kg 1.2-Dichlorobenzene TM116 <12 <12 µg/kg Μ 1.2-Dibromo-3-chloropropa <14 TM116 <14 Μ µg/kg ne Tert-amyl methyl ether TM116 <15 <15 µg/kg 1.2.4-Trichlorobenzene <6 µg/kg TM116 <6 # Hexachlorobutadiene <12 TM116 <12 µg/kg Naphthalene <13 TM116 <13 Μ µg/kg TM116 1.2.3-Trichlorobenzene <6 <6 µg/kg М

Validated

ALcontrol Laboratories

C

CERTIFICATE	OF ANALYSIS
-------------	--------------------

Validated

 SDG:
 101214-5
 Location:
 Fiveways
 Order Number:

 Job:
 H_GRONTMIJ_SOL-42
 Customer:
 Grontmij
 Report Number:
 110765

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 10765

Table of Results - Appendix

REPOR	<u>RT KEY</u>						Results	expressed a	as (e.g.) 1.03E-07 is equivalent to 1.03x10-7
NDP	No Determination	on Possible	#	ISO 17025 Accredited			Subcontracted Test	М	MCERTS Accredited
NFD	No Fibres Deteo	cted	PFD	Possible Fibres Detected			Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)
Note: Meth	od detection limit	s are not always achievable o	lue to vario	us circumstances beyond our co	ntrol				
N	lethod No		Refer	ence			Description		Wet/Dry Surrogate Sample ¹ Corrected
	PM001				Preparatio	on of Sam	ples for Metals Analysis		
	PM024	Modified BS 1377			Soil prepa soils for A	aration ind sbestos (cluding homogenisation, moisture Containing Material	screens o	f
	TM001	In - house Method			Determina solids	ation of as	sbestos containing material by scr	eening on	
	TM089	Modified: US EPA	Methods	8020 & 602	Determina BTEX (MT	ation of G TBE) corr	asoline Range Hydrocarbons (GR pounds by Headspace GC-FID (C	O) and 4-C12)	
	TM116	Modified: US EPA 624, 610 & 602	Method 8	260, 8120, 8020,	Determina GC-MS	ation of V	olatile Organic Compounds by He	adspace /	
	TM132	In - house Method			ELTRA C	S800 Op	erators Guide		
	TM133	BS 1377: Part 3 19	90;BS 60	68-2.5	Determina Meter	ation of pl	H in Soil and Water using the GLp	Н рН	
	TM151	Method 3500D, AW	/WA/APH	IA, 20th Ed., 1999	Determina	ation of H	exavalent Chromium using Kone a	analyser	
	TM157	HP 6890 Gas Chro HP 5973 Mass Sel	matograj ective De	oh (GC) system and tector (MSD).	Determina sonication	ation of S n in DCM/	VOC in Soils by GC-MS extracted Acetone	by	
	TM173	Analysis of Petrole Environmental Mec Hydrocarbon Criter	um Hydro lia – Tota ia	ocarbons in I Petroleum	Determina Hydrocart	ation of S oons in S	peciated Extractable Petroleum oils by GC-FID		
	TM181	US EPA Method 60)10B		Determina ICP-OES	ation of R	outine Metals in Soil by iCap 6500) Duo	
	TM218	Microwave extraction	on – EPA	method 3546	Microwav	e extracti	on - EPA method 3546		
	TM221	Inductively Coupled Spectroscopy. An Winge, Fassel, Pet	d Plasma Atlas of S erson an	- Atomic Emission Spectral Information: d Floyd	Determina Emission	ation of A Spectron	cid extractable Sulphate in Soils b neter	y IRIS	
	TM222	In-House Method			Determina Water:soil	ation of F I) by IRIS	lot Water Soluble Boron in Soils (Emission Spectrometer	10:1	

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

(

SDG:

Job:

CERTIFICATE OF ANALYSIS

101214-5 H_GRONTMIJ_SOL-42 Client Reference:

Location: Fiveways Grontmij Customer:

Gareth Taylor

Attention:

Order Number: 110765 Report Number: Superseded Report:

Test Completion Dates

Lab Sample No(s)	2649431	2649438	2649441	2649444	2649446
Customer Sample Ref.	HP01	HP02	HP03	HP04	HP04
AGS Ref.					
Depth	0.10	0.70	0.30	0.10	0.70
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
Asbestos Containing Material Screen			06-Jan-2011	06-Jan-2011	06-Jan-2011
Boron Water Soluble	06-Jan-2011	06-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011
EPH CWG (Aliphatic) GC (S)		10-Jan-2011	12-Jan-2011	12-Jan-2011	
EPH CWG (Aromatic) GC (S)		10-Jan-2011	12-Jan-2011	12-Jan-2011	
GRO by GC-FID (S)		13-Jan-2011	12-Jan-2011	13-Jan-2011	
Hexavalent Chromium (s)	07-Jan-2011	07-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011
Metals by iCap-OES (Soil)	06-Jan-2011	06-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011
PAH by GCMS			11-Jan-2011	11-Jan-2011	11-Jan-2011
pH	06-Jan-2011	06-Jan-2011	10-Jan-2011	10-Jan-2011	10-Jan-2011
Sample description	05-Jan-2011	05-Jan-2011	10-Jan-2011	10-Jan-2011	10-Jan-2011
Semi Volatile Organic Compounds		10-Jan-2011			
Total Organic Carbon	06-Jan-2011	06-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011
Total Sulphate	06-Jan-2011		11-Jan-2011	11-Jan-2011	
TPH CWG GC (S)		13-Jan-2011	12-Jan-2011	13-Jan-2011	
VOC MS (S)		11-Jan-2011			

CERTIFICATE OF ANALYSIS

SDG:	101214-5	Location:	Fiveways
Job:	H_GRONTMIJ_SOL-42	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylo

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 110765 Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	GRAVIMETRIC	
THIN LAYER CHROMATOGRAPHY	D&C	DOM	IATROSCAN	
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH ONG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLYAROMATIC HYDROCARBONS RARD GC WET		HEXANEACETONE	SHAVER	0CEZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID'LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST 00P/0PP	DOM	LIQUID'LIQUID SHAKE	GCMS
TRAZINE HERES	DOM	LIQUID'LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID'LIQUID SHAKE	HPLC
MINERALOIL by IR	TCE	LIQUID'LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Croddalite	Blue Asbestos
Fibrous Adindite	-
Fibrous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode lane Solihull West Midlands B912AA

Attention: Gareth Taylor

Please note: this test certificate contains results from multiple sites. The relevant results to the study site are those at Newlands Court or Newlands Lane only (some preceded by the reference "Fiveways").

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 22 June 2011 H_GRONTMIJ_SOL 110602-58

Part 2a Assistance 135175

This report has been revised and directly supersedes 133432 in its entirety.

We received 29 samples on Thursday June 02, 2011 and 29 of these samples were scheduled for analysis which was completed on Wednesday June 22, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110602-58	Location:	Part 2a Assistance	Order Number:	
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij	Report Number:	135175
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	133432

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3588809	10 WESTGATE			31/05/2011
3588808	11 GOODWOOD			31/05/2011
3588826	11 NEWLANDS COURT FIVEWAYS		0.30	31/05/2011
3588818	110 STAFFORD LANE			31/05/2011
3588805	121 ARMITAGE ROAD			31/05/2011
3588806	125 ARMITAGE ROAD			31/05/2011
3588811	2 SANDOWN			31/05/2011
3588819	21 HERONDALE			31/05/2011
3588807	3 SLADE VIEW RISE			31/05/2011
3588787	3A BLAKE CLOSE			31/05/2011
3588810	4 KEMPTON			31/05/2011
3588813	41 SWALLOWFIELDS			31/05/2011
3588814	73 STAGBOROUGH			31/05/2011
3588815	8 STAGBOROUGH WAY			31/05/2011
3588788	83 BLAKE CLOSE			31/05/2011
3588803	99 ARMITAGE ROAD			31/05/2011
3588802	FIVEWAYS 1 NEWLANDS LANE			31/05/2011
3588798	FIVEWAYS 11 NEWLANDS COURT			31/05/2011
3588799	FIVEWAYS 5 NEWLANDS COURT			31/05/2011
3588800	FIVEWAYS 9 NEWLANDS COURT			31/05/2011
3588795	VIEW ST. 32 FOSTERS AVE.			31/05/2011
3588793	VIEW ST. 53 VIEW ST.			31/05/2011
3588797	VIEW ST. 9 WARD ST.			31/05/2011
3588790	VIEW ST. WS2		1.20	31/05/2011
3588791	VIEW ST. WS3		1.10	31/05/2011
3588789	VIEW ST. WS4		1.60	31/05/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

														١	'alida	ited													
SDG: Job: Client Reference:	110602-58 H_GRONT	MIJ_SOL-54	Location Custome Attention	: r: 1:	P G G	art 2 iront	2a A mij h T	Assis aylo	tano	ce		-2						C F S	Drd Rep Sup	er I ort ers	Nur Nu sed	nbo Iml ed	er: ber: Rep	oort:	135 1334	175 432			
LIQUID Results Legend		Lab Sample	No(s)	3588802	3588811	3588790	3588807	3500707	3588810	00000	3588799	3588815	3588800	3588809	3588808	3588819	3588795	3588813	3588814	3588788	3588803	3588818	3588806						
No Determina Possible	tion	Custome Sample Refe	er rence	FIVEWAYS 1	2 SANDOWN	VIEW ST. WS2	3 SLADE VIEW		4 KEMPTON	VIEW SI. WS4	FIVEWAYS 5	8 STAGBOROUGH	FIVEWAYS 9	10 WESTGATE	11 GOODWOOD	21 HERONDALE	VIEW ST. 32	41	VIEW ST 53 VIEW	83 BLAKE CLOSE	99 ARMITAGE	110 STAFFORD	125 ARMITAGE						
		AGS Refere	nce																										
		Depth (n	1)			1.20		:	1 10	1.00	200																		
		Containe	r	1l green glass bottle	11 green glass bottle	Vial (ALE297)	11 green glass bottle	11 green glass bottle	1l green glass bottle	1l green glass bottle	11 green glass bottle	11 green glass bottle	11 green glass bottle	1l green glass bottle	11 green glass bottle	11 green glass bottle	1l green glass bottle	11 green glass bottle	11 green glass bottle	1l green glass bottle	1l green glass bottle	11 green glass bottle	1l green glass bottle						
Dissolved Metals by ICP-N	IS	All	NDPs: 0 Tests: 25	x	x)	×	x)	< x	x	x	x	x.	x >	(X	x	< x	x	x x	x x	x	x	x >	(X						
Mercury Dissolved		All	NDPs: 0 Tests: 25	x	x)	x	x)	< x	x	x	x	x	x >	(X	x	< x	x	x	x x	x	x	x >	(X						
PAH Spec MS - Aqueous ((W)	All	NDPs: 0 Tests: 25	x	x)	×	x)	< x	x	x	x	X.	x >	(X	x	< x	x	x x	x x	x	x	x >	(X						
VOC MS (W)		All	NDPs: 0 Tests: 3			x			×)	C																		

ALcontrol La	aboratories	C	ER	2TI		(SIS		Validate
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SC	Location L-54 Custome Attention	er:	Pa Gr Ga	rt 2a Assistance ontmij areth Taylor	Order Number: Report Number: Superseded Report:	135175 133432	
SOLID Results Legend X Test	La	b Sample No(s)	3588820	3588823 3588822	3588826			
No Determinat Possible	ion Sa	Customer mple Reference	1 NEWLANDS LANE	5 NEWLANDS	11 NEWLANDS			
		AGS Reference						
		Depth (m)	0.30	0.30	0.30			
		Container	1kg TUB	1kg TUB 1ka TUB	1kg TUB			
Asbestos Containing Materi Screen	al All	NDPs: 0 Tests: 1			x			
Asbestos Identification	All	NDPs: 0 Tests: 1			×			
CEN Readings	All	NDPs: 0 Tests: 3	x	x x				
Dissolved Metals by ICP-M	S All	NDPs: 0 Tests: 3	x	x x				
Mercury Dissolved	All	NDPs: 0 Tests: 3	x	x x				
PAH Spec MS - Aqueous (V	N) All	NDPs: 0 Tests: 3	x	<mark>x</mark> x				
Sample description	All	NDPs: 0 Tests: 4	x	x x	x			
VUC MS (W)	All	NDPs: 0 Tests: 3	x	x x	_			

CERTIFICATE OF ANALYSIS

Validated

SDG:	110602-58	Location:	Part 2a Assistance	Order Number:	
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij	Report Number:	135175
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	133432

