Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Initial Site Investigation

Infilled Land between View Street and Foster Avenue, Hednesford, Cannock, Staffordshire

August 2011

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 **F** 0121 7116749 **E** gareth.taylor@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue	Prepared by		Checked by	Approved by
R622/106270/V1 /2011	31/03/11	First Issue	Name Rebecca Hearn		Gareth Taylor	Colin Macdonald
			Position	Assistant Environmental Consultant	Principal Environmental Consultant	Director, Land Quality
R622/106270/V2 /2011	12/07/11	Update with additional sampling	Name	Rebecca Hearn	Gareth Taylor	Colin Macdonald
			Position	Assistant Environmental Consultant	Principal Environmental Consultant	Director, Land Quality
R622/106270/V3 /2011	08/08/11	Updated re WSWQ 2010 and sum of 4 PAHs	Name	Rebecca Hearn	Gareth Taylor	Colin Macdonald
			Position	Assistant Environmental Consultant	Principal Environmental Consultant	Director, Land Quality

© Grontmij 2011 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

INTRODUCTION 1
Terms of Reference1
BACKGROUND INFORMATION 2
Site Setting 2
Previous Reports 3
EXPLORATORY INTRUSIVE INVESTIGATION
Scope and Methodology6
Results7
Ground Conditions7
Adequacy of Investigation Depth and Spatial Extent7
Field Evidence of Contamination7
Soil Analysis Results8
Ground Gas Monitoring9
Safety of Water Supply Pipes10
FURTHER ANALYSIS OF RISK TO SENSITIVE RECEPTORS
Lead in Soil
Introduction13
Statistical Analysis Approach13
Averaging Areas14
Outlier Test14
Hypothesis Testing15
Conclusion16
Leaching to Aquifer 16
Introduction16
Methodology16
Results16
Discussion17
Permeation of Contaminants into Water Pipes
Introduction18
Methodology18
Results and Conclusion18
UPDATED CONCEPTUAL SITE MODEL
SUMMARY AND CONCLUSION

FIGURES

Figure 2.1 –	Site Location

TABLES

Table 2.1 – Site Setting	2
Table 2.2 - Potential Pollutant Linkages	4
Table 3.1 - Field Evidence of Potential Contamination	8
Table 3.2 - Soil Analysis Results Summary	9
Table 3.3 - Summary of Gas Monitoring Data	10
Table 3.4 - Initial WRAS Threshold Screen	11
Table 4.1 – Groundwater Analytical Chemistry Results	17
Table 4.2 - Tap Water Analysis Results	19
Table 5.1 - Pollutant Linkages, Post-Site Investigation	21

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

APPENDICES

Appendix A	Initial Desktop Study and Site Walkover Report, January 2010
Appendix B	Limitations Statement
Appendix C	Exploratory Hole Logs
Appendix D	Chemical Analysis Results
Appendix E	Gas Monitoring Data
Appendix F	Severity and Probability of Risk (after CIRIA 552)
Appendix G	BGS Borehole Logs

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Contaminated Land is defined in Section 78(2) of Part 2A of the Environmental Protection Act 1990 as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that

- significant harm is being caused or there is a significant possibility of such harm being caused; or
- pollution of controlled waters is being, or is likely to be, caused.

Further information is provided in the Act and associated statutory guidance (DEFRA Circular 01/2006 – EPA 1990, Part 2A: Contaminated Land).

Grontmij assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, located between View Street and Foster Avenue, Hednesford, Cannock, Staffordshire (hereafter referred to as 'the site') was identified as a priority for inspection as:

- Environment Agency records indicate that the site, which comprises two discrete areas of land, appears to have been infilled with waste material
- The site is considered to be sensitive as 44 residential properties with gardens overly the inferred extent of landfill, and the site is underlain by a principal aquifer.

Following the completion of a desktop study (see Appendix A) and a successful application for funding from DEFRA, Grontmij was subsequently appointed by the Council to implement an exploratory site investigation, which was undertaken in December 2010. This report presents the findings of the detailed investigation, assesses the significance of the contaminant concentrations detected, and makes recommendations for further work.

The report is structured as follows:

- Section 2 provides site setting details and an overview of previous reports
- Section 3 describes the exploratory investigation undertaken
- Section 4 presents an assessment of risk factors identified in the investigation
- Section 5 is a Conceptual Site Model of potential pollutant linkages
- Section 6 provides a summary and conclusion.

This report is subject to the limitations presented in Appendix B.

2 BACKGROUND INFORMATION

2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1.

Table 2.1 – Site Setting

Data	Information							
Address	Land at View Street and Foster Avenue Hednesford, Cannock, Staffordshire.							
	Postcode WS12 4HN is the approximate centre of the site.							
	The site comprises two discrete areas of infilled land, to the north and south of							
	Ward Street (see Drawing 1).							
Current site use:	Residential houses and gardens – appear to date from 1960s/70s							
Grid Reference:	Northern area: approximate NGR 398810,312850							
	Southern area: approximate NGR 398770,312730							
Site Area:	Approximately 1.1 ha In total							
Topography:	Undulating, but general trend is a slight gradient down towards the south-east							
Surrounding land	The site is surrounded by further residential properties, plus a secondary school							
use	with playing fields is located approximately 30m to the east.							
Mapped Geology	British Geological Survey (BGS) mapping indicates bedrock of the Kidderminster							
	Formation (interbedded sandstone and conglomerate) of the Sherwood							
	Sandstone Group. The mapping indicates that there are no superficial deposits							
	beneath the site.							
BGS Log Review	Borehole logs available to view on the British Geological Survey (BGS) website							
	have been inspected (included as Appendix G). The logs, from positions							
	approximately 400m east of the site (at an elevation approx 10m lower than the							
	site) and 400m south-west of the site (at a similar elevation to the site) indicate a							
	sequence of alternating clay and gravel layers within the top 6m of strata.							
	Groundwater was not encountered during drilling in the top 6m of strata							
Hydrogeology	The Environment Agency website indicates the sandstone is a principal aquifer.							
	Principal aquiters are layers of rock or drift deposits that have high inter-granular							
	and/or fracture permeability and usually provide a high level of water storage.							
	I ney may support water supply and/or river base flow on a strategic scale.							
Source Protection	The Environment Agency website indicates that the site does not lie within a							
Zones (SPZS)	SPZ.							
Surface waters	Closest is small ditch approx 400 m east of the site.							
Historical Land Use	Environment Agency records provided to the council indicate that the site was							
	formerly operated as a landfill site and was subsequently developed as							
	residential housing. The landfill is shown on Environment Agency "What's In							
	Your Back Yard" website and is recorded as being operational between 31 st							
	December 1940 and 31 st December 1943. The landfill is registered to have							
	received household waste from dwellings of various types including houses,							
	caravans, houseboats, campsites and prisons, and wastes from schools,							
	colleges and universities. The site pre-dates the Control of Pollution Act 1974							
	and thus is unlikely to have operated under a formal licence.							
Ecologically	Multi-Agency Geographical Information for the Countryside (MAGIC) search							
designated sites ¹	indicates none within 1km of site boundary							

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright (not to scale)

2.2 Previous Reports

Grontmij has previously completed a desktop assessment of the site, as presented as Appendix A. The assessment included the review of on-line data resources, in-house mapping and records provided by the council, and a site walkover.

The desk study report included an initial Conceptual Site Model (CSM) of potential pollutant linkages, developed in accordance with the model procedures² and statutory guidance³. The CSM is re-presented as Table 2.2 overleaf.

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

Table 2.2 - Potential Pollutant Linkages

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Likely	Moderate	Grass and/or topsoil coverage likely to mitigate risk to an extent – risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to refine conclusion on risk
2	Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of waste elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
3	Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) within landfill material.	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
4	Property (Structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

Cannock Chase District Council Infilled Land between View Street and Foster Avenue, Hednesford Staffordshire EPA 1990 Part 2A Initial Site Investigation

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Principal aquifer (Sherwood Sandstone) beneath site	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material.	Leaching of soil contaminants to aquifer – BGS logs indicate sequence of clays and gravels, which may or may not act as an aquiclude	Medium	Likely	Moderate	Risk will depend upon depth and concentration of contaminants, confirmation that an aquiclude is present / absent, leaching potential of contaminants. Investigation required to determine risk.
6	Ditch 400m to east	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material.	Leaching of soil contaminants to aquifer and migration to watercourse	Mild	Low	Low	Ditch appears to be comparably shallow, periodically dry and clay- lined, i.e. unlikely to be in hydraulic continuity with groundwater beneath the site. Distance of ditch from site also mitigates risk due to attention of contaminants along flowpath between receptor and source. BGS logs in vicinity of drain (see Appendix G) indicate absence of shallow groundwater strike, i.e. unlikely any groundwater beneath site is in continuity with the ditch. No further assessment proposed

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix F

3 EXPLORATORY INTRUSIVE INVESTIGATION

In order to further examine the potential pollutant linkages identified in Table 2.2, and following a successful application for DEFRA funding, an exploratory site investigation was undertaken on the 7th and 10th December 2010. This section describes the site investigation undertaken and results obtained.

3.1 Scope and Methodology

The intrusive site investigation included the following:

- A consultation exercise with residents living at the site, including a mailshot and a public open evening;
- Obtaining plans of underground services and CAT-scanning proposed drilling locations, using a Radiodetection CAT1 and signal generator;
- Drilling four hand held window sample holes (WS1 WS4) to a maximum depth of 4.0m bgl, at the locations shown on Drawing 1. The window sample holes, which were drilled by Sherwood Drilling Services, were positioned in the rear gardens of housing located above the extent of infill, as indicated on historical mapping and by anecdotal evidence. Borehole positions were selected on the basis of achieving a good representative initial coverage of the site. The purpose of the window sample holes was to examine shallow and deeper soil conditions, enable the retention of samples for laboratory testing, and facilitate the installation of 50mm diameter dedicated gas monitoring wells in each borehole;
- Advancing five hand dug pits (HP6 to HP10⁴) to a maximum depth of 0.7m, to examine shallow soil conditions and augment the coverage of the site provided by the above window sampler holes;
- Logging soil arisings in accordance with BS5930:1999, and additionally noting any visual or olfactory evidence of potential contamination;
- Retaining representative soil samples of the strata encountered, which were selected on the basis of field observations of potential contamination and achieving good spatial and depth coverage of the site
- Submitting retained samples to Alcontrol Geochem in cooled coolboxes and under full chain of custody documentation, and instructing the analysis of samples, and;
- Undertaking four ground gas monitoring rounds, using a Gas Data Ltd GFM435 gas analyser with internal flow pod.