Sample Descriptions

Grain Sizes														
very fine	<0.063mm fine 0.		0.063mm - 0.1mm	me	edium 0	.1mm	- 2mm	coars	e 2	mm - 1	Omm	very coa	arse	>10mm
Lab Sample N	o(s) Custo	ner Sample Ref	. Depth (m)	T	Colour		Descripti	ion	Grain s	ze	Inclu	isions	Inclusion	ns 2
3588822	5 NEW	/LANDS COURT FIVEWAYS	0.30		Dark Brow	'n	Top So	il	0.1 - 2 r	nm	Sto	ones	Crushed E	Brick
3588823	9 NEW	/LANDS COURT FIVEWAYS	0.30		Dark Brow	'n	Top So	il	0.1 - 2 r	nm	Sto	ones	Crushed E	Brick
3588826	11 NEV	VLANDS COURT FIVEWAYS	0.30	Dark Brown		'n	Top So	il	0.1 - 2 r	1 - 2 mm 5		ones	Crushed E	Brick
3588820	1 NE\	WLANDS LANE FIVEWAYS	0.30		Dark Brow	'n	Top So	il	0.1 - 2 r	nm	Crushe	ed Brick	Glass & St	ones

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

110602-58 SDG: Location: Part 2a Assistance Order Number: Job: H_GRONTMIJ_SOL-54 135175 Customer: Grontmij **Report Number: Client Reference:** Attention: Gareth Taylor Superseded Report: 133432

Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample I	99 ARMITAGE ROA D	121 ARMITAGE RO AD	125 ARMITAGE RO AD	83 BLAKE CLOSE	3A BLAKE CLOSE	FIVEWAYS 5 NEWL ANDS COURT		
S Non-conforming work. aq Aqueous / settled sample. diss.fitt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate standar check the efficiency of the method. results of individual compounds wit samples aren't corrected for the rec (F) Trigger breach confirmed	d to The hin overy	Depth (m Sample Typ Date Sample Date Receive SDG Re Lab Sample No.(s AGS Reference)	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588805	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588806	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588788	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588787	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588799		
Component Antimony (diss.filt)	LOD/Un <0.10	hits Method 6 TM152	0.367	0.327	0.881	0.297	0.301	2.25		
Arsenic (diss.filt)	µg/l <0.12	2 TM152	3.67	5.16	3.97	2.1	1.42	2.13		
Boron (diss.filt)	μg/l <9.4 μ	Jq/I TM152	# 58.5	# 57.7	# 66.9	# 125	# 85.7	# 102		
Cadmium (diss.filt)	<0.1 µ	ug/l TM152	#	#	# <0.1	# 0.117	# 0.201	# 0.165		
Chromium (diss.filt)	<0.22	2 TM152	# 12.4	# 12.2	# 13.7	# 13.4	# 7.95	# 16.5		
Copper (diss.filt)	µg/l <0.8	5 TM152	# 288	# 9.02	# 5.51	# 24.7	# 740	# 266		
Lead (diss.filt)	µg/l <0.02	2 TM152	# 0.107	# 0.293	# 1.09	# 0.165	# 0.311	# 0.266		
Nickel (diss.filt)	μ <u>g/l</u> <0.1	5 TM152	2.16	# 1.01	# 1.4	# 0.993	# 4.32	# 1.19		
Zinc (diss.filt)	µg/l <0.4	1 TM152	# 74.4	# 7.67	# 29.2	# 14.5	# 606	# 94.9		
Mercury (diss.filt)	µg/l <0.0	1 TM183	# <0.01	# <0.01	# <0.01	# <0.01	# <0.01	# <0.01		
	µg/I		#	#	#	#	#	#		

CERTIFICATE OF ANALYSIS

Results Legend Customer Sampl # ISO17025 accredited. M m mCETS accredited. S Non-conforming work. Depth		Customer Sample R	11 GOODWOOD	21 HERONDALE	4 KEMPTON	FIVEWAYS 9 NEWL ANDS COURT	FIVEWAYS 11 NEW LANDS COURT	FIVEWAYS 1 NEWL ANDS LANE		
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standar check the efficiency of the method. I results of individual compounds will samples aren't corrected for the record	d to Fhe hin overy	Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588808	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588819	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588810	Water (GW/SW) 31/05/2011 02/06/2011 110602-58 3588800	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588798	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588802		
(F) Trigger breach confirmed	LOD/Un	its Method								
Antimony (diss.filt)	<0.16 µq/l	5 TM152	0.344 #	0.266 #	0.421	0.489	0.381 #	0.246		
Arsenic (diss.filt)	<0.12 µg/l	2 TM152	1.85 #	2.08 #	2.03 #	2.22 #	1.94 #	2.06 #		
Boron (diss.filt)	<9.4 µ	g/l TM152	96.5 #	114 #	88.8 #	92.2 #	113 #	80.7 #		
Cadmium (diss.filt)	<0.1 µ	g/l TM152	<0.1 #	<0.1 #	<0.1 #	<0.1 #	0.101 #	<0.1 #		
Chromium (diss.filt)	<0.22 µg/l	2 TM152	14.2 #	11.2 #	12.8 #	14.1 #	13.1 #	8.22 #		
Copper (diss.filt)	0.85< µg/l	5 TM152	49 #	96.6 #	32.7 #	176 #	48.5 #	73.3 #		
Lead (diss.filt)	<0.02 µg/l	2 TM152	0.109 #	0.184 #	0.093 #	0.048 #	0.057 #	0.231 #		
Nickel (diss.filt)	<0.15 µg/l	5 TM152	1.68 #	0.594 #	1.6 #	0.559 #	1.02 #	1.79 #		
Zinc (diss.filt)	<0.41 ua/l	TM152	21.6 #	18 #	7.11	6.25 #	9.53 #	8.76 #		
Mercury (diss.filt)	<0.01 µq/l	TM183	<0.01 #	<0.01 #	<0.01 #	<0.01 #	<0.01 #	<0.01 #		

CERTIFICATE OF ANALYSIS

SDG:	110602-58		Location: F	Part 2a Assistance		Order Number:	405475	
Job: Client Reference:	H_GRONTMI	J_SOL-54	Attention:	Grontmij Gareth Taylor		Superseded Repo	135175 ort: 133432	
				•				
Results Legend # ISO17025 accredited.		Customer Sample R	5 NEWLANDS COUR T FIVEWAYS	9 NEWLANDS COUR T FIVEWAYS	11 NEWLANDS COU RT FIVEWAYS	1 NEWLANDS LANE FIVEWAYS	2 SANDOWN	3 SLADE VIEW RI SE
 Mon-conforming work. aq Aqueous / settled sample diss.filt Dissolved / filtered sample totunfilt Total / unfiltered sample. Subcontracted test. % recovery of the surroge check the efficiency of the 	e. ate standard to e method. The	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s)	0.30 Soil/Solid 31/05/2011 02/06/2011 110602-58 3588822	0.30 Soil/Solid 31/05/2011 02/06/2011 110602-58 3588823	0.30 Soil/Solid 31/05/2011 02/06/2011 110602-58 3588826	0.30 Soil/Solid 31/05/2011 02/06/2011 110602-58 3588820	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588811	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588807
samples aren't corrected	for the recovery	AGS Reference						
Component	LOD/U	Inits Method						
Antimony (diss.filt)	<0.	16 TM152					0.202	0.426
Arsenic (diss.filt)	μg, <0.	/I 12 TM152					# 1.92	1.85
Boron (diss.filt)	µg/ 9.4>	μg/l TM152					# 107	# 128
Cadmium (diss.filt)	<0.1	μg/l TM152					# 0.201 	# <0.1
Chromium (diss.filt)	<0.2	22 TM152					12.5 #	13.3
Copper (diss.filt)	μα, <0.i	85 TM152					# 118	# 175
Lead (diss.filt)	μ <u>α</u> <0.0	02 TM152					# 0.862	0.042
Nickel (diss.filt)	μg, <0.	/I 15 TM152					# 4.46	# 1.69
Zinc (diss.filt)	μg/ <0.4	41 TM152					# 295	# 26
Mercury (diss.filt)	μα, <0.0	01 TM183					# <0.01	
Moisture	9 %	6 PM114	28.8	7.81		24.7	#	#
Moisture content ratio	%	6 PM114	40.4	8.47		32.9		
Dry matter content ratio	%	6 PM114	71.2	92.2		75.3		
Asbestos Containing	-	TM001			Possible ACM Det			
Material Screen								

CERTIFICATE OF ANALYSIS

Validated

110602-58 SDG: Location: Part 2a Assistance Order Number: Job: H_GRONTMIJ_SOL-54 Grontmij 135175 Customer: **Report Number:** Client Reference: Attention: Gareth Taylor Superseded Report: 133432

Results Legend		Cust	omer Sample R	110 STAFFORD LA	73 STAGBOROUGH	8 STAGBOROUGH W	41 SWALLOWFIELD	VIEW ST. 32 FOS	VIEW ST. 53 VIE
M mCERTS accredited. M mCERTS accredited. Son-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfitt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standar check the efficiency of the method. results of individual compounds wit samples aren't corrected for the rec- (F) Trigger breach confirmed	d to The hin overy	Lak	Depth (m) Sample Type Date Sampled Date Received SDG Ref o Sample No.(s) AGS Reference	NE Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588818	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588814	AY Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588815	S Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588813	IERS AVE. Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588795	W S1. Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588793
Component Antimony (diss.filt)	LOD/U	nits 6	Method TM152	0.303	0.246	0.239	0.298	0.449	0.697
Arsenic (diss.filt)	µg/l <0.1	1 2	TM152	# 2.03	# 2.32	# 2.03	# 2.16	# 1.71	# 1.88
Boron (diss.filt)	µg/l <9.4	l µg/l	TM152	# 123	# 135	# 118	# 123	# 121	# 102
Cadmium (diss.filt)	<0.1	µg/l	TM152	# 0.179	# 0.142	# 0.276	# 0.108	# 0.179	# 0.381
Chromium (diss.filt)	<0.2	22	TM152	# 11.2 #	# 13.5 #	# 11.9 #	# 11.3 #	# 11.7 #	# 13.8 #
Copper (diss.filt)	ug/i <0.8	85 I	TM152	# 120 #	19.2 #	91.2 #	9.23 #	302 #	
Lead (diss.filt)	µير 0.0> µg/l)2 I	TM152	0.329	0.121 #	0.398	0.126 #	4.37 #	0.103
Nickel (diss.filt)	<0.1 µg/	5 I	TM152	1.06 #	1.49 #	15.3 #	0.697 #	4.71 #	1.66 #
Zinc (diss.filt)	<0.4 µg/l	1 	TM152	29.9 #	6.85 #	356 #	2.69 #	175 #	661 #
Mercury (diss.filt)	0.0> /لوµ)1 I	TM183	<0.01 #	<0.01 #	<0.01 #	<0.01 #	<0.01 #	<0.01 #
		_							
		_							
		_							
		_							

CERTIFICATE OF ANALYSIS

Results Legend # ISO17025 accredited.		Cust	omer Sample R	10 WESTGATE	VIEW ST. 9 WARD ST.		VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4	
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standar check the efficiency of the method. 1 results of individual compounds with samples aren't corrected for the rec (F) Trigger breach confirmed	d to Fhe hin svery	Lab	Depth (m) Sample Type Date Sampled Date Received SDG Ref o Sample No.(s) AGS Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588809	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588797		1.20 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588790	1.10 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588791	1.60 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588789	
Component	LOD/U	nits	Method			_				
Antimony (diss.filt)	<0.1 ua/l	6	TM152	0.203 #	0.236	#				
Arsenic (diss.filt)	<0.1 µg/l	2	TM152	2.18 #	3.17	#	0.535 #	1.1 #	0.912 #	
Boron (diss.filt)	<9.4	µg/l	TM152	106 #	106	#	171 #	226 #	59.5 #	
Cadmium (diss.filt)	<0.1	µg/l	TM152	<0.1 #	0.149	#	0.605 #	<0.1 #	0.167 #	
Chromium (diss.filt)	<0.2 µg/l	2	IM152	13.9 #	10	#	11.5	20.9 #	28.6 #	
Copper (diss.filt)	0.8> ا/وµ	5	TM152	27.6 #	361	#	2.24 #	3.42 #	<0.85 #	
Lead (diss.filt)	0.0> µg/l	2	TM152	0.066 #	0.23	#	0.072 #	0.16 #	0.05 #	
Nickel (diss.filt)	<0.1 µg/l	5	TM152	1.47 #	3.73	#	3.9 #	3.3 #	3.91 #	
Vanadium (diss.filt)	<0.2 ua/l	4	TM152				2.88 #	4.02 #	8.48 #	
Zinc (diss.filt)	<0.4 µg/l	.1	TM152	9.15 #	293	#	15.9 #	4.05 #	<0.41 #	
Mercury (diss.filt)	0.0> µg/l	1	TM183	<0.01 #	<0.01	#	<0.01 #	<0.01 #	<0.01 #	