Leaching tests were not undertaken as part of this exploratory investigation. The exploratory investigation findings would be reviewed and the need for further testing evaluated – see Section 4 onwards.

⁴ The hand pits at this site were advanced on the same day as another site, and a sequential numbering system was adopted by the engineer – hence HP6 is the first of the five pits at this site

6

3.2 Results

3.2.1 Ground Conditions

The ground conditions encountered at the site generally comprised Made Ground above interbedded sands and clays, as discussed in further detail below.

Made Ground

Made Ground was encountered to a maximum depth of 0.9m bgl (in WS3) and was predominantly granular in nature, consisting of layers of sand and gravel with occasional clay layers or pockets. The gravel content of the Made Ground was variable, including fine to coarse ash, glass, quartz, brick, ceramics, fabric and mudstone. No evidence of municipal waste was encountered.

Natural Deposits

Encountered within all exploratory holes except HP8 (which encountered Made Ground from ground level to termination at 0.7m bgl) at depths ranging between 0.25m and 0.9m bgl, and proven to exploratory hole termination at a maximum of 4.0m bgl. The deposits typically comprised firm sandy gravelly clay, with bands of sand and gravel, silty sand and clayey sand (generally consistent with the BGS logs previously reviewed). The gravel content consisted of fine to coarse quartz.

Groundwater

No groundwater was encountered during the excavation of any exploratory holes.

The above findings are discussed further in Section 4 (updated CSM). Window sampler hole logs, providing full details of the strata encountered, are included within Appendix C.

3.2.2 Adequacy of Investigation Depth and Spatial Extent

Natural deposits were proven in seven of the eight exploratory hole locations, including all four deeper exploratory holes (i.e. WS1 to WS4). This suggests that the full potential depth of infill material at the site has been encountered and assessed, and gas monitoring (Section 3.2.5) is likely to be representative of the full body of infill.

As with most exploratory investigations, increased depth and spatial coverage of the site would be desirable to increase the confidence that the full depth of infill has been intersected. Nonetheless, the investigation represents a good initial assessment of ground conditions at the site, and at this stage, there is no need to consider further deeper drilling at the site.

3.2.3 Field Evidence of Contamination

The drilling arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1:

Exploratory Hole	Visual and Olfactory Evidence of Contamination							
WS1	0-0.8m bgl: Gravel of ash, coal, ceramic, brick within matrix							
WS2	0-0.4m bgl; Occasional glass and fabric fragments							
WS3	0-0.9m bgl; Gravel of ash brick and quartz within black matrix							
HP8	0.3-0.7m bgl (termination depth); Fragments of brick rubble and ash within matrix							

Table 3.1 - Field Evidence of Potential Contamination

3.2.4 Soil Analysis Results

Nine samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to ALcontrol Geochem of Deeside. ALcontrol is UKAS accredited and holds MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve good spatial coverage of the site.

Table 3.1 presents a summary of the analysis results. The results have been compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used, in order of preference, comprise:

- 2009 Soil Guideline Values (SGVs) published by the Environment Agency / DEFRA, generated using the latest Contaminated Land Exposure Assessment (CLEA) model, version 1.06
- Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) or the Environmental Industries Commission (EIC), or calculated by Grontmij, all using CLEA 1.06
- SGVs published by the Environment Agency / DEFRA between 2002 and 2007, calculated using prior versions of the CLEA model.

Full analytical testing results are included as Appendix D.

Determinand	No. of Samples Tested	Minimum Value	Maximum Value	SGV / GAC ¹	Locations where SGV or GAC are exceeded
Arsenic	9	3.7	24	32	-
Barium	9	23	860	1300	-
Beryllium	9	0.09	2.0	51	-
Boron (water-soluble)	9	<1.0	<1.0	291	-
Cadmium	9	0.20	2.8	10	-
Chromium, hexavalent	9	<0.60	<1.2	4.3	-
Chromium, total	9	6.6	30	3,000	-
Copper	9	5.7	890	2,330	-
Lead	9	7.8	490	450 ²	WS01 0.3m bgl
Mercury	9	<0.14	<0.14	0.42 ³	-
Nickel	9	5.4	69	130	-
Selenium	9	<1.0	1.1	350	-
Vanadium	9	9.6	44	75	
Zinc	9	40	1100	3,750	-
Asbestos screen	sbestos screen9No asbestos-containing materials				
	<u>^</u>		detected	0.40	
Benzene	6	<0.01	0.04	0.16	-
Ioluene	6	< 0.01	0.04	270	-
Ethyl Benzene	6	< 0.01	0.05	150	-
Xylene	3	<0.01	< 0.01	98*	-
TPH – CWG Hydrocarbons	6	None of the CWG screen speciated results	banded aliphat ing criteria were ults are presented	-	
Polyaromatic Hydrocarbons (PAHs)	6	None of the were exce pi	speciated PAH s eded. Full specia resented in Apper	-	
Volatile Organic Compounds3All laboratory results below limit of detection with exception of below:Compounds (excl.above)Image: Compound of the second of the sec				-	
Dichloromethane	3	<0.01	0.1	0.98	-
Tetrachloroethene	3	<0.005	0.04	2.1	

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding). **Bold values** indicate locations where observed concentrations exceed the screening value.

¹ Fifteen samples were tested for Soil Organic Matter (%SOM) content. A minimum value of 1.88% and a maximum of 10.8% were recorded, with a mean of 4.4% and a median of 3.9%. It is therefore justified, as a conservative measure, to use the SGVs and GAC generated using a 2.5% SOM value in CLEA in an initial screen, where the SGVs/GAC are SOM-dependent (mercury, phenol, PAHs, TPH-CWG and abovementioned VOCs and SVOCs). All other SGVs / GAC are not SOM-dependent (SCR) and abovementioned the SCR) and SVOCS. All other SGVs / GAC are not SOM-dependent

SGV quoted was generated by DEFRA using earlier version of CLEA. A new SGV using latest version of CLEA is awaited

³ Testing results presented represent total mercury. SGV presented is for elemental mercury, the most stringent of the elemental, inorganic and methyl mercury SGVs

⁴ SGV for para-xylene quoted (most stringent of the three isomers)

The concentrations of lead in soils from one location at the site exceed the generic screening values adopted.

3.2.5 Ground Gas Monitoring

Four rounds of ground gas monitoring were undertaken, using a Gas Data Instrument GFM435 with internal flow pod. A summary of the maximum gas monitoring results recorded at each well is presented in Table 3.3, with full monitoring data in Appendix E:

Well	Maximum Values Recorded During Monitoring Events:						Gas Screening Value ¹ (I/hr)	Situation "A" Characteristic		
	Peak CH₄ (%)	Ste CO ₂	ady (%)	Steady CO (ppm)	Steady H₂S (ppm)	Flow (l/hr)		Situation ¹		
WS1	0.1	0	.8	0	0	0.2	0.002	1		
WS2	0.1	0	.8	0	0	3.4	0.027	1		
WS3	0.1	0	.8	0	0	0.1	0.001	1		
WS4	0.1	0	.6	0	0	0.3	0.002 1			
A	tmospheric	;		28/01/2	011	1009mb (Steady)				
	Pressure:			11/02/2	011	995mb (falling trend)				
				25/02/2	011		1006mb(steady)			
11/03/2011					011		998mb (fa	alling trend)		

Table 3.3 - Summa	ry of Gas	Monitoring Data	
-------------------	-----------	-----------------	--

Readings obtained within a 3 minute measurement period, obtained with a GFM435 gas analyser.

 CH_4 – methane; O_2 – oxygen; CO_2 carbon dioxide; CO – carbon monoxide;

 H_2S – hydrogen sulphide; mbgl – metres below ground level mb – millibars l/hr – litres per hour. ¹CIRIA Characteristic Situation based on methodology presented in CIRIA Report C665, Assessing Risks Posed by Hazardous Gases to Buildings. Where the flow rate recorded in the field is zero or negative, a flow of 0.01 l/hr is assumed

The summary data presented above indicates that, in regard to methane and carbon dioxide, CIRIA characteristic situation 1 should be applied to all of the wells. This is the lowest risk category (of six) presented in CIRIA report 665, and indicates that no special gas precautions would be required in the construction of new buildings. Additionally, zero hydrogen sulphide and carbon monoxide was recorded.

In view of the monitoring results highlighted above, ground gases are unlikely to pose a risk to the housing at the site.

3.2.6 Safety of Water Supply Pipes

Two publications have been reviewed in regard to potential risks to water supply pipes posed by contaminants in the ground:

- "Guidance for the Protection of Water Supply Pipes to be Used in Brownfield Sites" (UK Water Industry Research {UKWIR}, ref 10/WM/03/21, 2010 (re-issued version))
- The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land (Water Regulations Advisory Scheme {WRAS}, ref 9-04-03, October 2002)

Both reports present methodologies for the assessment of soil conditions and the specification of appropriate pipework materials to mitigate the presence of contaminants.

WRAS Screen

A comparison between the chemical analysis results obtained from samples taken from the top 1.2m of soil at View Street and the older WRAS screening values is presented in Table 3.4. Only soils from the top 1.2m of the soil profile have been selected for comparison as 1.2m is the typical maximum depth at which water pipes are laid within the highway – with local service connections to properties typically much shallower. Note, the table below does not constitute a full screen against all WRAS parameters; e.g. sulphate, cyanide and coal tar have not been tested for.

Analyte	Test Results – Soil Soil Prof	WRAS Threshold Value (mg/kg)	
	max	Mean (where max>threshold))	
рН	6.2 - 8.02	7.2	<5 or >8
Arsenic	24	13	10
Cadmium	2.8	-	3
Chromium (hexavalent)	<1.2	-	25
Chromium (total)	30	-	600
Lead	490	-	500
Mercury	<1.4	-	1
Selenium	1.1	-	3
Phenol	Not analysed	-	5
Polyaromatic Hydrocarbons	12	-	50
Toluene extractable	<0.01	-	50
Petroleum Hydrocarbons (TPH CWG total aliphatic & aromatic >C5-C44)	192	131	50

Table 3.4 - Initial WRAS Threshold Screen

Bold values denote concentration in excess of WRAS threshold value

The maximum concentrations of arsenic and petroleum hydrocarbons, and the maximum soil pH level recorded, exceed the WRAS threshold values. The mean concentrations of arsenic and petroleum hydrocarbons also exceed the WRAS threshold values.

UKWIR Screen

The UKWIR approach is the most recent and reflects further studies undertaken since the WRAS document was published in 2002. Key features of the UKWIR report include:

- A pipework material-specific assessment procedure (Table 3.1 of the report). This allows chemical analysis results to be compared to various threshold criteria associated with six possible pipework material types
- The discounting of metallic pipework (other than copper or steel/ductile iron with protective wrapping) as a modern pipework material
- The specification of a different chemical testing suite to that recommended in the earlier WRAS document including the use of physio-chemical parameters and exclusion of analysis for metals (given the above discounting of metallic pipework).