CERTIFICATE OF ANALYSIS

Results Legend		Customer Sample R	99 ARMITAGE ROA	121 ARMITAGE RO	125 ARMITAGE RO	83 BLAKE CLOSE	3A BLAKE CLOSE	FIVEWAYS 5 NEWL
# ISO17025 accredited.			D	AD	AD			ANDS COURT
§ Non-conforming work.								
aq Aqueous / settled sample.		Depth (m)						
diss.filt Dissolved / filtered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
tot.unfilt Total / unfiltered sample.		Date Sampled	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011
** % recovery of the surrogate stan	dard to	Date Received	110602-58	110602-58	110602-58	110602-58	110602-58	110602-58
check the efficiency of the metho	d. The	Job Sample No.(a)	3588803	3588805	3588806	3588788	3588787	3588799
results of individual compounds	within	AGS Reference	000000	000000	000000	0000700	0000101	0000700
(F) Trigger breach confirmed	lecovery	AGO Reference						
Component	LOD/U	nits Method						
Naphthalene (ag)	< 0.1	ua/l TM178	<0.1	<0.1	<0.1	0.11	<0.1	<0.1
			#	#	#	#	#	#
Acenaphthene (ag)	<0.0	15 TM178	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
	ua	1	#	#	#	#	#	#
Acenaphthylene (ag)	<0.0	11 TM178	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011
	10	1	#	#	#	#	#	#
Fluoranthene (ag)	<0.0	' 17 TM178	<0.017	<0.017	<i>″</i>	<0.017	<0.017	<0.017
	10.0		-0.017 #	-0.011 #	-0.017 #	-0.017 #	-0.011 #	-0.017
Anthracene (ag)	<0.0	15 TM178	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
	-0.0		40.010 #	40.010 #	-0.010	-0.010 #	40.010	-0.010 #
Phononthrono (ag)		- 22 TM178	~0.022	~0.022	~0.022	-0 022	~0.022	~0.022
Thenantinene (aq)	-0.0		~0.022 #	~0.022 #	-0.022	~0.022 #	~0.022 #	~0.0ZZ #
Eluorone (20)	μų/	1/1 TM178	π <0.014	π ∠0.014	-0 014		-0 01 <i>4</i>	~0.014
ridorene (aq)	~0.0		×0.014 س	~U.U14 #	×0.014 س	×0.014 س	×0.014 س	×0.014 س
Chrysene (cg)	/ <u>pu</u>	12 TM470	<i>4</i>	<i>∠</i> 0.012	<i>∠</i> 0.013	<i>∠</i> 0.013	<i>∠</i> 0.012	
Uniysene (aq)	<0.0		×0.013 µ	×0.013 س	×0.013 س	×0.013 س	∼0.013 #	×0.013 س
Pyrope (ac)	μg/	15 TM470	#	#	# ~0.01F	#	# <0.01E	
r yrene (aq)	<0.0		×0.015 	ciu.u~	ciu.u~	ciu.u~	0.015	ciu.u~
	/pu/		#	#	#	#	#	#
Benzo(a)anthracene (aq)	<0.0	17 IM178	<0.017 "	<0.017	<0.017	<0.017 "	<0.017	<0.017
	µg/		#	#	#	#	#	#
Benzo(b)fluoranthene (aq)	<0.0	23 IM178	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023
	µq/		#	#	#	#	#	#
Benzo(k)fluoranthene (aq)	<0.0	27 TM178	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027
	hď/	l	#	#	#	#	#	#
Benzo(a)pyrene (aq)	<0.0	09 TM178	<0.009	<0.009	<0.009	<0.009	<0.009	<0.009
	hď/		#	#	#	#	#	#
Dibenzo(a,h)anthracene	<0.0	16 TM178	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
(aq)	μ <u>q</u> /		#	#	#	#	#	#
Benzo(g,h,i)perylene (aq)	<0.0	16 TM178	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
	µg/		#	#	#	#	#	#
Indeno(1,2,3-cd)pyrene	<0.0	14 TM178	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014
(aq)	hď/	1	#	#	#	#	#	#
PAH, Total Detected	μg	/I TM178	none detected	none detected	none detected	0.11	none detected	none detected
USEPA 16 (aq)								

ALcontrol Labora	atories		CERI	TIFICATE OF A	NALYSIS			Validated
SDG: 11060 Job: H_GR Client Reference: 1000)2-58 RONTMIJ_	SOL-54	Location: Customer: Custom	Part 2a Assistance Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	135175 rt: 133432	
PAH Spec MS - Aqueous	s (W)							
Results Legend # ISO17025 accredited. M mCERTS accredited.	· (11)	Customer Sample R	11 GOODWOOD	21 HERONDALE	4 KEMPTON	FIVEWAYS 9 NEWL ANDS COURT	FIVEWAYS 11 NEW LANDS COURT	FIVEWAYS 1 NEWL ANDS LANE
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standa check the efficiency of the method. results of individual compounds wi samples aren't corrected for the rec (F) Trigger breach confirmed	rd to The thin :overy	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588808	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588819	Water (GW/SW) 31/05/2011 02/06/2011 110602-58 3588810	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588800	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588798	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588802
Component	LOD/Unit	ts Method						
Naphthalene (aq)	<0.1 µg	g/I TM178	<0.1	<0.1 # #	<0.1 #	<0.1 #	0.121 #	<0.1 #
Acenaphthene (aq)	<0.015 µg/l	5 TM178	<0.015	<0.015 # #	<0.015 #	<0.015 #	<0.015 #	<0.015 #
Acenaphthylene (aq)	<0.011 µg/l	I TM178	<0.011	<0.011 #	<0.011 #	<0.011 #	<0.011 #	<0.011 #
Fluoranthene (aq)	<0.017 ug/l	7 TM178	<0.017	<0.017 # #	<0.017 #	<0.017 #	<0.017 #	<0.017 #
Anthracene (aq)	<0.015	5 TM178	<0.015	<0.015 # #	<0.015 #	<0.015 #	<0.015 #	<0.015
Phenanthrene (aq)	<0.022	2 TM178	<0.022	<0.022 # #	<0.022 #	<0.022 #	<0.022 #	<0.022
Fluorene (aq)	<0.014	+ TM178	<0.014	// // // // // // // // // // // // //	~0.014 #	<0.014 #	<0.014 #	<0.014 #
Chrysene (aq)	<0.013	3 TM178	<0.013	# <0.013 #	* <0.013	+ <0.013	<0.013	<0.013
Pyrene (aq)	μg/i <0.015	5 TM178	<0.015	# # <0.015	# <0.015	# <0.015	# <0.015	# <0.015
Benzo(a)anthracene (aq)	μ <u>g</u> /l <0.017	7 TM178	<0.017	# # <0.017	# <0.017	# <0.017	# <0.017	# <0.017
Benzo(b)fluoranthene (aq)	μg/l <0.023	3 TM178	<0.023	# # <0.023	# <0.023	# <0.023	# <0.023	# <0.023
Benzo(k)fluoranthene (aq)	<0.027	7 TM178	<0.027	# <0.027 # 4	* <0.027	<0.027 #	<0.027 #	<0.027
Benzo(a)pyrene (aq)	μ <u>α</u> /Ι <0.009	9 TM178	<0.009	# <u></u> <0.009	* <0.009	# <0.009	# <0.009	<0.009
Dibenzo(a,h)anthracene	μ <u>g</u> /i <0.016	5 TM178	<0.016	# # <0.016	# <0.016	# <0.016	# <0.016	# <0.016
(aq) Benzo(g,h,i)perylene (aq)	μ <u>g</u> /i <0.016	6 TM178	<0.016	# <u></u>	# <0.016	# <0.016	# <0.016	# <0.016
Indeno(1,2,3-cd)pyrene	μg/I <0.014	4 TM178	<0.014	# # <0.014	# <0.014	# <0.014	# <0.014	# <0.014
(aq) PAH, Total Detected	µg/l µg/l	TM178	none detected	# # none detected	# none detected	# none detected	# 0.121	# none detected
USEPA 16 (aq)								
				_				
				_				

	control La	boratori	es		CER	TI	FICATE OF A	NALYSIS			Validated
SDG: Job: Client Re	eference:	110602-58 H_GRONTN	/IJ_SC	DL-54	Location: Customer: Attention:	Pa Gr Ga	rt 2a Assistance ontmij ıreth Taylor		Order Number: Report Number: Superseded Repo	135175 ort: 133432	
PAH Spe	ec MS - Aqu	eous (W)									
# ISO1 M mCE	Results Legend 17025 accredited. RTS accredited.		Cus	stomer Sample R	2 SANDOWN		3 SLADE VIEW RI SE	110 STAFFORD LA NE	73 STAGBOROUGH	8 STAGBOROUGH W AY	41 SWALLOWFIELD S
aq Aquu diss.filt Diss tot.unfilt Tota * Subo ** % re chec chec sam (F) Trigg	eous / settled sample. solved / filtered sample. contracted test. covery of the surrogat ck the efficiency of the ilts of individual comp ples aren't corrected for ger breach confirmed	ie standard to method. The ounds within or the recovery	Lá	Depth (m) Sample Type Date Sampled Date Received SDG Ref ab Sample No.(s) AGS Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588811		Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588807	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588818	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588814	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588815	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588813
Component	t	LOD	/Units	Method							
Naphthale	ene (aq)	<0.	1 µg/l	TM178	<0.1	#	0.103 #	0.131 #	<0.1 #	<0.1 #	<0.1 #
Acenapht	hylene (aq)	ν μ <0	.015 g/l 011	TM178	<0.015	#	<0.015	<0.015	<0.015	<0.015	<0.015
Fluoranthe		μ μ	<u>g/l</u>	TM178	<0.017	#	<0.011 #	<0.011 #	<0.011 #	<0.011 #	<0.011 #
Anthracen		μ 	g/l 015	TM178	<0.017	#	<0.017 #	<0.017 #	<0.017 #	<0.017 #	<0.017 #
Antinacen		чо и	<u>g/l</u>			#	4	4	<0.013 #	#	<0.013 #
Phenanth	rene (aq)	0> ب	.022 g/l	TM178	<0.022	#	<0.022 #	<0.022 #	<0.022 #	<0.022 #	<0.022 #
Fluorene ((aq)	0> ب	.014 g/l	TM178	<0.014	#	<0.014 #	<0.014 #	<0.014 #	<0.014 #	<0.014 #
Chrysene	(aq)	0> ب	.013 g/l	TM178	<0.013	#	<0.013 #	<0.013 #	<0.013 #	<0.013 #	<0.013 #
Pyrene (a	q)	0> μ	.015 g/l	TM178	<0.015	#	<0.015 #	<0.015	<0.015	<0.015	<0.015
Benzo(a)a	anthracene (aq) <0 μ	.017 g/l	TM178	<0.017	#	<0.017	<0.017	<0.017	<0.017	<0.017
Benzo(b)		q) <0 μ	.023 g/l	TM178	<0.023	#	<0.023	<0.023	<0.023	<0.023	<0.023
Benzo(k)fi		q) <0 μ	.027 g/l	TM178	<0.027	#	<0.027	<0.027	<0.027	<0.027	<0.027
Benzo(a)p	byrene (aq)	0> ب	.009 g/l	TM178	<0.009	#	<0.009 #	<0.009 #	<0.009 #	<0.009	<0.009 #
Dibenzo(a (aq)	a,h)anthracene	0> μ	.016 g/l	TM178	<0.016	#	<0.016	<0.016	<0.016	<0.016	<0.016
Benzo(g,h	i,i)perylene (aq	l) <0 μ	.016 g/l	TM178	<0.016	#	<0.016 #	<0.016	<0.016 #	<0.016	<0.016
(aq)	2,3-ca)pyrene	υ> μ	.014 g/l	TM178	<0.014	#	<0.014	<0.014	<0.014 #	<0.014 #	<0.014 #
USEPA 16	al Detected 6 (aq)		Jg/I	TM178			0.103	0.131	none detected	none detected	