The chemical analysis for the view street site was scheduled prior to the publication of the reissued UKWIR report (despite a re-issue data of 2010, the report was not available until January 2011). Therefore, some of the parameters required for a UKWIR screen are not available. The

available laboratory results from the top 1.2m of soil have been compared to the UKWIR thresholds. The screen has identified that:

- The total VOC result recorded in one (WS01) of three samples tested exceeds the UKWIR threshold for PVC pipework
- The total SVOC result in one (WS01) of three samples tested exceeds the UKWIR threshold for PE and PVC pipework
- The BTEX results for WS01 and WS03 exceed the UKWIR threshold for PVC pipework. WS01 also exceeds threshold for PE pipework

<u>Summary</u>

It is possible that the concentrations of contaminants at the site could adversely affect drinking water quality, depending on the materials used for water distribution (South Staffordshire Water pipes) and local connections to the network (probably installed by the house builder).

The results of the intrusive investigation and monitoring are discussed in more detail in the following sections.

4 FURTHER ANALYSIS OF RISK TO SENSITIVE RECEPTORS

4.1 Lead in Soil

4.1.1 Introduction

The site investigation has established that the concentration of lead in one sample exceeds the soil guideline value (SGV) applicable to the generic residential housing scenario, where plants are grown for human consumption. None of the nine other samples obtained at <0.7m bgl depth and analysed at the laboratory contained a lead concentration in excess of the SGV.

Generic SGVs and generic acceptance criteria (GAC) represent "safe" concentrations of contaminants, above which unacceptable impacts <u>may</u> occur and further assessment is generally required. Exceedance of SGVs or GAC does not necessarily mean that a significant possibility of significant harm ("SPOSH" - i.e. unacceptable risk to human health or the environment) is posed to human health. The SGVs and GAC have been derived using the CLEA model by various parties (see Section 3.2.3), using conservative input parameter values to generate screening values applicable, theoretically, to all UK sites. Therefore, an exceedance of a SGV or GAC does not necessarily mean that SPOSH exists - only that a generic, conservative screening value has been exceeded, and further assessment is required.

4.1.2 Statistical Analysis Approach

Guidance regarding how data collection, data review and statistical testing interact to produce defensible conclusions regarding the condition of land is provided within Part 2A of the Environmental Protection Act 1990 and Guidance on Comparing Soil Contamination Data with a Critical Concentration⁵ ("the guidance").

In order for statistical analysis to be applied, the dataset under inspection should strictly be the result of an unbiased sampling strategy. While there are a number of reasons why the sampling strategy could be viewed as biased, we conclude that the strategy was as close to being unbiased as possible, as discussed below:

- Parts of the site, such as areas beneath houses and roads, were not accessible, thus some soils were much less likely to be sampled than others. However, it would be unreasonable to attempt to sample such soils in an initial investigation, and samples taken from garden areas are likely to be representative of infill material beneath the site as a whole (while acknowledging that recent additional made ground may have been placed to form structures)
- Residents were, in some cases, reluctant for some parts of their gardens to be disturbed, meaning that some soils were unlikely to be tested but again, it is likely that the area available for sampling is likely to be representative of garden areas across the site as a whole
- Within each exploratory hole, contaminated land practitioners typically sample and analyse
 a "representative worst case" sample of the soil encountered so, while a very small
 pocket of ash within otherwise "clean" soil may not be analysed, samples would typically
 be taken of a 0.2m wide band of ash, rather than from the "clean" soil above or below such
 a band. Such sampling and testing is desirable, as it gives an indication of "representative
 worst case" conditions. Thus, while such sampling is arguably biased, the bias is towards
 over-estimating typical concentrations of contaminants in the soil across the site. Thus, if

⁵ The Chartered Institute of Environmental Health, CL:AIRE and The Soil and Groundwater Technology Association; May 2008.

the average concentration of such "representative worst case" samples is below the SGV or GAC, it follows that soil conditions across the site as a whole are also likely to be below the relevant SGV or GAC.

Statistical analysis of the dataset has therefore been undertaken, as described below.

4.1.3 Averaging Areas

The first step of statistical analysis is to define the "averaging area" over which data would be examined. An averaging area is an area of soil which, when sampled, is considered to provide a representative indicator of how much contaminant a receptor is exposed to.

Based on the history of the site (i.e. all the site is thought to be underlain by infill) and current use of the site (i.e. residential housing, with minor areas of lower sensitivity), the entire site was defined as a single averaging area, and all recorded lead concentrations in the soil obtained at <0.7m bgl depth were examined as a single dataset.

It could be argued that each residential property should be defined as a single averaging area, based upon the exposure of each individual receptor. However, as the goal of the investigation is to examine whether there is a significant possibility of significant harm (SPOSH) to sensitive receptors at the site *as a whole* (as characterised by the samples obtained and tested), and given that it was excessively intrusive to residents to obtain and test multiple samples from each garden during an initial investigation, such an approach was rejected.

4.1.4 Outlier Test

The second stage of statistical analysis requires a test to identify whether any outliers, potentially indicative of laboratory error or a separate population of data (for which a separate averaging area should be defined), are present.

The Guidance indicates that an outlier should only be excluded from a population of data if

<u>The outlier is obviously and demonstrably the result of an error that can be identified and explained</u> - in which case the correct value should be identified and the dataset amended, where possible, or the erroneous value excluded with justification, or

The outlier clearly indicates that more than one soil population exists within the dataset and this can be justified by (or informs the further development of) the conceptual model - in which case the different population expressed by the outlier(s) should be explored in more detail either by reviewing and refining zoning decisions and treating outlier values as a separate population or even individually or, if necessary, by undertaking further site sampling to verify conditions in the vicinity of outlier values.

In all other cases, outlying data should be assumed to be genuine and reflective of the full range of soil concentrations to which receptors may be exposed.

The ESI Limited Statistical Calculator has been used to test for outliers. The Calculator applies Grubb's Test to the entire dataset, but first requires the user to manually check that the dataset (excluding maximum value) is normally distributed, otherwise the test is not applicable. The dataset excluding maximum value was therefore checked, and was identified to be normally distributed.

The Calculator identified that the two highest lead concentrations recorded, 490mg/kg and 320mg/kg, within WS1 (0.3m) and WS2 (0.1m), were potentially statistical outliers. However:

- manual inspection of the spread of lead concentrations across the site identifies that the above results are of a similar order of magnitude to the remainder of the dataset
- all recorded lead concentrations have been plotted on a plan of the site. While is
 noteworthy that the four highest lead concentrations recorded are all located towards the
 north and western side of the northern part of the site, i.e. the area north of Ward Street,
 three of these four readings do not exceed the SGV of 450mg/kg, suggesting that a
 hotspot of contamination is not present. Similarly, there is no reason to believe that the
 WS1 and WS2 results have been obtained from an area of the site which is somehow
 different to the site as a whole, and thus representative of a separate population of data
 (e.g. the samples were not taken immediately downgradient of an obvious and localised
 source)
- the WS1 and WS2 lead results are not atypical concentrations of lead within a made ground soil, and are an entirely believable results (i.e. unlikely that a laboratory error has occurred).

The WS1 and WS2 results are therefore not considered to be outliers and have therefore not been excluded from the dataset.

4.1.5 Hypothesis Testing

The second stage of statistical analysis is to define a null and alternative hypothesis and examine whether the null hypothesis should be rejected.

In a Part 2a scenario, the null (H_0) and alternative (H_1) hypothesis to be tested is:

'Is there sufficient evidence that the true mean concentration of the contaminant (μ) is greater than the critical concentration (C_c)?'.

The Null Hypothesis (H_0) and the Alternative Hypothesis (H_1) are therefore:

- $H_0 \quad \mu \leq C_c$ i.e. the true mean concentration is equal to or less than the critical concentration
- $H_1 \mu > C_c$ i.e. the true mean concentration is greater than the critical concentration

The "critical concentration" is the adopted lead residential SGV of 450mg/kg.

The Guidance provides a detailed explanation of the hypothesis testing procedure, which includes comparison of the lower confidence limit of the (estimated) mean value with the critical concentration, to provide additional assurance that the (true) mean is also below the critical concentration at a defined level of confidence (conventionally 95%; this value has been adopted in this case).

The guidance also states that in the Part 2A scenario, if the sample mean is less than the critical concentration (C_c), the lower confidence limit of the sample mean must also be below the critical concentration, and the Null Hypothesis cannot be rejected.

The ESI Calculator has been used to calculate the mean of the recorded lead concentrations across the averaging area (the site), which is **144mg/kg**. As this value is below the critical concentration of 450mg/kg, the null hypothesis cannot be rejected, i.e. at a 95% level of confidence, the true mean concentration of lead beneath the averaging area (whole site) is less than or equal to the SGV of 450mg/kg.

4.1.6 Conclusion

On the basis of the above assessment, and given that a SGV represents a deliberately conservative value, reflective of assumptions and/or uncertainty associated with exposure frequency and duration, contaminant uptake and toxicology, below which harm to human health is very unlikely to occur, we conclude that:

- It is unlikely that a significant possibility of significant harm to human health is posed by lead beneath the site
- It is unlikely that the maximum concentration of lead recorded is representative of a separate data population, i.e. it is not considered to be a hotspot, requiring further investigation and the definition of an additional, smaller averaging area
- No further assessment in regard to human health risk is required.

4.2 Leaching to Aquifer

4.2.1 Introduction

The BGS log review and exploratory investigation has identified that contaminants within the made ground could leach to the principal aquifer beneath the site, given that the identified clay deposits beneath made ground contain a notable sand and gravel content and thus may not act as an aquiclude.

To further understand whether an aquiclude is likely to be present, and the potential risk to groundwater quality in the Principal aquifer, a groundwater monitoring round and chemical analysis of groundwater samples was undertaken at the installed locations, as described below.

4.2.2 Methodology

A groundwater monitoring round was undertaken on 31st May 2011. The four installed wells were monitored for groundwater depth, the water-bearing wells purged of three well volumes of groundwater in accordance with BS5930, and groundwater samples were taken. The samples were submitted to Alcontrol laboratories of Hawarden in temperature-controlled coolboxes and under full chain of custody documentation.

The three water samples (WS1 was dry) were scheduled for dissolved metals, PAHs and BTEX analysis.