CERTIFICATE OF ANALYSIS

PAH Spec MS - Aqueous	s (W)							
Results Legend # ISO17025 accredited. M mCERTS accredited.	Ci	ustomer Sample R	VIEW ST. 32 FOS TERS AVE.	VIEW ST. 53 VIE W ST.	VIEW ST. 9 WARD ST.	VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4
 § Non-conforming work. aq Aqueous / settled sample. 		Depth (m)		· · ·		1.20	1.10	1.60
diss.filt Dissolved / filtered sample.		Sample Type	Water(GW/SW) 31/05/2011	Water(GW/SW) 31/05/2011	Water(GW/SW) 31/05/2011	Water(GW/SW) 31/05/2011	Water(GW/SW) 31/05/2011	Water(GW/SW) 31/05/2011
* Subcontracted test.		Date Received	02/06/2011	02/06/2011	02/06/2011	02/06/2011	02/06/2011	02/06/2011
** % recovery of the surrogate standar check the efficiency of the method.	rd to The	SDG Ref	110602-58	110602-58	110602-58	110602-58	110602-58	110602-58
results of individual compounds with	thin	Lab Sample No.(s)	3588795	3588793	3588797	3588790	3588791	3588789
samples aren't corrected for the rec (F) Trigger breach confirmed	overy	AGS Reference						
Component	LOD/Units	Method						
Naphthalene (ag)	<0.1.ug/	I TM178	0 104	<0.1	<0.1	<0.1	<0.1	<0.1
Naphinalene (aq)	<0.1 μg/	1 1101170	0.10 4 #	-0.1	~0.1 #	-0.1	~0.1 #	~0.1 #
Acenaphthene (ag)	<0.015	TM178	<0.015	<0.015	π <0.015	<0.015	0.0225	0.0156
Acenaphiliene (aq)	<0.010	111170	~0.015 #	~0.015 #	-0.010 #	-0.015 #	0.0225 #	0.0150
Accompatibulana (ag)	μ <u>μ</u> γ/I	TM170	π <0.011	π	π ∠0.011	π	π 0.0191	π <0.011
Acenaphilitylene (aq)	<0.011	1111170	<0.011 #	<0.011 #	×0.011	×0.011 #	0.0101	<0.011 #
	μη/Ι	T14470	#	#	#	#	#	#
Fluoranthene (aq)	<0.017	111178	×0.017 س	<0.017	×0.017 ۳	×0.017 س	0.981	0.405
	µg/I	T14470	#	#	#	#	#	#
Anthracene (aq)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	0.0538	0.0302
	µg/l		#	#	#	#	#	#
Phenanthrene (aq)	<0.022	TM178	<0.022	<0.022	<0.022	<0.022	0.217	0.13
	µg/l		#	#	#	#	#	#
Fluorene (aq)	<0.014	TM178	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014
	µg/l		#	#	#	#	#	#
Chrysene (aq)	<0.013	TM178	<0.013	<0.013	<0.013	<0.013	0.935	0.434
	µg/l		#	#	#	#	#	#
Pyrene (aq)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	1.11	0.559
	µg/l		#	#	#	#	#	#
Benzo(a)anthracene (aq)	<0.017	TM178	<0.017	<0.017	<0.017	<0.017	0.565	0.283
	µg/l		#	#	#	#	#	#
Benzo(b)fluoranthene (aq)	< 0.023	TM178	<0.023	<0.023	<0.023	<0.023	0.625	0.279
	ua/l		#	#	#	#	#	#
Benzo(k)fluoranthene (ag)	< 0.027	TM178	<0.027	<0.027	<0.027	<0.027	0.815	0.33
			#	#	#	#	#	#
Benzo(a)pyrene (ag)	<0.009	TM178	<0.009	<0.009	<0.009	<0.009	0.916	0.352
	ug/l		#	-0.000 #	-0.000 #	-0.000 #	0.010 #	0.00L #
Dibenzo(a b)anthracene	<0.016	TM179	~0.016	~0.016	~0.016	~0.016	π 0.112	0.0350
	<0.010	111170	<0.010 #	~0.010 #	~0.010 #	~0.010 #	0.112 #	0.0559
(aq)	μ <u>μ</u> η/1	TM170	+ -0.016	# <0.016	# <0.016	+ -0.016	# 0.690	0 109
Benzo(g,n,i)perviene (aq)	<0.016	11/11/8	<0.016	<0.016	<0.016	<0.016	0.089	0.198
	µg/I	TM470	#	#	#	#	#	#
Indeno(1,2,3-cd)pyrene	<0.014	11/11/8	×0.014 بر	<0.014	<0.014	×0.014 بر	0.54	0.164
	µg/I	714470	#	#	#	#	#	#
PAH, Iotal Detected	µg/I	TM178	0.104	none detected	none detected	none detected	7.6	3.28
USEPA 16 (aq)								
		11						
	1							

ALcontrol Lab	oratories	5	CERI	TIFICATE OF A	NALYSIS			Validated
SDG: 11 Job: H_ Client Reference:	0602-58 _GRONTMIJ	SOL-54	Location: Customer:	Part 2a Assistance Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	135175 rt: 133432	
PAH Spec MS - Aqueo	ous (W)							
Results Legend SO17025 accredited. M mCETR3 accredited. Solver accredited. Solver accredited. Solver accredited. Solver accredited. Solver accredited asmple. totunfit total / unfittered sample. Subcontracted test. Solven accredited test. Solven are accredited test. Solven accredited t	andard to thod. The ds within le recovery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	10 WESTGATE Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588809					
Component	LOD/U	nits Method						
Naphthalene (aq)	<0.1	µg/l TM178	<0.1	#				
Acenaphthene (aq)	0.0 [×] ا/gµ	15 TM178	<0.015	#				
Acenaphthylene (aq)	< 0.0*	11 TM178	<0.011	#				
Fluoranthene (aq)	μ <u>η</u> / ^0.0> μq/l	17 TM178	<0.017	#				
Anthracene (aq)	۵.0> ا/وµ	15 TM178	<0.015	#				
Phenanthrene (aq)	<0.02	22 TM178	<0.022	#				
Fluorene (aq)	۵.0^> µg/l	14 TM178	<0.014	#				
Chrysene (aq)	0.0> ا/gµ	13 TM178	<0.013	#				
Pyrene (aq)	0.0> ا/µq	15 TM178	<0.015	#				
Benzo(a)anthracene (aq)	0.0> ا/gµ	17 TM178	<0.017	#				
Benzo(b)fluoranthene (aq)	0.02> µg/l	23 TM178	<0.023	#				
Benzo(k)fluoranthene (aq)	0.02> µq/l	27 TM178	<0.027	#				
Benzo(a)pyrene (aq)	0.00> ا/pu	09 TM178	<0.009	#				
Dibenzo(a,h)anthracene (aq)	0.0> ا/gµ	16 TM178	<0.016	#				
Benzo(g,h,i)perylene (aq)	۰0.0> ا/gµ	16 TM178	<0.016	#				
Indeno(1,2,3-cd)pyrene (aq)	0.0> ا/gu	14 TM178	<0.014	#				
PAH, Total Detected USEPA 16 (aq)	μg/	1 TM178	none detected					

SDG:	110602-58			Location:	Pa	rt 2a Assistance	A	NAL 1 313		Order Number:		
Job: Client Reference:	H_GRONTM	IJ_SOL-54		Customer: Attention:	Gr	ontmij reth Tavlor				Report Number: Superseded Report:	135175 133432	
OC MS (W)												
Kosturis Legento Kosturis Legento Kosturis Legento M Kosturis Legento M McCERTS accredited. M McCERTS accredited. Subcontracted sample. Subcontracted test. * % recovery of the surrogat check the efficiency of the results of individual comp samples aren't corrected f (F) Trigger breach confirmed	te standard to method. The ounds within or the recovery	Customer S Du Samp Date S Date R S Lab Sampl AGS Re	ample R epth (m) ole Type Sampled teceived SDG Ref le No.(s) eference	1.20 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588790		1.10 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588791		1.60 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588789	,			
Component Toluene-d8**		Units Met % TM	thod 208	98.2		99		99.3	_			
Methyl tertiary butyl ethe	er <1.6	δμg/I TM	208	<1.6		<1.6		<1.6				
MTBE) Benzene	<1.3	3 µg/l TM	208	<1.3	#	<1.3	#	<1.3	#			
Foluene	<1.4	1 μg/l TM	208	<1.4	#	<1.4	#	<1.4	#			
Ethylbenzene	<2.5	5 μg/l TM	208	<2.5	#	<2.5	#	<2.5	#			
n,p-Xylene	<2.5	5 μg/l TM	208	<2.5	#	<2.5	#	<2.5	# #			
o-Xylene	<1.7	7 µg/l TM	208	<1.7	#	<1.7	#	<1.7	#			
ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

SDG:	110602-58	Location:	Part 2a Assistance	Order Number:	
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij	Report Number:	135175
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	133432

Asbestos Identification

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	11 NEWLANDS COURT FIVEWAYS NS Z 0.30 SOLID 31/05/2011 00:000 02/06/2011 14:02:44 110602-58 3,588,826 TM048	16/6/11	Paul Poynton	Typical of asbestos cement	Not Detected (#)	Detected (#)	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

	oratories		CEF	RTIFIC	ATE OF ANAL	YSIS		L	Validat	ed
SDG: 1 ¹ Job: H Client Reference:	10602-58 _GRONTMIJ_SO	L-54 C	ocation: Sustomer: Attention:	Part 2a / Grontmij Gareth T	Assistance Faylor		Order Number: Report Number: Superseded Report:	135175 133432		
			CEN	2:1 ST	AGE BATCH	TEST				
WAC ANALYTICA		s						REF :	BS EN 1	2457/
Client Reference					Site Location		Part 2a	a Assistanc	e	
Mass Sample taken (kg)	0.232			Moisture Conte	ent Ratio (%)	32.9			
Mass of dry sample (kg)	0.175			Dry Matter Con	tent Ratio (%) 75.3			
Particle Size <4mm		>95%			_					
Case										
SDG		110602-58								
Lab Sample Number(s)	3588820								
Sampled Date		31-May-2011								
Customer Sample Re	ef.	1 NEWLANDS	S LANE F	IVEWA	ŕS					
Depth (m)		0.30								
Solid Waste Analysis	;									
Total Organic Carbon (%)		-					-	-		-
Loss on Ignition (%)		-					-	-		-
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)		-					-	-		-
Mineral Oil (mg/kg)		-					-	-		-
PAH Sum of 17 (mg/kg)		-					-	-		-
pH (pH Units)		-					-	-		-
ANC to pH 6 (mol/kg)		-					-	-		-
		0			0.4					
Eluate Analysis		elua	ate (mg/l)		leacheo	Limit value	s for compliand	e leaching te	st	
		Result	Limit o	of Detection	Result	Limit of Detect	tion Using BS) EN 12457-3 a	t L/S 10 I/kg	
Arsenic		0.0218	<0.	.00012	0.0436	< 0.0012	0.5	2		25
Cadmium		-	<0	-	- 0.00768	-	20	100	2	5
Chromium		0.0121	<0.	.00022	0.0242	< 0.001	0.5	10		70
Copper		0.0395	<0.	.00085	0.079	<0.0085	2	50	1	100
Mercury Dissolved (CVAF)		0.000037	<0.	.00001	0.000074	<0.0001	0.01	0.2		2
Nolybdenum		-	0	-	-	-	0.5	10		30
Lead		0.00575	<0.	000015	0.0626	<0.0015	0.4	10		40 50
Antimony		-		-	-	-	0.06	0.7		5
Selenium		-		-	-	-	0.1	0.5		7
Zinc		0.029	<0.	.00041	0.058	<0.0041	4	50	2	200
Fluoride		-		-	-	-	800	15000	25	5000
Sulphate (soluble)			-	-			1000	20000	50	2000
Total Dissolved Solids		-		-	-	-	4000	60000	10	0000
Total Monohydric Phenols (W)	-	_	-	-	-	1	-		-
Leach Test Informati	on									

Date Prepared	15-Jun-2011
pH (pH Units)	8.24
Conductivity (µS/cm)	490.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.292
Volume of Eluate VE1 (Litres)	

000	110002 59			Dert 2e /	Vasiatanaa		Ouden Neurskern			
SDG: Job:	H_GRONTMIJ_S	SOL-54	Location: Customer:	Grontmij	Assistance		Report Number:	135175		
Client Reference:			Attention:	Gareth T		TEOT	Superseded Report:	133432		
			CEN	2:1 51	AGE BATCH	IESI				
NAC ANALYTIC	CAL RESUL	TS						REF :	BS EN 1	2457/
Client Reference					Site Location		Part 2	a Assistand	e	
Mass Sample take	n (kg)	0.232			Moisture Conte	ent Ratio (%)	32.9			
Mass of dry sample	e (kg)	0.175			Dry Matter Con	tent Ratio (%) 75.3			
Particle Size <4mm	1	>95%								
Case										
SDG		110602-58								
Lab Sample Numb	er(s)	3588820								
Sampled Date	- (-)	31-May-2011								
Customor Samala	Rof	1 NFWI AND	S LANF F		(S					
Depth (m)	1761.	0.30			-					
		5.00								
Solid waste Analys	515									
Total Organic Carbon (%)		-					-	-		-
Loss on Ignition (%) Sum of BTEX (ma/ka)		-					-	-		-
Sum of 7 PCBs (mg/kg)		-					-	-		-
Mineral Oil (mg/kg)		-					-	-		-
PAH Sum of 17 (mg/kg)		-					-	-		-
pH (pH Units)		-					-	-		-
ANC to pH 6 (mol/kg)		-					-	-		-
		•								
Eluato Analysis		Co	nc" in 2:1 ate (mg/l)		2:1 leache	conc" d (ma/ka)	Limit value	s for complian	ce leaching te	st
Eluale Analysis		Beoult		of Detection	Becult	Limit of Detect	using B	S EN 12457-3 a	at L/S 10 l/kg	
Boron		0.0612	<0	0094	0 122	<0.094	-	_		_
Vanadium		0.0191	<0.	.00024	0.0382	< 0.0024	-	-		-
PAH Spec MS - Aqueou	s (W)									
Naphthalene by GCMS		<0.0001	<0	.0001	<0.0002	<0.001	-			-
Acenaphthene by GCMS	5	<0.000015	<0.0	000015	<0.00003	<0.00015	-			-
Acenaphthylene by GCM	15	<0.000011	<0.0	000011	<0.000022	< 0.00011	-			-
Anthracene by GCMS		0.0000595	<0.0	000017	0.000119	<0.00017	-			-
Phenanthrene by GCMS		<0.000015	<0.0	000022	<0.00003	<0.00015	-			-
Fluorene by GCMS		<0.000022	<0.0	000022	<0.000044	<0.00022		· · · ·		-
Chrysene by GCMS		0.0000189	<0.0	000013	0.0000378	< 0.00013	-	-		-
Pyrene by GCMS		0.0000479	<0.0	000015	0.0000958	< 0.00015	-	· -		-
Benz(a)anthracene by G	CMS	0.0000184	<0.0	000017	0.0000368	<0.00017	-	-		-
Benzo(b)fluoranthene by	GCMS	< 0.000023	<0.0	000023	<0.000046	< 0.00023	-			-
Benzo(k)fluoranthene by	GCMS	<0.000027	<0.0	000027	<0.000054	<0.00027	-	-		-
Benzo(a)pyrene by GCN		<0.00009	<0.0	000009	<0.00018	< 0.00009				-
		<0.000016	<0.0	000016	<0.000032	< 0.00016				-
Indeno(123cd)pyrene by	GCMS		<0.0			<0.00016				-
PAH 16 EPA Total by G	CMS	0.000145	<0.0	<0	0.000020	~0.00014				-
VOC MS (W)		1 0.000143		·v	0.00029		-			-
Toluene-d8		-		-	-	-	-	-		-
Tert-butyl methyl ether		<0.0016	<0	.0016	<0.0032	< 0.016	-	· .		-
Benzene		<0.0013	<0	.0013	<0.0026	<0.013	-	-		-

Date Prepared	15-Jun-2011
pH (pH Units)	8.24
Conductivity (µS/cm)	490.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.292
Volume of Eluate VE1 (Litres)	

```
22/06/2011 08:52:27
```

	aporatories		CEF	RTIFICA		YSIS			Validated
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SO	L-54 0	ocation: Customer: Attention:	Part 2a A Grontmij Gareth Ta	aylor	(Order Number: Report Number: Superseded Report:	135175 133432	
			CEN	2:151	AGE BAICH	IEƏI			
WAC ANALYTI		S						REF :	: BS EN 12457
Client Reference					Site Location		Part 2	a Assistan	ice
Mass Sample take	n (kg)	0.232			Moisture Conte	nt Ratio (%)	32.9		
Mass of dry samp	e (kg)	0.175			Dry Matter Cont	ent Ratio (%) 75.3		
Particle Size <4mn	n :	>95%							
Case									
SDG		110602-58							
Lab Sample Numb	er(s)	3588820							
Sampled Date	:	31-May-2011							
Customer Sample	Ref.	1 NEWLAND	S LANE F	IVEWAY	Ϋ́S				
Depth (m)		0.30							
Solid Waste Analy	sis		_						
Total Organic Carbon (%)		-					-	-	-
Loss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)		-					-	-	-
Mineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg)		-					-	-	-
pH (pH Units)		-					-	-	-
ANC to pH 4 (mol/kg)		-					-	-	-
		Co	een in Ord		2:4 -	enen			
Fluate Δnalvsis		elu	ate (mg/l)		leached	Limit value	es for complia	nce leaching test	
		Result	Limit o	of Detection	Result	Limit of Detect	ion using B	S EN 12457-3	at L/S 10 l/kg
VOC MS (W)									
Toluene		<0.0014	<0	.0014	<0.0028	<0.014	-		
Ethylbenzene		< 0.0025	<0	0.0025	<0.005	< 0.025	-		
o-Xylene		<0.0025	<0	0.0025	<0.005	<0.025		· · ·	
Loach Tost Inform	ation								

Date Prepared	15-Jun-2011
pH (pH Units)	8.24
Conductivity (µS/cm)	490.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.292
Volume of Eluate VE1 (Litres)	

	boratories		CEF	RTIFICA	TE OF ANAL	YSIS		L	Validate	ed
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SC)L-54	Location: Customer: Attention:	Part 2a A Grontmij Gareth T	Assistance aylor		Order Number: Report Number: Superseded Report:	135175 133432		
			CEN	2:1 ST	AGE BATCH	TEST				
WAC ANALYTIC	AL RESULT	S						REF : F	3S EN 1	2457/
Client Reference					Site Location		Part 2a	a Assistance	е	
Mass Sample taken	(kg)	0.246			Moisture Conte	nt Ratio (%)	40.4			
Mass of dry sample	(kg)	0.175			Dry Matter Cont	tent Ratio (%	b) 71.2			
Particle Size <4mm		>95%			-	,				
Case										
SDG		110602-58								
Lab Sample Numbe	r(s)	3588822								
Sampled Date	(-)	31-May-2011								
Customer Sample F	Pof	5 NEWLAND	S COURT	FIVEW	AYS					
Depth (m)		0.30								
Solid Waste Analys	is									
Total Organic Carbon (%)		-					-	-		-
Loss on Ignition (%)		-					-	-		-
Sum of BIEX (mg/kg) Sum of 7 PCBs (mg/kg)		-					-	-		-
Mineral Oil (mg/kg)		-					-	-		-
PAH Sum of 17 (mg/kg)		-					-	-		-
pH (pH Units)		-					-	-		-
ANC to pH 4 (mol/kg)		-					-	-		-
		Co	nc≞in 2·1		2.1 c	conc ⁿ				
Eluate Analysis		elu	ate (mg/l)		leached	l (mg/kg)	Limit value	s for complianc	e leaching tes	st
-		Result	Limit o	f Detection	Result	Limit of Detec	tion using BS	EN 12457-3 at	L/S 10 l/kg	
Arsenic		0.00366	<0.	00012	0.00732	<0.0012	0.5	2		25
Barium		-	_	-	-	-	20	100	3	300
Cadmium		0.000112	<0	.0001	0.000224	< 0.001	0.04	1		5
Copper		0.00331	<0.	00022	0.00662	< 0.0022	0.5	10		70 100
Mercury Dissolved (CVAF	5)	0.0144	<0.	00085	0.0288	<0.0083	0.01	0.2		2
Molybdenum	1	-		-	-		0.5	10		30
Nickel		0.00357	<0.	00015	0.00714	<0.0015	0.4	10		40
Lead		0.00334	<0.	00002	0.00668	< 0.0002	0.5	10		50
Antimony		-		-	-	-	0.06	0.7		5
Selenium		-	_	-	-	-	0.1	0.5		7
Zinc		0.0212	<0.	00041	0.0424	< 0.0041	4	50	2	200
Chioride		-		-	-	-	800	15000	25	5000
Sulphate (soluble)		-		-	-	-	10	150	5	2000
Total Dissolved Solids				-			4000	60000	10	0000
Total Monohydric Phenols	s (W)	-		-	_	-	1	-	10	-
Dissolved Organic Carbor	1	-		-	-	-	500	800	1	000
Leach Test Informa	τιοη									

Date Prepared	16-Jun-2011
pH (pH Units)	7.83
Conductivity (µS/cm)	285.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.279
Volume of Eluate VE1 (Litres)	

000: 1	10602 59		• <u>-</u>	Dort 20			Ouden Neurskern			
Job:	I_GRONTMIJ_S	OL-54	Location: Customer:	Grontmij	Assistance		Report Number:	135175		
Client Reference:			Attention:	Gareth T		TEOT	Superseded Report:	133432		
			CEN	2:151	AGE BAICH	1551				
WAC ANALYTIC	AL RESULT	ſS						REF :	BS EN 12	2457
Client Reference					Site Location		Part 2	a Assistanc	e	
Mass Sample taken	(kg)	0.246			Moisture Conte	ent Ratio (%)	40.4			
Mass of dry sample	(kg)	0.175			Dry Matter Con	tent Ratio (%) 71.2			
Particle Size <4mm		>95%								
Case										
SDG		110602-58								
Lab Sample Number	(s)	3588822								
Sampled Date	(-)	31-May-2011								
Customer Semple D	of	5 NEWLAND	S COURT	FIVEW	AYS					
Depth (m)	CI.	0.30								
Solid Waste Analysi	S									
Total Organic Carbon (%)		-					-	-		
Loss on Ignition (%)		-					-	-	-	
Sum of BTEX (mg/kg)		-					-	-	-	
Sum of 7 PCBs (mg/kg)		-					-	-	-	
Mineral Oil (mg/kg)		-					-	-	-	
pH (pH Units)		-					-	-	-	
ANC to pH 6 (mol/kg)		-					-	-	-	
ANC to pH 4 (mol/kg)		-					-	-	-	
		Co	nc ⁿ in 2:1		2:1	conc ⁿ				
Eluate Analysis		elu	ate (mg/l)		leache	d (mg/kg)	Limit value	s for compliant	e leaching test	£
		Result	Limit o	f Detection	Result	Limit of Detect	tion	5 EN 12457-5 a	r L/S 10 I/kg	
Boron		0.0819	<0	.0094	0.164	< 0.094	-			-
Vanaulum PAH Spec MS - Aqueous i	(\\)	0.00428	<0.	00024	0.00856	< 0.0024	-	-	-	-
Naphthalene by GCMS	(**)	0.000113	<0	0001	0.000226	<0.001		_		-
Acenaphthene by GCMS		<0.000115	<0 (00015	<0.000220	<0.001		· · ·		-
Acenaphthylene by GCMS		< 0.000011	<0.0	000011	< 0.000022	< 0.00011	-	-	-	-
Fluoranthene by GCMS		0.0000253	<0.0	000017	0.0000506	<0.00017	-	-		-
Anthracene by GCMS		< 0.000015	<0.0	000015	< 0.00003	<0.00015	-			-
Phenanthrene by GCMS		<0.000022	<0.0	000022	<0.000044	<0.00022				-
Fluorene by GCMS		< 0.000014	<0.0	000014	<0.000028	< 0.00014				-
Chrysene by GCMS		0.0000193	<0.0	000013	0.0000386	<0.00013		-		-
Benz(a)anthracene by GCI	MS	0.0000297	<0.0	00015	0.0000594	<0.00015	-			
Benzo(b)fluoranthene by C	CMS	<0.0000206	<0.0	00017	<0.0000412	<0.00017	-	· · ·		
Benzo(k)fluoranthene by G	CMS	<0.000023	<0.0	000027	<0.000040	<0.00023	-			
Benzo(a)pyrene by GCMS		0.00000978	<0.0	000009	0.0000196	< 0.00009	-			-
Dibenzo(ah)anthracene by	GCMS	<0.000016	<0.0	000016	< 0.000032	<0.00016	-	-		-
Benzo(ghi)perylene by GC	MS	<0.000016	<0.0	000016	<0.000032	< 0.00016	-	-		-
Indeno(123cd)pyrene by G	CMS	<0.000014	<0.0	000014	<0.000028	< 0.00014	-			
PAH 16 EPA Total by GCN	/15	0.000218		<0	0.000436	<0	-	-	_	-
Tert-hutyl methyl ether		-		-	-	-				-
Benzene		<0.0016	<0	0013	<0.0032	<0.016				-
		-0.0010			0.0020	-0.010				