4.2.3 Results

Groundwater depths of 1.20m bgl, 1.10m bgl and 1.60m bgl were recorded in wells WS2, WS3 and WS4 respectively, which were successfully advanced to 3m to 4m bgl. WS1, which was terminated at 2m bgl, was dry.

The chemical analysis results are presented in Table 4.1. The results have been compared to Tier 1 screening values protective of water quality within a Principal Aquifer (but not within a groundwater source protection zone) listed in the River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 ("WFD Directions") and UK Drinking Water Standards ("DWS") listed in the Water Supply (Water Quality) Regulations 1989/2000. The most stringent value published in the above documents has been adopted as the Tier 1 screening value; within the WFD Directions, this comprises the "general quality of groundwater" values listed in Part 8 only, as the site is not in a source protection zone and it is unlikely that any dissolved contaminants could reach a surface watercourse (i.e. "groundwater drinking water protected areas" and "groundwater impacts on surface waters" values are not applicable).

Contaminant	No of Samples Tested	Minimum Value µg/l	Maximum Value µg/l	Tier 1 Screen μg/l
Arsenic (diss.filt)	3	0.54	1.1	10
Boron (diss.filt)	3	60	230	1000
Cadmium (diss.filt)	3	0.17	0.62	5.0
Chromium (diss.filt)	3	12	29	50
Copper (diss.filt)	3	2.2	3.4	2000
Lead (diss.filt)	3	0.05	0.16	10
Nickel (diss.filt)	3	3.3	3.9	20
Vanadium (diss.filt)	3	2.9	8.5	n/s
Zinc (diss.filt)	3	4.1	16	5000
Mercury (diss.filt)	3	<0.01	<0.01	1.0
Benzo(a)pyrene (aq)	3	<0.01	0.92	0.01
PAH, Total USEPA 16 (aq)	3	(non-detects)	7.6	0.1
Methyl tertiary butyl ether (MTBE)	3	<1.6	<1.6	n/s
Benzene	3	<1.3	<1.3	0.75
Toluene	3	<1.4	<1.4	n/s
Ethyl benzene	3	<2.5	<2.5	n/s
Total Xylenes	3	<4.2	<4.2	37.5**

Table 4.1 – Groundwate	r Analytical	Chemistr	y Results
------------------------	--------------	----------	-----------

* UK DWŚ

** WFD Directive Value

n/s No Tier 1 Standard Published

Bold values indicate Tier 1 Screening Value Exceeded

4.2.4 Discussion

Moderate dissolved PAH concentrations have been identified in the groundwater samples analysed. While the PAH concentrations exceed the adopted screening value, they are unlikely to be characteristic of an ongoing release of contaminants.

The above monitoring data (i.e. shallow groundwater depths) along with observations during drilling (no water ingress) indicate that the groundwater encountered in WS2 to WS4 is likely to be representative of a perched groundwater unit and not the Principal aquifer in the Sherwood Sandstone Group. The encountered shallow groundwater appears to be perched above clay layers, encountered beneath the made ground.

The presence of perched groundwater suggests that any leachate generated by the percolation of rainwater through the made ground is perching within the made ground or shallow natural strata, and is not migrating downwards to the principal aquifer. In other words, is it unlikely that a significant leaching pathway to the principal aquifer exists. Therefore, the moderate dissolved PAH concentrations recorded are unlikely to present a significant risk to the Principal aquifer.

4.3 Permeation of Contaminants into Water Pipes

4.3.1 Introduction

The sampling results presented in Section 3 indicate that the concentrations of contaminants in the soil could possibility pose a risk to the quality of drinking water, due to a permeation or tainting risk. To investigate the contaminant permeation / tainting risk further, samples of drinking water were collected from taps from a representative sample of properties, for submission to the laboratory.

4.3.2 Methodology

Three samples of mains tap water were obtained from the site on 31st May 2011. Where possible, the samples were taken from properties where higher concentrations of soil-borne contaminants were encountered, i.e. at locations where the greatest risk to drinking water quality may be posed, with other samples taken from positions allowing good coverage of the site, as follows:

- 32 Foster Avenue
- 9 Ward Street
- 53 View Street

Samples were obtained after allowing the tap to run for one minute. The samples were submitted to Alcontrol Laboratories for chemical analysis for metals and PAHs (considered common contaminants that could have entered water supply pipes, on the basis of field observations and laboratory testing of soil samples).

4.3.3 Results and Conclusion

The results of the analyses are summarised in Table 4.2 below, along with a comparison to UK Drinking Water Standards (UKDWS) taken from the Water Supply Water Quality Regulations 2010. Full testing results are included in Appendix F:

Contaminant	No of Samples	Minimum Value µg/l	Maximum Value µg/l	UKDWS µg/I
	Tested			
Antimony	3	0.24	0.70	5.0
Arsenic	3	1.7	3.2	10
Boron	3	100	120	1000
Cadmium	3	0.15	0.38	5.0
Chromium	3	10	14	50
Copper	3	300	640	2000
Lead	3	0.10	4.4	10
Nickel	3	1.7	4.7	20
Zinc	3	180	660	5000
Mercury	3	<0.01	<0.01	1.0
Sum of Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3- cd)pyrene*	3	<0.08	<0.08	0.10
Benzo(a)pyrene*	3	<0.009	<0.009	0.01

Table 4.2 - Tap Water Analysis Results

*There are no screening values in the WSWQ Regulations 2010 for the remaining commonly analysed 16 PAH compounds

The maximum recorded metal and PAH concentrations within tap water did not exceed the corresponding UK Drinking Water Standards, where standards exist.

The implications of the above findings are discussed further in the following report sections.

5 UPDATED CONCEPTUAL SITE MODEL

The CSM presented in the previous Grontmij desk study report (Appendix A) was updated, using the findings of the site investigation, as presented overleaf.

Table 5.1 - Pollutant Linkages, Post-Site Investigation

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	Concentration of lead in WS01 at 0.3m bgl slightly exceeds adopted GAC. However, statistical assessment of dataset (Section 4) indicates that the true average lead concentration at the site is unlikely to pose significant risk to human health.	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Unlikely	Low	No further assessment proposed
2	Residents of properties above infilled ground	(Low concentrations of gases and low flow rates recorded)	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Unlikely	Low	No further assessment required
3	Subsurface services serving the buildings (principally water supply)	Concentrations of metals, hydrocarbons, VOCs, SVOCs and soil pH value within made ground exceed WRAS / UKWIR guideline values. Testing of tap water identified acceptable dissolved contaminant concentrations	Chemical attack and tainting of water supply could occur	Minor	Low	Very low	No further action proposed
4	Property (Structures) – sub-surface concrete	Weakly acidic to weakly alkaline pH values recorded (pH 6 to 8)	Contact between contaminants and concrete	Mild	Unlikely	Low	.pH appears to pose only a low risk. No sulphate testing undertaken, as class of concrete used to construct housing is unknown. Risk is considered to be a lower priority - no further assessment proposed.

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Property (Structures) – residential buildings on site	Deleterious elements of infill	Differential settlement of infill, causing structural failure of buildings	Medium	Unlikely	Low	Although a detailed inspection of buildings has not been undertaken, no obvious evidence of structural failure was noted and all properties at the site appear to be currently occupied. As buildings appear to be fit for occupancy, it is unlikely that significant harm to the building has been caused or is being caused (ref: DEFRA Circular 01/2006 p86 – this is statutory guidance accompanying the Environmental Protection Act 1990.
6	Principal aquifer (Sherwood Sandstone) beneath site	PAH concentration in shallow groundwater exceeds drinking water standard. However, shallow (perched) depth of groundwater and low water ingress rate during drilling, plus presence of clay layers beneath made ground, suggest that the encountered groundwater is not representative of the principal aquifer, and contaminants from the made ground are not leaching to the "true" aquifer. Drinking water standard is therefore an inappropriate screening value	Vertical contaminant migration within unsaturated zone (Made Ground)	Medium	Low	Low/moderate	Identified dissolved PAH concentrations are unlikely to represent a significant source (from soils) of ongoing pollution of controlled waters and pollutant linkage to principal aquifer is likely to be (at worst) limited. No further assessment proposed

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix F for further details

6 SUMMARY AND CONCLUSION

- Review of historical mapping and EA records provided to Cannock District Council, plus anecdotal evidence obtained during public consultation, identified that land between View Street and Foster Avenue, Hednesford, Staffordshire was infilled with unknown waste material which potentially posed a risk to human health and controlled waters.
- An exploratory investigation identified ground conditions comprising a maximum of 0.9m of Made Ground (sand, clay and gravel of materials including ash, glass, quartz, brick, ceramics, fabric and mudstone) over natural soils generally comprising firm sandy gravelly clay, with bands of sand and gravel, silty sand and clayey sand.
- The ground investigation identified that the concentration of lead in Made Ground in one location (of nine tested) exceeded generic human health screening criteria. However, upon statistical assessment of the dataset and consideration of the conservatism associated with the generic screening values, it was concluded that the concentrations of contaminants beneath the site are unlikely to pose a significant possibility of significant harm to human health.
- The slow groundwater ingress rate into wells, shallow groundwater depth and presence of clay layers beneath the Made Ground all suggest that dissolved PAHs encountered in water beneath the site are representative of a shallow perched water table and are unlikely to reach the principal aquifer, likely to be present at a greater depth beneath the site.
- Concentrations of contaminants within made ground exceed the generic screening criteria for contaminant permeation adopted by water companies. Samples of tap water quality were taken, giving acceptable results. No further action proposed.
- Gas monitoring has identified that the concentrations and flow rates of hazardous gases beneath the site are unlikely to pose a human health or explosion risk to the housing at the site. No further assessment in regard to gas is necessary.

On the basis of the preceding assessment and the limitations listed in Appendix B, the site is unlikely to meet the definition of Contaminated Land under Part 2A of the Environmental Protection Act 1990. No further work is proposed.