Date Prepared	16-Jun-2011
pH (pH Units)	7.83
Conductivity (µS/cm)	285.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.279
Volume of Eluate VE1 (Litres)	

	Laboratories		CEF	RTIFICA	TE OF ANAL	YSIS		L	Validated
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_S	OL-54	Location: Customer: Attention:	Part 2a A Grontmij Gareth T	Assistance aylor		Order Number: Report Number: Superseded Report:	135175 133432	
			CEN	2:1 ST	AGE BATCH	TEST			
WAC ANALYTI	CAL RESULT	rs						REF : I	BS EN 12457/ [.]
Client Reference					Site Location		Part 2	a Assistanc	e
Mass Sample take	en (kg)	0.246			Moisture Conte	nt Ratio (%)	40.4		
Mass of dry samp	le (kg)	0.175			Dry Matter Con	tent Ratio (%) 71.2		
Particle Size <4m	m	>95%							
Case									
SDG		110602-58							
Lab Sample Numb	per(s)	3588822							
Sampled Date		31-May-2011							
Customer Sample	Ref.	5 NEWLAND	S COURT	FIVEW	AYS				
Depth (m)		0.30							
Solid Waste Analy	/sis								
Total Organic Carbon (%)		-					-	-	-
Loss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg)		-					-	-	-
Mineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg)		-					-	-	-
pH (pH Units)		-					-	-	-
ANC to pH 6 (mol/kg)		-					-	-	-
Ano to pri 4 (momg)		_			1				
Elucto Anchecio		Co	onc ⁿ in 2:1		2:1 (conc ⁿ d (ma/ka)	l imit valu	es for complianc	e leaching test
Eludie Andrysis		Bosult		of Detection	Bosult	Limit of Detect	using E	S EN 12457-3 at	L/S 10 l/kg
VOC MS (W)		Result	2	Ji Deteotion	Result	Emile of Beleon			
Toluene		<0.0014	<(0.0014	<0.0028	<0.014	-	-	
Ethylbenzene		<0.0025	<(0.0025	<0.005	<0.025	-	-	-
p/m-Xylene		< 0.0025	<0	0.0025	< 0.005	< 0.025	-		
o-Xylene		<0.0017	<(0.0017	<0.0034	<0.017	-	-	-
Leach Test Inform	nation								

Date Prepared	16-Jun-2011
pH (pH Units)	7.83
Conductivity (µS/cm)	285.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.279
Volume of Eluate VE1 (Litres)	

ALcontrol La	aboratories		CEF	RTIFICA	TE OF ANAL	YSIS		L	Val	idated
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SC	DL-54	Location: Customer: Attention:	Part 2a A Grontmij Gareth T	Assistance aylor		Order Number: Report Number: Superseded Report:	135175 133432		
			CEN	2:1 ST	AGE BATCH	TEST				
WAC ANALYTIC	AL RESULT	S						REF :	BS EN	12457/
Client Reference					Site Location		Part 2a	a Assistanc	e	
Mass Sample taken	(kg)	0.190			Moisture Conte	nt Ratio (%)	8.47			
Mass of drv sample	(ka)	0.175			Drv Matter Cont	tent Ratio (%	6) 92.2			
Particle Size <4mm		>95%			,		- ,			
Case										
SDG		110602-58								
Lab Sample Numbe	r(s)	3588823								
Sampled Date	.(0)	31-May-2011								
Customor Sample E	Pof	9 NEWLAND	S COURT		AYS					
Depth (m)	кет.	0.30								
Solid Waste Analys	is									
Total Organic Carbon (%)		-					-	-		-
Loss on Ignition (%)		-					-	-		-
Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)		-					-	-		-
Mineral Oil (mg/kg)		-					-	-		-
PAH Sum of 17 (mg/kg)		-					-	-		-
pH (pH Units)		-					-	-		-
ANC to pH 4 (mol/kg)		-					-	-		-
		60	non in 211		2:1 0	onon				
Fluate Analysis		elu	ate (mg/l)		leached	i (mg/kg)	Limit value	s for complian	ce leachin	g test
		Result	Limit c	of Detection	Result	Limit of Detec	tion using BS	EN 12457-3 a	t L/S 10 l/	/kg
Arsenic		0.00223	<0.	.00012	0.00446	<0.0012	0.5	2		25
Barium		-		-	-	-	20	100		300
Cadmium		<0.0001	<0	0.0001	<0.0002	< 0.001	0.04	1		5
Copper		0.00348	<0.	00022	0.00696	<0.0022	0.5	10 50		100
Mercury Dissolved (CVAF	-)	0.0000253	<0.	.00001	0.0000506	< 0.0003	0.01	0.2		2
Molybdenum		-		-	-	-	0.5	10		30
Nickel		0.00327	<0.	.00015	0.00654	<0.0015	0.4	10		40
Lead		0.00369	<0.	.00002	0.00738	< 0.0002	0.5	10		50
Antimony		-	_	-	-	-	0.06	0.7		5
Zinc		-	<0	-	-	-	0.1	0.5		/
Chloride		0.00565	<0.	-	0.0117	<0.0041	800	15000		25000
Fluoride		-		-			10	150		500
Sulphate (soluble)		-		-	-	-	1000	20000		50000
Total Dissolved Solids		-		-	-	-	4000	60000		100000
Total Monohydric Phenols	s (W)	-	_	-	-	-	1			-
										1000
Leach Test Informa	tion	I			I	1	I			

Date Prepared	15-Jun-2011
pH (pH Units)	8.14
Conductivity (µS/cm)	488.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.335
Volume of Eluate VE1 (Litres)	

SDG: Job:	110602-58 H_GRONTMIJ_	SOL-54	Location: Customer:	Part 2a A Grontmij	Assistance		Order Number: Report Number:	135175		
Client Reference:			Attention:	Gareth T	aylor	TFOT	Superseded Report:	133432		
			CEN	2:1 51	AGE BATCH	IESI				
WAC ANALYTIC	CAL RESUL	TS						REF :	BS EN	12457/
Client Reference					Site Location		Part 2a	a Assistanc	e	
Mass Sample take	n (kg)	0.190			Moisture Conte	ent Ratio (%)	8.47			
Mass of dry sampl	e (kg)	0.175			Dry Matter Con	tent Ratio (%) 92.2			
Particle Size <4mn	1	>95%			-					
Case										
SDG		110602-58								
Lab Sample Numb	er(s)	3588823								
Sampled Date	(-)	31-May-201	1							
Cuetomor Somela	Pof	9 NEWI AND	SCOURT	FIVEW	AYS					
Depth (m)	1.61.	0.30								
Solid Waste Analy	sis									
Total Organic Carbon (%)		<u>-</u>						- -		_
Loss on Ignition (%)		-					-	-		-
Sum of BTEX (mg/kg)		-					-	-		-
Sum of 7 PCBs (mg/kg)		-					-	-		-
Mineral Oil (mg/kg)		-					-	-		-
PAH Sum of 17 (mg/kg)		-					-	-		-
ANC to pH 6 (mol/kg)							-	-		-
ANC to pH 4 (mol/kg)		-					-	-		-
		C	onc ⁿ in 2·1		2.1	conc				
Eluate Analvsis		el	uate (mg/l)		leache	d (mg/kg)	Limit value	s for compliance	e leaching	test
		Result	Limit o	f Detection	Result	Limit of Detect	ion using B	5 EN 12457-3 a	t L/S 10 l/k	g
Boron		0.0254	<0	.0094	0.0508	<0.094	-	-		-
Vanadium		0.00347	<0.	00024	0.00694	<0.0024	-	-		-
PAH Spec MS - Aqueou	is (W)		-							
Acenanothene by GCMS	3	< 0.0001	<0	.0001	< 0.0002	< 0.001			.	-
Acenaphthylene by GCN	/S	<0.0000174	<0.0	000015	<0.0000348	<0.00015				-
Fluoranthene by GCMS		<0.000017	<0.0	000017	<0.000022	<0.00017				
Anthracene by GCMS		<0.000015	<0.0	000015	<0.00003	<0.00015	-	-		-
Phenanthrene by GCMS	;	<0.000022	<0.(000022	<0.000044	< 0.00022	-	-		-
Fluorene by GCMS		< 0.000014	<0.0	000014	<0.000028	< 0.00014	-	-		-
Chrysene by GCMS		<0.000013	<0.0	000013	<0.000026	< 0.00013	-			-
Benz(a)anthracene by G	CMS	<0.000017	<0.0	00015	<0.0003	<0.00017				-
Benzo(b)fluoranthene by	/ GCMS	<0.000017	<0.0	000017	<0.000034	<0.00017		· · ·		-
Benzo(k)fluoranthene by	GCMS	<0.000023	<0.0	000027	< 0.000040	<0.00023			-	-
Benzo(a)pyrene by GCN	IS	<0.000009	<0.0	000009	< 0.000018	<0.00009	-			-
Dibenzo(ah)anthracene	by GCMS	< 0.000016	<0.0	000016	<0.000032	<0.00016	-			-
Benzo(ghi)perylene by C	SCMS	<0.000016	<0.0	000016	<0.000032	<0.00016	-			-
naeno(123cd)pyrene by		< 0.000014	<0.0	000014	<0.000028	< 0.00014			.	-
VOC MS (W)		0.0000174		<0	0.0000348	<0		-		-
Toluene-d8				-	_					
Tert-butyl methyl ether		<0.0016	<0	.0016	<0.0032	<0.016		· · · ·		-
Benzene		<0.0013	<0	.0013	<0.0026	<0.013	-	· -		-
					1	1				

Date Prepared	15-Jun-2011
pH (pH Units)	8.14
Conductivity (µS/cm)	488.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.335
Volume of Eluate VE1 (Litres)	

ALcontrol L	aboratories		CEF	RTIFICA	TE OF ANAL	YSIS		L	Validated
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SC	L-54 (Location: Customer: Attention:	Part 2a A Grontmij Gareth T	Assistance aylor		Order Number: Report Number: Superseded Report:	135175 133432	
			CEN	2:1 ST	AGE BATCH	TEST			
	CAL RESULT	S						REF :	BS EN 12457/ [.]
Client Reference					Site Location		Part 2	a Assistanc	e
Mass Sample take	n (kg)	0.190			Moisture Conte	nt Ratio (%)	8.47		
Mass of dry samp	le (kg)	0.175			Dry Matter Con	tent Ratio (%) 92.2		
Particle Size <4mr	n	>95%					-		
Case									
SDG		110602-58							
Lab Sample Numb	er(s)	3588823							
Sampled Date		31-May-2011							
Customer Sample	Ref.	9 NEWLAND	S COURT	FIVEW	AYS				
Depth (m)		0.30							
Solid Waste Analy	sis		_						
Total Organic Carbon (%)		-					-	-	-
Loss on Ignition (%)		-					-	-	-
Sum of BTEX (mg/kg)		-					-	-	-
Mineral Oil (mg/kg)		-					-	-	-
PAH Sum of 17 (mg/kg)		-					-	-	-
pH (pH Units)		-					-	-	-
ANC to pH 6 (mol/kg)		-					-	-	-
Eluato Analysis		Coi	nc ⁿ in 2:1 ate (mg/l)		2:1 c	concª 1 (ma/ka)	Limit valu	es for compliand	e leaching test
Liudle Analysis		Result	Limit o	of Detection	Result	Limit of Detect	ion using B	S EN 12457-3 a	t L/S 10 l/kg
VOC MS (W)						1			
Toluene		<0.0014	<0	.0014	<0.0028	<0.014	-		
Ethylbenzene		<0.0025	<0	.0025	< 0.005	< 0.025	-		
p/m-Xylene		< 0.0025	<0	0.0025	< 0.005	< 0.025	-		
0-Xylene		<0.0017	<0	1.0017	<0.0034	<0.017	-	-	-
Leach Test Inform	ation								

Date Prepared	15-Jun-2011
pH (pH Units)	8.14
Conductivity (µS/cm)	488.00
Temperature (°C)	20.00
Volume Leachant (Litres)	0.335
Volume of Eluate VE1 (Litres)	

ALcontrol Laboratories

1

CERTIFICATE OF ANALYSIS

Validated

110602-58 SDG: Location: Part 2a Assistance Order Number: H_GRONTMIJ_SOL-54 135175 Job: Customer: Grontmij Report Number: Client Reference: Attention: Gareth Taylor Superseded Report: 133432

Table of Results - Appendix

REPORT KEY Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10-7														
NDP	No Determination	Possible	#	ISO 17025 Accredited		*	Subcontracted Test		м	MCERTS Accredit	ed			
NFD	No Fibres Detecte	ed	PFD	Possible Fibres Detected		»	Result previously reported (Incremental reports only)	Equivalent Carbon (Aromatics C8-C35)						
Note: Metho	ote: Method detection limits are not always achievable due to various circumstances beyond our control													
M	ethod No		Refe	rence			Description			Wet/Dry Sample ¹	Surrogate Corrected			
	PM024	Modified BS 1377			Soil prepa soils for A	aration in sbestos	cluding homogenisation, r Containing Material	noisture so	creens of	:				
	PM114				Leaching Cumulativ	Procedui /e	re for CEN Two Stage Bat	tchTest 2:1	1/8:1					
	PM115					Procedu	re for CEN One Stage Lea	ach Test 2	:1 & 10:1					
	TM001	In - house Method			Determination of asbestos containing material by screening on solids									
	TM048	HSG 248, Asbesto sampling, analysis	s: The ar and clea	alysts' guide for rance procedures	Identificat	ion of As								
	TM152	Method 3125B, AV	VWA/API	IA, 20th Ed., 1999	Analysis o	of Aqueou	us Samples by ICP-MS							
	TM178	Modified: US EPA	Method 8	100	Determina GC-MS in	ation of P Waters	olynuclear Aromatic Hydr	,						
	TM183	BS EN 23506:2002 0 580 38924 3	2, (BS 60	68-2.74:2002) ISBN	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry					3				
	TM208	Modified: US EPA	Method 8	260b & 624	Determination of Volatile Organic Compounds by Headspace / GC-MS in Waters									

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA =

NA = not applicable.

ALcontrol Laboratories

(

CERTIFICATE OF ANALYSIS

110602-58 SDG: Location: Part 2a Assistance Order Number: H_GRONTMIJ_SOL-54 135175 Job: Customer: Grontmij Report Number: Client Reference: Attention: Gareth Taylor Superseded Report: 133432

Test Completion Dates

Lab Sample No(s)	3588803	3588805	3588806	3588788	3588808	3588787	3588799	3588800	3588798	3588802
Customer Sample Ref.	99 ARMITAGE ROA D	121 ARMITAGE RO AD	125 ARMITAGE RO AD	83 BLAKE CLOSE	11 GOODWOOD	3A BLAKE CLOSE	FIVEWAYS 5 NEWL ANDS COURT	FIVEWAYS 9 NEWL ANDS COURT	FIVEWAYS 11 NEW LANDS COURT	FIVEWAYS 1 NEWL ANDS LANE
AGS Ref.										
Depth										
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	07-Jun-2011	08-Jun-2011	09-Jun-2011	09-Jun-2011	08-Jun-2011	08-Jun-2011
Mercury Dissolved	07-Jun-2011	07-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	07-Jun-2011	08-Jun-2011
PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011

Customer Sample Ref Bepth Depth Type attermone Lemmon and a set Depth Type attermone Lemmon atterno Depth Type attermone Lemmon atterno Depth Type attermo	Lab Sample No(s)	3588819	3588810	3588822	3588823	3588826	3588820	3588811	3588807	3588818	3588814
AGS Ref Depth Depth TypeImage: Single Sing	Customer Sample Ref.	21 HERONDALE	4 KEMPTON	5 NEWLANDS COUF T FIVEWAYS	9 NEWLANDS COUF T FIVEWAYS	11 NEWLANDS COU RT FIVEWAYS	1 NEWLANDS LANE FIVEWAYS	2 SANDOWN	3 SLADE VIEW RI SE	110 STAFFORD LA NE	73 STAGBOROUGH
Dept TypeInd<	AGS Ref.										
typeLIQUIDLIQUIDSOLIDSOLIDSOLIDSOLIDSOLIDLIQUIDLIQUIDLIQUIDLIQUIDAsbestos Containing Material Screen	Depth			0.30	0.30	0.30	0.30				
Asbestos Containing Material ScreenIndex <t< th=""><th>Туре</th><th>LIQUID</th><th>LIQUID</th><th>SOLID</th><th>SOLID</th><th>SOLID</th><th>SOLID</th><th>LIQUID</th><th>LIQUID</th><th>LIQUID</th><th>LIQUID</th></t<>	Туре	LIQUID	LIQUID	SOLID	SOLID	SOLID	SOLID	LIQUID	LIQUID	LIQUID	LIQUID
Asbestos identificationimage	Asbestos Containing Material Screen			16-Jun-2011	16-Jun-2011	16-Jun-2011	16-Jun-2011				
CEN 2:1 Leachate (1 Stage)Image: Constraint of the constrai	Asbestos Identification					16-Jun-2011					
CEN ReadingsImage: state of the	CEN 2:1 Leachate (1 Stage)			16-Jun-2011	16-Jun-2011		16-Jun-2011				
Dissolved Metals by ICP-MS08-Jun-201108-Jun-201121-Jun-201121-Jun-201121-Jun-201121-Jun-201108-Jun-2011 <th>CEN Readings</th> <th></th> <th></th> <th>20-Jun-2011</th> <th>20-Jun-2011</th> <th></th> <th>20-Jun-2011</th> <th></th> <th></th> <th></th> <th></th>	CEN Readings			20-Jun-2011	20-Jun-2011		20-Jun-2011				
Mercury Dissolved07-Jun-201108-Jun-201101-Jun-201121-Jun-201114-J	Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	21-Jun-2011	21-Jun-2011		21-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011
PAH Spec MS - Aqueous (W) 09-Jun-2011 09-Jun-2	Mercury Dissolved	07-Jun-2011	08-Jun-2011	21-Jun-2011	21-Jun-2011		21-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011
Sample descriptionIndexI	PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	20-Jun-2011	21-Jun-2011		20-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011
VOC MS (W)Image: state	Sample description			14-Jun-2011	14-Jun-2011	16-Jun-2011	14-Jun-2011				
Lab Sample Not Customer Sample Ref358815358813358809358879358879535887933588797358879735887903588790358879135887913588791AGS Ref PetroNNN <th>VOC MS (W)</th> <th></th> <th></th> <th>22-Jun-2011</th> <th>22-Jun-2011</th> <th></th> <th>22-Jun-2011</th> <th></th> <th></th> <th></th> <th></th>	VOC MS (W)			22-Jun-2011	22-Jun-2011		22-Jun-2011				
Customer Sample Ref AYStaßeboroucht view SYStadeboroucht view SYStadeboroucht view SYStadeboroucht view WST.View ST. 99 WARD WST.View ST. 99 WARD ST.View ST. 982 View ST. 982View ST. 983 View ST. 983View	Lab Sample No(s)	3588815	3588813	3588809	3588795	3588793	3588797	3588790	3588791	3588789	T
AGS Ref. DepthImage: Normal SectorImage: Normal SectorIm	Customer Sample Ref.	3 STAGBOROUGH W AY	41 SWALLOWFIELD S	10 WESTGATE	VIEW ST. 32 FOS TERS AVE.	VIEW ST. 53 VIE W ST.	VIEW ST. 9 WARD ST.	VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4	
Dept Image: sector	AGS Ref.										
Type LIQUID LIQUID <thliquid< th=""> <thliquid< th="" thr<=""><th>Depth</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.20</th><th>1.10</th><th>1.60</th><th></th></thliquid<></thliquid<>	Depth							1.20	1.10	1.60	
Dissolved Metals by ICP-MS 08-Jun-2011 08-Jun-2011 07-Jun-2011 08-Jun-2011 09-Jun-2011 09-Jun-	Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	1
Mercury Dissolved 07-Jun-2011 07-Jun-2011 07-Jun-2011 07-Jun-2011 07-Jun-2011 07-Jun-2011 07-Jun-2011 08-Jun-2011 07-Jun-2011 08-Jun-2011 09-Jun-2011 08-Jun-2011 09-Jun-2011	Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	07-Jun-2011	08-Jun-2011	09-Jun-2011	10-Jun-2011	08-Jun-2011	08-Jun-2011	09-Jun-2011	T
PAH Spec MS - Aqueous (W) 09-Jun-2011 09-Jun-2	Mercury Dissolved	07-Jun-2011	07-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011	1
VOC MS (W) Image: Marcine State Image: Marcine Stat	PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	1
	VOC MS (W)							09-Jun-2011	09-Jun-2011	09-Jun-2011	1

CERTIFICATE OF ANALYSIS

SDG:	110602-58	Location:	Part 2a Assistance	Or
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij	Re
Client Reference:		Attention:	Gareth Taylor	Su

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenois monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volaties in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 135175 Superseded Report: 133432

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	ATROSCAN
ELEMENTALSUPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (OLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH CMG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANE/ACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(06-040)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCFZ
POLYAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAVER	GCEZ
SEM VOLATILE ORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION EXTRACTION SOLVENT METHOD			
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
BH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
EPHONG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
POB 700NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS		
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC		
PEST OCP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS		
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS		
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS		
TFH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC		
MINERAL OIL by IR	TCE	LIQUID/LIQUID SHAKE	HPLC		
GLYCOLS	NONE	NE DIRECT INJECTION			

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratorice (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratorices (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

Asbestos Type

Chrysnile

Amosite

Orodolite

Fibrous Adinoite

Fibrous Anthophylite

Fibra & Trendie

Common Name

White Ashestos

BrownAsbestos

Blue Asbestos

-

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Preliminary	ALcontrol Laboratories Analytical Services						
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ_SOL-54	Customer: Attention: Order No.:	Grontmij Gareth Taylor				
Location:	Part 2a Assistance	Report No:	133432				

Asbestos Identification

	Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled SUB Date Received SUB Original Sample Method Number Stream Method Number Stream	URT 16/6/11 Z 0:00 2:44	Paul Poynton	Typical of asbestos cement	Not Detected	Detected	Detected	Not Detected	Not Detected	Not Detected	Not Detected

Jones Environmental Laboratory

Grontmij Radcliffe House

Lode Lane Solihull B91 2AA

Blenheim Court

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

No.4225

Attention :	Gareth Taylor
Date :	27th May, 2011
Your reference :	106270
Our reference :	Test Report 11/4106 Batch 1
Location :	WEST OF FIVEWAYS
Date samples received :	18th May, 2011
Status :	Final report
Issue :	1

Six samples were received for analysis on 18th May, 2011, which was completed on 27th May 2011. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Jutgre

J W Farrell- Jones CChem FRSC Chartered Chemist

Jones Environmental Laboratory

Client Name:	Grontmij
Reference:	106270
Location:	WEST OF FIVEWAYS
Contact:	Gareth Taylor
JE Job No.:	11/4106

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

JE Job No.:	11/4106								-		
J E Sample No.	1	2	3	4	5	6					
Sample ID	D01	D01	D02	D03	D04	D05					
Depth	0.0	0.3	0.1	0.1	0.1	0.05			Please se	e attached no	otes for all
COC No / misc									abbrevia	ations and ac	ronyms
Containers	В	В	В	В	В	в					
Sample Date	16/05/2011	16/05/2011	16/05/2011	16/05/2011	16/05/2011	16/05/2011					
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil					
Batch Number	1	1	1	1	1	1			1.05		Method
Date of Receipt	18/05/2011	18/05/2011	18/05/2011	18/05/2011	18/05/2011	18/05/2011			LOD	Units	No.
Asbestos Screen*	NAD	NAD	NAD	NAD	NAD	NAD					Subcontracted
											ļ
											ļ
									1		

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

SOILS

Please note we are only MCERTS accredited for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. If we are instructed to keep samples, a storage charge of £1 (1.5 Euros) per sample per month will be applied until we are asked to dispose of them.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C

Asbestos screens where requested will be undertaken by a UKAS accredited laboratory.

WATERS

Please note we are not a Drinking Water Inspectorate (DWI) Approved Laboratory. It is important that detection limits are carefully considered when requesting water analysis.

UKAS accreditation applies to surface water and groundwater and one other matrix which is analysis specific, any other liquids are outside our scope of accreditation

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples. All samples are treated as groundwaters and analysis performed on settled samples unless we are instructed otherwise.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any analysis that may be compromised highlighted on your schedule/ report by the use of a symbol.