DRAWINGS

F:\U3064\proj\106270 Cannock 2a batch 2\drawings\106270-001.dwg

APPENDIX A

Cannock Chase District Council

Environmental Protection Act 1990, Part Ila: Desktop Study and Walkover

Landfill between View Street and Foster Avenue, Hednesford, Cannock, Staffordshire

August 2010

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 F 0121 7116749 E gareth.taylor@grontmij.co.uk

Document Control

Report Reference	lssue Date	Reason for Issue		Prepared by	Checked by	Approved by
R463/103912/V1/2010	03/08/10	First Issue	Signature			
			Name	Richard Swayne	Gareth Taylor	Gareth Taylor
			Position	Senior Consultant	Principal Consultant	Principal Consultant

© Grontmij 2010 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTRODUCTION	1
1.1	Terms of Reference	1
1.2	Site Setting	1
1.3	Summary of available site information	3
1.4	Walkover	3
2	PRELIMINARY CONCEPTUAL MODEL	4
2.1	Introduction	4
2.1.1	Sources of Contaminants	4
2.1.2	Receptors	5
2.1.3	Pathways	6
2.1.4	Potential Pollutant Linkages	6
3	CLOSING REMARKS	9

FIGURES

Eiguro 1 1	Site Location		3
i iguie i.i		 	J

TABLES

Table 1.1 – Site Setting	.2
Table 2.1 - Potential Receptors	.5
Table 2.2 - Potential Pollutant Linkages	.7

DRAWINGS

Drawing 1 – Site Location

APPENDICES

Appendix A	Limitations Statement
Appendix B	Severity and Probability of Risk (after CIRIA report 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Contaminated Land inspection strategy. Part IIa of the Environmental Protection Act 1990 (Part IIa) requires each local authority to inspect areas of land which it believes may be Part IIa Contaminated Land.

The scope of work agreed between Grontmij and the Council included:

- Prioritisation of an initial list of potentially contaminated sites for intrusive investigation work, based upon the sensitivity of each site, using existing limited desktop study data provided by the Council; and,
- Undertaking desktop reviews and walkovers, culminating in the production of reports for each priority site to improve the understanding of the sites and inform the planning of intrusive site investigations.

The prioritisation exercise identified an initial 12 sites requiring detailed desktop study and walkovers, including the landfill between View Street and Foster Avenue, which is discussed within this report. The site is considered to be sensitive as the residential properties overlie a former landfill which is recorded to contain household waste of various types and was operational pre-1943. The site is also underlain by a principal aquifer and the sites are located adjacent to a school with playing fields.

The site comprises two areas of concern between View Street and Foster Avenue. Area 1, north of Ward Street consists of approximately 27 residential properties with gardens, occupying an area of approximately 0.7 ha. Area 2, south of Ward Street consists of approximately 17 residential properties with gardens occupying an area of approximately 0.4 ha.

This report is subject to the limitations presented in Appendix A.

1.2 Site Setting

The setting of the site is summarised in Table 1.1. The location of the site is shown on Figure 1.1, and Drawing 1 provides surrounding land-use details.

Table 1.1 – Site Setting

Data	Information
Address	There are two areas of concern between View Street and Foster Avenue (see Drawing 1). Area 1: comprises land north of Ward Street, while Area 2 comprises land south of Ward Street. The general site address is:
	Ward St, Hednesford, Cannock, Staffordshire. The postcode for the centre of the site is WS12 4HN.
Current site use:	Residential houses and gardens – appear to date from 1960s/70s
Grid Reference:	Centre of area 1 is located at approximate NGR 398810,312850 Centre of area 2 is located at approximate NGR 398770,312730
Site Area:	Area 1 is approximately 0.7 ha. Area 2 is approximately 0.4 ha.
Topography:	Undulating, but general trend is a slight gradient down towards the south-east
Surrounding land use	The site is surrounded by further residential properties, plus a secondary school with playing fields is located approximately 30m to the east. Areas 1 and 2 of the site are intersected by Ward Street.
Mapped Geology	British Geological Survey (BGS) mapping indicates bedrock of the Kidderminster Formation (interbedded sandstone and conglomerate) of the Sherwood Sandstone Group. The mapping indicates that there are no superficial deposits beneath the site.
Hydrogeology	The Environment Agency website indicates the sandstone as a principal aquifer. Principal aquifers are layers of rock or drift deposits that have high inter-granular and/or fracture permeability and usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale.
Source Protection Zones (SPZs)	The Environment Agency website indicates that the site does not lie within a SPZ.
Surface Waters	There are no surface waters indicated within 250 m of the site.
Historical Land Use	Environment Agency records provided to the council indicate that the site was formerly operated as a landfill site and was subsequently developed as residential housing. The landfill is shown on Environment Agency "What's In Your Back Yard" website and is recorded as being operational between 31 st December 1940 and 31 st December 1943. The landfill is registered to have received household waste from dwellings of various types including houses, caravans, houseboats, campsites and prisons, and wastes from schools, colleges and universities. The site pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal license.
Ecologically designated sites ¹	MAGIC search indicates none within 1km of site boundary

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

3 103912

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright Plan is not to scale.

1.3 Summary of available site information

Cannock Chase Council is not aware of any previous site investigation reports relating to the site.

1.4 Walkover

The site has been subject of a walkover, carried out from the public highway. . No obvious evidence of contamination was identified during the inspection, but such evidence is unlikely to be uncovered by a visual inspection of land occupied by residential properties.

2 PRELIMINARY CONCEPTUAL MODEL

2.1 Introduction

This section of the report presents a preliminary contaminated land assessment, on the basis of the available desktop data and information gathered during the walkover. The assessment presents an evaluation of the potential risks posed, should contaminants be present in the soil or groundwater beneath the site.

In the context of the Environmental Protection Act 1990 (EPA90), the Water Act 2003 and associated guidance^{2,3}, a preliminary (contaminated land) risk assessment should focus on whether the land at a subject site meets the statutory definition of Contaminated Land. Part IIA of the EPA90, as amended by the Water Act 2003, defines Contaminated Land as:

"any land which appears to the local authority in whose area it is situated to be in such condition by reason of substances in, on or under the land, that:

- significant harm is being caused or there is a significant possibility of significant harm being caused; or
- significant pollution of controlled waters is being caused or there is significant possibility of such pollution being caused".

The procedure for assessing contaminated land involves the development of a Conceptual Site Model (CSM) comprising the assessment of potential contaminants, pathways and receptors.

2.1.1 Sources of Contaminants

The "contaminants" term in the conceptual model has been evaluated by inspection of existing desktop study data provided by the Council, and a preliminary site walkover. The following potential sources of contaminants have been identified:

- The site is underlain by a historical landfill site, which could contain contaminants including (but not limited to) metals, hydrocarbons, polyaromatic hydrocarbons (PAHs), volatile and semi-volatile organic compounds (VOCs and SVOCs); and,
- Methane and carbon dioxide gas, from the decomposition of any biodegradable material within the underlying landfill site.

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land: September 2006.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

2.1.2 Receptors

DEFRA Circular 02/2006 defines a Receptor as:

"either (a) a living organism, a group of organisms, an ecological system or a piece of property which (i) is in a category listed in Table A as a type of receptor, and (ii) is being, or could be, harmed, by a contaminant; or (b) controlled waters which are being, or could be, polluted by a contaminant".

Table 2.1 lists all of the receptors to be considered by a Part IIA or PPS23⁴ assessment, and assesses whether the receptors are likely to be present at the site.

Receptor Type	Receptors	Present (√ /×)	Notes
Humans	On-site residents	V	Residential properties (houses and gardens) above indicative extent of landfill. Gardens assumed to be used for growing food crops.
	Construction staff and site investigation personnel.	x	Not known if redevelopment proposed.
	Future occupants of the site	✓	Level of risk same as current residents so not considered further.
	Off site commercial workers or residents	•	Possibly exposed to gases migrating off-site through permeable strata. Level of risk likely to be same, or lower, than on-site residents, and is not considered further
Ecosystems	Any designated ecological system ⁵ , or living organism forming part of such a system	x	Inspection of MAGIC website has identified that the site does not lie within 250m of an ecologically designated site.
Property (Flora	Crops, including timber	X	Not present.
and Fauna)	Produce grown domestically, or on allotments for consumption	•	Gardens assumed to be used for growing food crops. Risk posed is considered to be covered by human health (residential with gardens) pathway and is not considered further.
	Livestock	Х	Not present.
	Other owned or domesticated animals	 ✓ 	Pets in residential properties. Risk posed is considered to be similar to that posed to on- site residents, and is not examined further
	Wild animals which are the subject of shooting or fishing rights	X	Not present.
Property (Buildings & Structures)	A 'building' means any structure, including any part below ground level, but	✓	Residential houses (and in particular, water service pipes and foundations) above

Table 2.1 - Potential Receptors

⁴ Planning Policy Statement (PPS) 23: Planning and Pollution Control, Annex 2: Development on Land Affected by Contamination ⁵ Includes sites designated as Sites of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

www.grontmij.co.uk

Receptor Type	Receptors	Present (√ /×)	Notes				
	does not include plant or machinery within a building		indicative extent of landfill.				
Controlled	Territorial waters	×	None feasibly close enough to be affected.				
Waters ⁶	Coastal waters	×	None feasibly close enough to be affected.				
	Inland Freshwaters	✓	Un-named stream or drain 400m to east				
	Groundwater	~	Sherwood Sandstone principal aquifer beneath site.				

2.1.3 Pathways

DEFRA Circular 02/2006 defines a pathway as:

"one or more routes or means by, or through, which a receptor: (a) is being exposed to, or affected by, a contaminant; or (b) could be exposed or affected".

Pathways are examined as part of Table 2.2.

2.1.4 Potential Pollutant Linkages

The pollutant linkages identified are presented in Table 2.2.

⁶ As defined in the Water Resources Act 1991 (Part III, Section 104). Generally includes most surface water bodies excluding drains which discharge into sewers.

Table 2.2 - Potential Pollutant Linkages

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Likely	Moderate	Grass and/or topsoil coverage likely to mitigate risk to an extent – risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to refine conclusion on risk
2	Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
3	Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material.	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
4	Property (Structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Principal aquifer (Sherwood Sandstone) beneath site	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material.	Leaching of soil contaminants to aquifer – no aquiclude is indicated on BGS mapping	Medium	Likely	Moderate	Risk will depend upon depth and concentration of contaminants, confirmation that an aquiclude is absent, ,leaching potential of contaminants. Investigation required to determine risk.

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix B

Potential pollutant linkages affecting the health of residents, controlled waters and property have been identified, and therefore an initial intrusive investigation should be undertaken to examine the likelihood of pollutant linkages existing at the site.

9

Crown Copyright. All rights reserved. Cannock Chase District Council. Licence No. 100019754 (2010)

Appendix A (of desk study): Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Grontmij Limited.
- 3. Observations were made of the site and of structures on the site as indicated within the report.
- 4. Grontmij has relied upon the existing data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC, the Environment Agency and British Geological Survey websites) assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: '...the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The scope of this study, as agreed with Cannock Chase Council, comprised a review of available information, and data was not purchased from a proprietary database.

Appendix B (of desk study) : Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Situation	Severity	Description	Examples
ACUTE PROBLEM	Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
SIGNIFICANT HARM TO SENSITIVE RECEPTOR	Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
SIGNIFICANT HARM TO LESS SENSITIVE RECEPTOR	Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non- aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
NON- SIGNIFICANT HARM	Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily-repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or
-	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

	Severity									
Probability	Severe	Medium	Mild	Minor						
High	Very high	High	Moderate	Low/moderate						
Likely	High	Moderate	Low/moderate	Low						
Low	Moderate	Low/moderate	Low	Very low						
Unlikely	Low/moderate	Low	Very low	Very low						

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe.

APPENDIX B

Appendix B: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data

become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.

www.grontmij.co.uk

APPENDIX C

Gror	ntmij
------	-------

WINDOW SAMPLE No

Project Client Logge By MJH Job No Order 27-12-10 (07-12-10) Ground Level (m) Co-ordinates Checked By GVT AMPLES & TESTS By Result Image: Control Chase DC MAH AMPLES & TESTS By Result Image: Control Chase DC Co-ordinates Checked By GVT 100 ES Image: Control Chase DC STRATA DESCRIPTION Image: Control Chase DC 100 ES Image: Control Chase DC MADE CRCUND: Crass over date brown very clayey very gravely coarse angular to rounded and; coal, coarner, brits, muddanes and the top quarte: Control Coales Image: Control Chase DC Image: Control Chase DC 100 ES Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC 100 ES Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC 100 ES Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC 100 ES Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC 100 ES Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC Image: Control Chase DC 100 ES Ima												
View Street Cannock Chase DC MH Job No Org. 12.10 07.12.10 Ground Level (m) Co-ordinates Checkad By GVT SAMPLES & TESTS Network MADE GROUND: Grass over dark brown very clayey very gravely toxic MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.70) MADE GROUND: Grass over dark brown very clayey very gravely (no.71) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very clayey very gravely (no.72) MADE GROUND: Grass over dark brown very cl	Project							Client		L	ogged By	
Job No Date 077-12-10 Ground Level (m) Co-ordinates Checked By SAMM-LES & TESTS Depth Transmit is reached by Transmit is reached by Transmit is reached by Transmit is reached by STRATA DisCRPTION Image: Checked by Ima	View Stre	et						Cannock Ch	ase DC		MJH	
STRATA Depth Tree T	Job No 106	Date Date 07-12-10 Ground Level (m) Co-ordinates Checked 106270 07-12-10 07-12-10 Checked Checked Checked					Checked By GVT					
Oppin Test Test load Benut	SAMPLE	ES &	TESTS	L					STRATA			ent
OND ES Cord Image: Constraint of the second	Depth	Туре	Test	/ate	Reduced	Legend	Depth		DESCRIPTION	N		strum
0.10 ES ES (0.70) ES (0.70) (0.70			Result	5	Level		(Thickness)					Ĕ
0.70 ES 0.76 Fim light gray and orange brown slightly sandy slightly gravelly CLAY with occasional obbies. Gravel is coarse sub rounded to well ro	0.10	ES ES					× (0.76)	coarse grain coarse angul	ed SAND with occasional i ar to rounded ash, coal, co	roots and rootlets. eramic, brick, mud	Gravel is fine to stone and	
1.00 ES Immigrating the provide the decimal build of the provided in the provided	0.70	ES					× 0.76	6 '		h		- =
Image: Second	- - 1.00	ES						with occasion quartz. Cobb	and orange brown slight nal cobbles. Gravel is coar les are quartz. (Glacial Till	se sub rounded to	well rounded	
End of Hole at 2m bgl. End of Hole at 2m bgl.	- - -						(1.24) 					
	_					P <u>···</u> ·	2.00	0				
Groundwater General Remarks Strike Depth: (m) Rising to: (m) Groundwater Remarks Location: Back garden of 42 Foster Avenue in lawn. No groundwater encountered Final Depth None Encountered Method/ Plant Used Hand held window sampling All dimensions in metres Scale 1:50												
Strike Depth: (m) Groundwater Remarks Location: Back garden of 42 Foster Avenue in lawn. No groundwater encountered 2m bgl None Encountered Method/ Plant Used Method/ Hand held window sampling All dimensions in metres Scale 1:50 Sheet 1 of 1	-		Groundwate	r		Ge	<u>t</u> neral Ren	narks			Final De	epth
None Encountered Zim Dgi Contractor Sherwood Drilling Method/ Plant Used Hand held window sampling All dimensions in metres Scale 1:50 Sheet 1 of 1	Strike Depth: (m) F	Rising to:	(m) Groundwa	ater Rer	marks		ation: Back gar	den of 42 Foster Avenue	in lawn. No groundwater encountered		2m h	al
Contractor Sherwood Drilling Method/ Plant Used Hand held window sampling All dimensions in metres Scale 1:50 Sheet 1 of 1	N	lone E	ncountered							1		yı
	Contractor (Sherv	vood Drilli	ng		M Pl	lethod/ lant Used	Hand he	ld window sampling	All dimens	ions in metres Scale 1:50 Sheet	t 1 of 1

Gro	ontmij
-----	--------

Project			_	_			Client		L	Logged By	_
View Stre	et		+o			0					
Job No 106	270	Da	te 0 0	7-12-10 7-12-10		Ground L	₋evel (m)	Co-ordinates		Shecked By GVT	
SAMPLE	ES &	TESTS	er			_		STRATA			ment
Depth	Туре	Test Result	Wat	Reduced Level	Legend	(Thickness)		DESCRIPTION	N		Instru
0.10 0.30	ES ES					×- (0.42) ×- 0.42	MADE GROU grained SAN rounded qua	JND: Grass over brown ve D with many roots and roo rtz and occasional glass a	ery clayey gravelly tlets. Ravel is sub nd fabric.	fine to coarse rounded to	
0.70	ES					0.79	Firm light gre with occasion quartz. Cobb	y and orange brown slight nal cobbles. Gravel is coar les are quartz. (Glacial Till	ly sandy slightly g se sub rounded to)	ravelly CLAY well rounded	
1.00	ES				<u> </u>	<u>1 </u>	Light brown	very silty very sandy GRAV	EL. Gravel is sub	angular to	
						(1.03)	Stiff reddish medium rour	brown sandy slightly grave ded to well rounded quart	lly CLAY. Gravel i z. (Glacial Till)	s fine to	
-						- <u>2.07</u> - <u>2.07</u>	Doddiah bray		d CAND (Clasical		
						(0.57)	Firm reddish medium sub	brown slightly sandy slight rounded to well rounded q	tly gravelly CLAY. uartz. (Glacial Till	Gravel is fine to	
-					× ×	2.76	Reddish brov	vn very silty coarse graine	d SAND. (Glacial	Till)	
						(0.97)	Stiff reddish medium sub	brown slightly sandy slight rounded to well rounded q	ly gravelly CLAY. (uartz. (Glacial Till	Gravel is fine to)	
_						4.00					
						- -	End of Hole	at 4m bgl.			
						-					
						-					
-						-					
						-					
						-					
_						-					
						-					
						-					
						-					
-						-					
						-					
						-					
						-					
-						-					
						-					
						-					
						-					
-						-					
						-					
						-					
						-					
Strike Denth: (m)	Cising to:		r eter Bar	l	Ge	neral Rem	arks			Final De	pth
N	lone E	ncountered	aler Rer	IIdrKS	Loca	ation: Back gard	en of 32 Foster Avenue	in lawn. No groundwater encountered		4m b	gl
Contractor (Sherv	vood Drilli	ing		M	ethod/ lant Used	Hand he	d window sampling	All dimens	I	<u>t 1 of</u> 1

Grontmi	j
---------	---

WINDOW SAMPLE No

Project Clent Clent Image: Clent of the construction of the constructi										
View Street Landook Chase U. M.H Job No 106270 Date 07-12-10 Ground Level (m) Co-ordinates Checkel by GVT STRATA DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION 0.0 Find particle Control Description Desc	Project					Client		L	ogged By	
Job No Date OT-12-10 Ground Level (m) Co-andinates Checked By GVT SAMPLES & TESTS Becodellegend Depth Test Becodellegend Depth DESCRIPTION 0.00 ES I.evel Becodellegend Depth Depth Test 0.00 ES I.evel Becodellegend Depth Depth Test 0.01 ES I.evel I.evel Becodellegend Depth SAND. Gravel is fine to coarse ash, brick and quartz. 0.02 ES I.evel I.evel I.evel SAND. Gravel is fine to coarse ash, brick and quartz. 0.03 ES I.evel I.evel I.evel I.evel SAND. Gravel is fine to coarse ash, brick and quartz. 0.037 ES I.evel I.evel I.evel I.evel I.evel 10.0 ES I.evel I.evel I.evel I.evel I.evel 11.00 I.evel I.evel I.eve	View Street			I			ase DC		MJH	
STRATA Depth Total 0:0 ES 0:0 ES 0:0 ES 1:0 ES <	Job No 106270	Date	07-12-10 07-12-10	G	Bround L	.evel (m)	Co-ordinates	C	Checked By GVT	
Depth Type Test E Reduced Legend Depth DESCRIPTION 0.10 ES 0.30 ES WADE GROUND: Black dayey very gravelly fine to coarse grained 0.30 ES 0.67 0.67 SND. Gravel is fine to coarse sh, brick, and quartz. 1.00 ES 0.67 0.67 1.01 E 0.67 0.67 1.02 E 0.67 0.67 1.01 E 0.67 <	SAMPLES & T	ESTS ,	5				STRATA			ient
Outom Com MADE GROUND: Black clayey very gravelly fine to coarse grained 0.10 ES 0.87 MADE GROUND: Black clayey very gravelly fine to coarse grained 0.70 ES 0.87 Image: state st	Depth Type	Test to	Reduced	Legend	Depth (Thickness)		DESCRIPTION	Ν		l Istrum Back
SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. (0.87) 100 ES ES SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is medium to coarse counded to well rounded quartz. SAND. Gravel is medium to coarse counded to well rounded quartz. SAND. Gravel is medium to coarse counded to well rounded quartz. SAND. Gravel is medium to coarse counded to well rounded quartz. SAND. Gravel is medium to coarse counded to well rounded quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick and quartz. SAND. Gravel is fine to coarse ash, brick	0.10			XXX	(,	MADE GRO	UND: Black clavev verv gra	avelly fine to coars	e grained	
0.70 ES 1.00 ES 1.0	0.30 ES				(0.87)	SAND. Grav	el is fine to coarse ash, brid	ck and quartz.		
1.00 ES Finn light brown slightly sandy slightly gravely (CLAY. Gravel is medium to coarse rounded to well rounded quartz. (Glacial Till) <td>0.70 ES</td> <td></td> <td></td> <td></td> <td>0.87</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.70 ES				0.87					
Groundwater General Remarks	1.00 ES				(2.13)	Firm light bro to coarse rou End of Hole	own slightly sandy slightly g unded to well rounded quar	ravelly CLAY. Gra tz. (Glacial Till)	ivel is medium	
None Encountered Control Contr	- - - Strike Depth: (m) Rising to: (m None Enc	oundwater)) Groundwater F countered	Remarks	Gene	e ral Rem n: Back garde	arks en of 9 Ward Street in	lawn. No groundwater encountered		Final De 3m b	epth ogl
Contractor Sherwood Drilling Method/ Plant Used Hand held window sampling Al dimensions in metres Scale 1:50	Contractor Sherwo	pod Drilling]	Meth	hod/	Hand be	ld window sampling	All dimensi	ons in metres Scale 1:50	