The use of any of the following symbols indicates that the sample was deviating and the test result may be unreliable:

\$	Sample temperature on receipt considered inappropriate for analysis requested.
^	Samples exceeding recommended holding times.
&	Samples received in inappropriate containers (e.g. volatile samples not submitted in VOC jars/vials).
~	No sampling date given, unable to confirm if samples are with acceptable holding times.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130%. Results are not surrogate corrected.

AQCs

Where AQC's fall outside UKAS/MCERTS criteria analysis is repeated if possible.

NOTE

The laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

ABBREVIATIONS and ACRONYMS USED

#	UKAS accredited.
М	MCERTS accredited.
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
SS	Calibrated against a single substance.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
W	Results expressed on as received basis.
+	AQC is outside our current performance criteria. Results should be considered as indicative only and are not accredited. However the AQC is within UKAS/MCERTS acceptance criteria.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
SE	Surrogate recovery outside performance criteria. Results not accredited.
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
DR	Dilution required.

Jones Environmental Laboratory

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	UKAS	MCERTS (soils only)	Analysis done on As Received (AR) or Air Dried (AD)	Solid Results expressed on Dry/Wet basis
Subcontracted	Subcontracted					AR	

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 259092-1

Date of Report: 05-Dec-2011

Customer: Grontmij 3rd Floor Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

Customer Contact: Mr Gareth Taylor

Customer Job Reference: Customer Site Reference: Fiveways, number 11 Date Job Received at SAL: 24-Nov-2011 Date Analysis Started: 28-Nov-2011 Date Analysis Completed: 05-Dec-2011

The results reported relate to samples received in the laboratory

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by : Mr Ross Walker Customer Services Manager ² (Land)

SAL F	Reference:	259092							
Pr	oject Site:	Fiveways	, number 1	1					
Customer F	Reference:								
Soil Miscellaneous		Analysed	as Soil						
			SA	L Reference	259092 001	259092 002	259092 003	259092 004	259092 005
		Custor	ner Samp	e Reference	G1	G2	G3	G4	G5
			D	ate Sampled	22-NOV-2011	22-NOV-2011	22-NOV-2011	22-NOV-2011	22-NOV-2011
Determinand	Method	Test Sample	LOD	Units					
Asbestos ID	T27	AR			Crocidolite Detected	N.D.	N.D.	N.D.	N.D.
					-				
					Chrysotile Detected				
					-				

Index to symbols used in 259092-1

Value	Description
AR	As Received
N.D.	Not Detected
S	Analysis was subcontracted
U	Analysis is UKAS accredited

Method Index

Value	Description
T27	PLM

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Asbestos ID	T27	AR	1		SU	001-005

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 260285-1

Date of Report: 15-Dec-2011

Customer: Grontmij 3rd Floor Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

Customer Contact: Mr Gareth Taylor

Customer Job Reference: Customer Site Reference: Fiveways, number 11 Date Job Received at SAL: 06-Dec-2011 Date Analysis Started: 07-Dec-2011 Date Analysis Completed: 15-Dec-2011

The results reported relate to samples received in the laboratory

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by : Mr Ross Walker Customer Services Manager ² (Land)

SAL Re	eference:	260285							
Pro	ject Site:	Fiveways,	number 11						
Customer Re	eference:								
Soil Analysed as Soil Miscellaneous									
			SA	L Reference	260285 001				
		Custor	ner Sampl	e Reference	G1 259092-1				
Determinand	Method	Test Sample	LOD	Units					
Asbestos Quantification	T27	AR	0.001	%	0.51				

Index to symbols used in 260285-1

Value	Description
AR	As Received
S	Analysis was subcontracted
U	Analysis is UKAS accredited

Notes

Sample 001 - Chrysotile asbestos present contained within cement and within bitumen based roof felt but there were no free fibres detected in the soil

Method Index

Value	Description
T27	PLM

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Asbestos Quantification	T27	AR	0.001	%	SU	001

APPENDIX E

	TABLE 1 - G	AS MON		ΔΑΤΑ															
Site:	West of Fiv	/eways															Job No.	106270	
Monito	ring Well S	ampling	g & Testir	ng Recor	ď														
		Pipe		Gas													Weather		
вн	Date	Internal Diameter mm	Monitored By	Borehole Pressure pa	Flow I/h	CH₄ % v/v	CH₄ GSV	CO ₂ % v/v	CO₂ GSV	O ₂ % v/v	CO ppm	H2S ppm	PID CF ppm	HEX %	LEL %	Gas Analyser	Atmospheric Pressure mbar	Conditions @ Monitoring	Ambient Temp °C
WS01	28/01/2011		RJH	-3.00	-0.8	0.1	-0.0008	0.5	-0.004	19.3	0	-10	1	0	0	GFM	1010	Clear	-5
WS01	11/02/2011		KS	NM	0	0.1	0	0.7	0	18.5	-3	-10	Nm	NM	NM	GFM	994		10.0
WS01	25/02/2011		KAS	1.00	-0.3	0.1	-0.0003	0.6	-0.0018	19.1	-3	-10	1	0	0	GFM	1006	Overcast	11
WS01	11/03/2011		KAS	1.00	-0.3	0.1	-0.0003	0.7	-0.0021	19.3	-3	-10	1	0	0	GFM	998	Overcast	
WS02	28/01/2011		RJH	-3.00	-1	0.1	-0.001	0.1	-0.001	19.8	0	-10	1	0	0	GFM	1009	Clear	-5.0
WS02	11/02/2011		KS	NM	-3	0.1	-0.003	0.1	-0.003	19.9	-1	-10	NM	NM	NM	GFM	994		10
WS02	25/02/2011		KAS	2.00	0.6	0.1	0.0003	0.1	0.0003	19.7	-1	-10	1	0.001	0	GFM	1006	Overcast	11.0
WS02	11/03/2011		KAS	0.00	0.4	0.1	0.0001	1.6	0.0016	18.1	-1	-10	1	0	0	GFM	997	Overcast	
WS03	28/01/2011		RJH	-3.00	-0.90	0.1	-0.0009	0.80	-0.0072	19.00	-1.00	-10.00	1.00	0.00	0.00	GFM	1009	Clear	-5
WS03	11/02/2011		KS	NM	-0.8	0.1	-0.0008	0.8	-0.0064	19.1	0	-10	NM	NM	NM	GFM	0994		10.0
WS03	25/02/2011		KAS	1.00	0.1	0.1	0.0001	0.8	0.0008	19.0	0	-10	1	0.003	0	GFM	1006	Overcast	11.0
WS03	11/03/2011		KAS	0.00	0.1	0.1	0.0001	0.8	0.0008	19.0	-3	-10	1	0	0	GFM	997	Overcast	
WS04	28/01/2011		RJH	-4.00	-1	0.1	-0.001	0.2	-0.002	19.7	-1	-10	1	0	0	GFM	1008	Clear	-5
WS04	11/02/2011		KS	NM	0.7	0.1	0.0007	0.1	0.0007	19.8	-1	-10	NM	NM	NM	GFM	994		10
WS04	25/02/2011		KAS	1.00	0.2	0.1	0.0002	0.1	0.0002	19.9	-1	-10	1	0.001	0	GFM	1006	Overcast	11.0
WS04	11/03/2011		KAS	1.00	0.4	0.1	0.0004	0.2	0.0008	19.7	-1	-10	1	0.001	0	GFM	997	Overcast	

APPENDIX F

Appendix F: Preliminary Risk Assessment for Water Supply Pipes

Two publications have been reviewed in regard to potential risks to water supply pipes posed by contaminants in the ground:

- "Guidance for the Protection of Water Supply Pipes to be Used in Brownfield Sites" (UK Water Industry Research {UKWIR}, ref 10/WM/03/21, 2010 (re-issued version))
- The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land (Water Regulations Advisory Scheme {WRAS}, ref 9-04-03, October 2002)

Both reports present methodologies for the assessment of soil conditions and the specification of appropriate pipework materials to mitigate the presence of contaminants.

Although WRAS guidance is now superseded by the UKWIR document, samples were scheduled for analysis prior to this notice. As such samples were not scheduled for a full UKWIR suite. As such the results have been screened against both the WRAS and UKWIR values.

WRAS Screen

A comparison between the chemical analysis results obtained from samples taken from the top 1.2m of soil *in both the initial and the supplementary investigation* and the older WRAS screening values is presented below. Only soils from the top 1.2m of the soil profile have been selected for comparison as 1.2m is the typical maximum depth at which water pipes are laid within the highway – with local service connections to properties typically much shallower. Note, the table below does not constitute a full screen against all WRAS parameters; e.g. sulphate, cyanide and coal tar have not been tested for.

Analyte	WRAS Threshold Value (mg/kg)	Maximum Test Result (mg/kg)	Mean (where max. exceeds)
Sulphate	2000	4800	1720
Sulphur	5000	Not tested for	-
Sulphide	250	Not tested for	-
рН	<5 or >8	6.2 to 8.5	7.97
Antimony	10	Not tested for	-
Arsenic	10	15	9.5
Cadmium	3	3.5	1.1
Chromium (hexavalent)	25	Not tested for	-
Chromium (total)	600	39	-
Cyanide (free)	25	Not tested for	-
Cyanide (complexed)	250	Not tested for	-
Lead	500	400	-
Mercury	1	0.60	-
Selenium	3	<1.0	-
Thiocyanate	50	Not tested for	-
Coal Tar	50	Not tested for	-
Cyclohexane extractable	50	Not tested for	-
Phenol	5	Not tested for	-
Polyaromatic	50	240	22
Hydrocarbons			
Toluene extractable	50	0.02	-
Petroleum Hydrocarbons	50	1200	290

WRAS Threshold Screen

Bold values indicate testing result > WRAS threshold value

Yellow highlight indicates data exceedence

Table includes results from Initial and supplementary site investigation

www.grontmij.co.uk

The maximum concentrations of arsenic, cadmium, polyaromatic hydrocarbons, petroleum hydrocarbons and sulphate, and the maximum soil pH level recorded, exceed the WRAS threshold values.

UKWIR Screen

The UKWIR approach is the most recent and supersedes the WRAS guidance, reflecting further studies undertaken since the WRAS document was published in 2002. Key features of the UKWIR report include:

- A pipework material-specific assessment procedure (Table 3.1 of the report). This allows chemical analysis results to be compared to various threshold criteria associated with six possible pipework material types
- The discounting of metallic pipework (other than copper or steel/ductile iron with protective wrapping) as a modern pipework material
- The specification of a different chemical testing suite to that recommended in the earlier WRAS document including the use of physio-chemical parameters and exclusion of analysis for metals (given the above discounting of metallic pipework).

The chemical analysis for the site was scheduled prior to the publication of the re-issued UKWIR report (despite a re-issue data of 2010, the report was not available until January 2011). Therefore, some of the parameters required for a UKWIR screen are not available. The available laboratory results *from the investigation* from the top 1.2m of soil have been compared to the UKWIR thresholds. Summary of screen given in the table below:

Parameter Group	WRAS Thre (mg	eshold Value g/kg)	Maximum Test Result (mg/kg) ³
	PE	PVC	
Extended VOC suite	0.5	0.125 ²	0.46
BTEX and MTBE	0.1	0.03	0.075
SVOCs ¹	2	1.4	2.8
Phenols	2	0.4	-
Cresols and Chlorinated phenols	2	0.04	-
Mineral Oil C11-C20	10	Pass	36.0
Mineral Oil C21-C40	500	Pass	275

UKWIR Threshold Screen

Yellow highlight indicates exceedence of PVC threshold

Green highlight indicates exceedence of PE threshold

¹ Sum SVOCs, using half face value for compounds detected at less than detection limit (in accordance with UKWIR guidance)

² Sum VOCs using half face value for compounds detected at less than detection limit (in accordance with UKWIR guidance) ³ Maximum value for every face to 1.0 m kel

³ Maximum value for sample from surface to 1.2m bgl

Summary

It is possible that the concentrations of contaminants at the site could adversely affect drinking water quality, depending on the materials used for water distribution (South Staffordshire Water (SSW) pipes) and local connections to the SSW network (probably installed by the house builder). Further assessment of drinking water quality is needed.

www.grontmij.co.uk

APPENDIX G

Appendix G: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Severity	Description	Examples
Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non-aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily- repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or,
	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

	Severity										
Probability	Severe	Medium	Mild	Minor							
High	Very high	High	Moderate	Low/moderate							
Likely	High	Moderate	Low/moderate	Low							
Low	Moderate	Low/moderate	Low	Very low							
Unlikely	Low/moderate	Low	Very low	Very low							

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