Grontmi	ij

WINDOW SAMPLE No

Project							Client			Logged By	
View Stre	et						Cannock Ch	ase DC		MJH	
Job No		Dat	te ∩	7-12-10		Ground L	_evel (m)	Co-ordinates		Checked By	
106	6270		0	7-12-10						GVT	
SAMPL	ES &	TESTS	5					STRATA			Tent
Depth	Туре	Test	Vate	Reduced	Legend	Depth		DESCRIPTIO	N		istrum Backf
0.10		Result	<u> </u>	Level	<u></u>	-	MADE GROI	JND: Brown verv clavev or	ravelly fine graine	d SAND with	
0.10	ES				1/ . 11/ .	(0.42)	occasional ro	ots and rootlets. Gravel is	coarse sub roun	ded to well	
0.50	ES						Firm becomir	ig stiff brown slightly sand	y slightly gravelly	CLAY. Gravel is	
0.70	ES				<u> </u>	4	fine to coarse	sub rounded to well roun	ded quartz. (Glac	ial Till)	
1.00	ES										
1.20	ES					~- ~ -					
						.4 					
-											
						(3.58) 					
					0	, 1 					
-											
						-1 					
						4.00					
						F	End of Hole a	at 4m bgl.			
						Ę					
						E					
—						-					
						Ē					
						F					
•						E					
-						-					
						Ę					
						Ē					
						Ę					
 -						-					
-						F					
-						E					
						E					
-						-					
						Ē					
•						Ę					
•						Ē					
						Ē					
						ŀ					
						Ē					
						F					
Strike Depth: (m)	Risina to:	Groundwate	r ter Rer	marks	Ge	neral Rem	harks	lower bod. No group this ter approximation		Final D	epth
1	None E	Encountered			Loca	auon. Back gard	າຍາ ບາ ວວ view Street in t	IOWEL DEU. INO GROUNDWATER ENCOUNTERED		4m t	bgl
Contractor	Sherv	vood Drilli	na		M	lethod/					
			.9		P	lant Used	Hand hel	d window sampling	All dimen	sions in metres Scale 1:50	et 1 of 1

- Notes:Logged by PSW1. No groundwater was encountered within any of the below trial pits2. Sample frequency: 0.1m, 0.3m & 0.7m3. HPs undertaken on 10/12/2010.

HP No: 06	House Address:62 Broadway	Location of HP:
Depth (M BGL):	Strata Description:	Additional notes:
0.00-0.50	MADE GROUND: Dark grey slightly clayey silty gravelly SAND. Gravel is subrounded fine to coarse of sandstone	No evidence of contamination
0.50-0.70	Orange Brown slightly clayey, slightly silty, gravelly SAND. Gravel is subrounded to rounded fine to coarse of sandstone and quartz	No evidence of contamination
HP No: 07	House Address: 12 Foster Ave	Location of HP:
Depth (M BGL):	Strata Description:	Additional notes:
0.00 - 0.65	TOPSOIL; Soft brown slightly silty, slightly gravelly, sandy CLAY. Gravel is of various lithologies, predominantly quartz subangular to subrounded fine to coarse. Occasional rootlets	No evidence of contamination.
0.65-0.70	Yellow brown slightly clayey SAND and GRAVEL. Gravel is subrounded to rounded fine to coarse of quartz and sandstone. Occasional cobbles	No evidence of contamination.

HP No: 08	House Address: 41 View Street	Location of HP:
Depth (M BGL):	Strata Description:	Additional notes: Ground frozen
0.00-0.30	MADE GROUND; soft brown slightly silty gravelly CLAY. Gravel is subangular to rounded fine to coarse of various lithologies. Frequent fragments of brick	Brick fragment
0.30-0.50	MADE GROUND; soft brown slightly silty gravelly CLAY. Gravel is subangular to rounded fine to coarse of various lithologies with much brick and ash	Brick rubble and ash
0.50-0.70	MADE GROUND; yellow brown silty SAND with fragments of brick and ash	Fragments of brick and ash
HP No: 09	House Address: 45 View Street	Location of HP:
Depth (M BGL):	Strata Description:	Additional notes:
0.00-0.25	Grass over TOPSOIL; Soft brown slightly silty, slightly gravelly, sandy CLAY. Gravel is of various lithologies, predominantly quartz subangular to subrounded fine to coarse. Occasional rootlets	No evidence of contamination
0.25-0.50	Orange brown slightly clayey silty gravelly SAND. Gravel is subrounded fine to coarse of sand stone	No evidence of contamination
0.50-0.70	Orange brown clayey silty gravelly SAND. Gravel is	No evidence of contamination

HP No: 10	House Address: 38 Foster Avenue	Location of HP: in Vegetable plot
Depth (M BGL):	Strata Description:	Additional notes:
0.00-0.65	TOPSOIL; Soft brown slightly silty, slightly gravelly, sandy CLAY. Gravel is of various lithologies, predominantly quartz subangular to subrounded fine to coarse. Occasional rootlets	No evidence of contamination.
0.65-0.70	Orange brown slightly clayey SAND and GRAVEL. Gravel is subrounded to rounded fine to coarse of quartz and sandstone. Occasional cobbles	No evidence of contamination.

APPENDIX D

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode Iane Solihull West Midlands B912AA

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 13 January 2011 H_GRONTMIJ_SOL 101209-93

View Street 110744

We received 17 samples on Thursday December 09, 2010 and 5 of these samples were scheduled for analysis which was completed on Thursday January 13, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

SDG:	101209-93	Location:	View Street	Order Number:	
Job:	H_GRONTMIJ_SOL-41	Customer:	Grontmij	Report Number:	110744
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2555490	WS1		0.10	07/12/2010
2555493	WS1		0.30	07/12/2010
2555489	WS1		0.70	07/12/2010
2555494	WS1		1.00	07/12/2010
2555497	WS2		0.10	07/12/2010
2555499	WS2		0.30	07/12/2010
2555500	WS2		0.70	07/12/2010
2555496	WS2		1.00	07/12/2010
2555501	WS3		0.10	07/12/2010
2555505	WS3		0.30	07/12/2010
2555506	WS3		0.70	07/12/2010
2555504	WS3		1.00	07/12/2010
2555510	WS4		0.10	07/12/2010
2555513	WS4		0.30	07/12/2010
2555511	WS4		0.70	07/12/2010
2555507	WS4		1.00	07/12/2010
2555509	WS4		1.20	07/12/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

CERTIFICATE OF ANALYSIS

Validated

SDLID Results Lagend Lab Sample No(s) Results Lagend Results Lage					-	Γe	95	st	Ş	3	c	h	e	dı	ıle
No Determination Sample Reference No. 2	SOLID Results Legend X Test	Lab Sample N	lo(s)			2555493	1000101	2777707			י סעעע אין אין א	2555506		2555513	
AGS Reference Image: marked biase bias	No Determination Possible	Custome Sample Refer	r ence			WS1		W/S2			N/S3	WS3		WS4	
Depth (m) I		AGS Refere	nce												
Container Barlons by Kone (soil) All Description Barlons by Kone (soil) All All <th< td=""><td></td><td>Depth (m</td><td>)</td><td></td><td></td><td>0.30</td><td></td><td>0 10</td><td></td><td></td><td>0 10</td><td>0.70</td><td></td><td>0.30</td><td></td></th<>		Depth (m)			0.30		0 10			0 10	0.70		0.30	
All NDPs: 0 Tests: 4 NDPs: 0 Tests: 5 NDPs: 0 Tests: 2 NDPs: 0 		Containe	r	250g Amber Jar	400g Tub	60g VOC	250g Amber Jar	2000 Alliber Jai			Son VOC	400g Tub	250g Amber Jar	400g Tub	
Abbesites Containing Material Screen All NDPs: 0 rests: 5 N <	Anions by Kone (soil)	All	NDPs: 0 Tests: 4	v			v		,				v		
Broon Water Soluble All NDP: 0 Tests: 5 N N N N N N EPH CWG (Aliphatic) GC (S) All NDP: 0 Tests: 5 NDP: 0 Tests: 5 N N N N N N N EPH CWG (Aromatic) GC (S) All NDP: 0 Tests: 5 NDP: 0 Tests: 5 N N N N N N N GRO by GC-FID (S) All NDP: 0 Tests: 5 NDP: 0 Tests: 5 N N N N N N Hexavalent Chromium (s) All NDP: 0 Tests: 5 N N N N N N N Barlum NDP: 0 Tests: 5 N N N N N N N N Groper NDP: 0 Tests: 5 N N N N N N N Cadmiun NDP: 0 Tests: 5 N N N N N N N Copper NDP: 0 Tests: 5 N N N N N N N Metals by iCap-OES (Soil) M NDP: 0 Tests: 5 N N N N N N Cadmiun NDP: 0 Tests: 5 N N N<	Asbestos Containing Material Screen	All	NDPs: 0 Tests: 5		v		^ ,	,		,		~	•	V	
EPH CWG (Aliphatic) GC (S) All NDP: 0 Tests: 2	Boron Water Soluble	All	NDPs: 0 Tests: 5	v	^			<u> </u>				, ,		^	
EPH CWG (Aromatic) GC (S) All NDPS: 0	EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 2	X			X	,			,		X		
GRO by GC-FID (S) All NDPs: 0 Tests: 2 I	EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 2	X				,							
Hexavalent Chromium (s) All NDPs: 0 ND	GRO by GC-FID (S)	All	NDPs: 0 Tests: 2			v					~				
Metals by ICap-OES (Soil) Arsenic NDPs: 0	Hexavalent Chromium (s)	All	NDPs: 0 Tests: 5		v	•	,	~		,	^	~			
$ \begin{split} \begin bar is a set of the s$	Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 5	v	^		v	<u> </u>				, ,		^	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Barium	NDPs: 0 Tests: 5	X			X	,							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Beryllium	NDPs: 0 Tests: 5	×			× ×								
$ \begin{array}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $		Cadmium	NDPs: 0 Tests: 5	X			X								
Copper NDPS: 0 Tests: 5 X		Chromium	NDPs: 0 Tests: 5	X			X)			,		X		
Lead NDPS: 0 X		Copper	NDPs: 0 Tests: 5	X			X))		X		
Mercury NDPS: 0 Tests: 5 X		Lead	NDPs: 0 Tests: 5	X			X))		X		
Nickel NDPs: 0 Tests: 5 X X X X X X X Nickel NDPs: 0 Tests: 5 Tests: 5 X		Mercury	NDPs: 0 Tests: 5	X			X))		X		
NDPs: 0 X X X X X X X X Selenium NDPs: 0 Tests: 5 X <t< td=""><td></td><td>Nickel</td><td>NDPs: 0</td><td>X</td><td></td><td></td><td>X</td><td>)</td><td></td><td></td><td></td><td></td><td>X</td><td></td><td></td></t<>		Nickel	NDPs: 0	X			X)					X		
NDPs: 0 X X X X X X Zinc NDPs: 0 Tests: 5 X X X X X X PAH by GCMS All NDPs: 0 Tests: 5 X X X X X X PH All NDPs: 0 Tests: 5 X X X X X Sample description All NDPs: 0 X X X X X		Selenium	NDPs: 0	X			X)					X		
PAH by GCMS All NDPs: 0 Tests: 5 X X X X X X pH All NDPs: 0 Tests: 5 NDPs: 0 X X X X X X X X Sample description All NDPs: 0 Tests: 5 X X X X X X		Vanadium	NDPs: 0	X			X))		X		
PAH by GCMS All NDPs: 0 Tests: 3 X X X X X pH All NDPs: 0 Tests: 5 X X X X X X Sample description All NDPs: 0 Tests: 5 X X X X X		Zinc	NDPs: 0 Tests: 5	X			X)					X		
pH All NDPs: 0 X X X Sample description All NDPs: 0 X X X X Tests: 5 X X X X X X	PAH by GCMS	All	NDPs: 0 Tests: 3	X			X)					X		
Sample description All NDPs: 0 V V V V	рН	All	NDPs: 0 Tests: 5				X)		X		
	Sample description	All	NDPs: 0 Tests: 5	v	X		v	κ,	, ,			, ,		X	

ALcontrol La	aboratories		C	ERTI	FIC	ATE	ΞΟ	F /	١N	ALYSIS				Validated
SDG: Job: Client Reference:	101209-93 H_GRONTMIJ_SOI	L-41	Location: Custome Attention	: View Street r: Grontmij n: Gareth Taylor							Order Number: Report Number: Superseded Report:		110744 t:	
SOLID Results Legend	La	b Sample N	lo(s)	2555493	2555497		2555501	2555506	2555513					
No Determinat Possible	tion	Customer mple Refer	ence	rsw I	WS2		WS3	WS3	WS4					
	A	GS Referei	nce											
		Depth (m))	0.30	0.10		0.10	0.70	0.30					
		Container		60g VOC 400g Tub 250g Amber Jar	400g Tub 250g Amber Jar	400g Tub 250g Amber Jar	250g Amber Jar 60g VOC	250g Amber Jar 400g Tub	400g Tub					
Semi Volatile Organic Com	pounds All		NDPs: 0 Tests: 2	v		v								
otal Organic Carbon	All		NDPs: 0 Tests: 5	X	x	x	X	×						
PH CWG GC (S)	All		NDPs: 0 Tests: 2	x		x								
OC MS (S)	All		NDPs: 0 Tests: 2				~							

CERTIFICATE OF ANALYSIS

Validated

SDG:	101209-93	Location:	View Street	Order Number:	110744
Job:	H_GRONTMIJ_SOL-41	Customer:	Grontmij	Report Number:	
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Sample Descriptions

Grain Sizes															
very fine	<0.063mm	fine	0.06	3mm - 0.1mm	me	edium	0.1mm	- 2mm	coar	se	2mm - 1	0mm	very coa	arse	>10mm
Lab Sample No(s) Custor	ner Sample R	ef.	Depth (m)	1	Co	lour	Descrip	tion	Gı	ain size	Inclu	isions	Inclus	ions 2
2555493		WS1		0.30		Dark	Brown	Sandy L	oam	0.1	1 - 2 mm	Sto	ones	Vege	tation
2555497		WS2		0.10		Dark	Brown	Sandy L	oam	0.1	1 - 2 mm	Sto	ones	Vege	tation
2555501		WS3		0.10		Dark	Brown	Sandy C Loan	Clay n	0.1	1 - 2 mm	Sto	ones	N	/A
2555506		WS3		0.70		Dark	Brown	Sandy C Loan	Clay n	0.1	1 - 2 mm	Sto	ones	N	/A
2555513		WS4		0.30		Light	Brown	Sand	t	0.1	1 - 2 mm	Sto	ones	N	/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 101209-93
 Location:
 View Street
 Order Number:

 Job:
 H_GRONTMIJ_SOL-41
 Customer:
 Grontmij
 Report Number:
 110744

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 Feast Street

- Results Legend		Customor Sample P	WE1	14/63	14/63	14/63	WE 4	
# ISO17025 accredited.		Customer Sample R	W51	W52	VV53	W53	VV54	
M mCERTS accredited.								
§ Non-conforming work.								
aq Aqueous / settled sample.		Depth (m)	0.30	0.10	0.10	0.70	0.30	
diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	
tot.unfilt Total / unfiltered sample.		Date Sampled	07/12/2010	07/12/2010	07/12/2010	07/12/2010	07/12/2010	
 * subcontracted test. 		Date Received	09/12/2010	09/12/2010	09/12/2010	09/12/2010	09/12/2010	
** % recovery of the surrogate standar	d to	SDG Ref	101209-93	101209-93	101209-93	101209-93	101209-93	
check the efficiency of the method.	ne	Lab Sample No.(s)	2555493	2555497	2555501	2555506	2555513	
within the samples are not corrected	for	AGS Reference						
this recovery.								
Component	LOD/U	nits Method						
Achestes Containing		TM001					No ACM Detected	
Aspesios Containing	-	TIVIOUT	NO ACIM Delected	NO ACIVI Delected	NO ACIVI Delected	NO ACIVI Delected	NO ACIVI Delected	
Material Screen								
Soil Organic Matter (SOM)	< 0.35	5 % TM132	11.2	5.72	6.57	6.28	0.638	
			#	#	#	#	#	
nH	1 nl	J TM133	7.5	6.80	7 00	8 02	6.83	
pri	1 1 1	1 11/11/05	7.5	0.03	1.55	0.02	0.00	
	Unit	S	M	M	M	M	IVI	
Chromium, Hexavalent	<0.	5 TM151	<0.6	<0.6	<0.6	<0.6	<1.2	
	mg/k	a	#	#	#	#	#	
Arsenic	<0	5 TM181	23.5	13.6	7 86	20.9	3.67	
/		~	20.0 M	10.0 M	1.00 M	20.0 M	0.07 M	
	mg/k	<u>q</u>	IVI	IVI	IVI	IVI	IVI	
Barium	<0.	5 IM181	857	139	104	78	22.8	
	mg/k	g	#	#	#	#	#	
Beryllium	<0.0	1 TM181	2	0.653	0.756	0.495	0.0849	
2 · ·	ma/l		N/	N/	NA 11	NA	м	
Cardenium	ing/K		IVI	IVI	IVI	IVI	IVI	
Cadmium	<0.0	≥ IM181	2.77	1.32	0.754	0.959	0.223	
	mg/k	g	M	M	M	M	M	
Chromium	<0	9 TM181	30.1	24.2	6.89	7.94	6.58	
			50.1 MA	L	0.00 MA	N.01	0.00 M	
	mg/k	<u></u>	M	M	M	M	IVI	
Copper	<1.4	4 TM181	152	890	24.5	27.1	5.74	
	mg/k	g	M	M	M	M	M	
Lead	<0	7 TM181	492	315	81.5	70.3	7 84	
	-v.		NA	×10	51.0 M	NA	л.от м	
	mg/k	<u>q</u>	IVI	11	IVI	IVI		
Mercury	<0.1	4 TM181	<0.14	<0.14	<0.14	<0.14	<0.14	
	mg/k	g	М	М	М	М	М	
Nickel	<0	2 TM181	68.5	19	12	15.2	5 37	
	ma/k	~	M		·- M	M	M	
	mg/k	<u>q</u>	IVI	11/1	IVI	IVI	171	
Selenium	<1 mg	g/kg TM181	1.12	<1	<1	<1	<1	
			#	#	#	#	#	
Vanadium	<0 '	2 TM181	30.1	19.4	9 58	10.8	9.56	
Vanadiam	-0.	~		10.4	0.00 #	10.0	0.00 #	
	mg/k	<u>q</u>	#	#	#	#	#	
Zinc	<1.	9 TM181	1100	546	158	159	39.9	
	mg/k	g	M	М	М	М	М	
Boron water soluble	<1 ma	1/kg TM222	<1	<1	<1	<1	<1	
			M	M	M	M	M	
		THO 10	101	101	IVI	IVI	101	
Water Soluble Sulphate as	<0.0	08 IM243	0.036	0.0172	0.0332		0.0161	
SO4 2:1 Extract	g/l		M	М	М		М	

CERTIFICATE OF ANALYSIS

Validated

	Results Legend		Customer Sample R	WS2	WS3	WS4		
# M	ISO17025 accredited. mCERTS accredited							
ş	Non-conforming work.		Donth (m)	0.40	0.70	0.00		
aq	Aqueous / settled sample.		Sample Type	0.10 Soil/Solid	0.70 Soil/Solid	0.30 Soil/Solid		
diss.filt	Dissolved / filtered sample.		Date Sampled	07/12/2010	07/12/2010	07/12/2010		
*	subcontracted test.		Date Received	09/12/2010	09/12/2010	09/12/2010		
**	% recovery of the surrogate standar	d to	SDG Ref	101209-93	101209-93	101209-93		
	check the efficiency of the method.	The	Lab Sample No.(s)	2555497	2555506	2555513		
	within the samples are not corrected	l for	AGS Reference					
	this recovery.							
Compor	nent	LOD/Un	its Method					
Naphth	alene-d8 %	%	TM218	98.8	96	88.6		
recove	rv**							
Acenar	ohthene-d10 %	%	TM218	96.4	91.2	89.4		
raceira		/0	1101210	50.4	01.2	00.4		
Dhama		0/	TM040	02.0	04.0	07		
Phenai	hthrene-d10 %	%	11/1218	93.9	94.0	87		
recove	ry**						 	
Chryse	ne-d12 %	%	TM218	93.9	101	91.7		
recove	ry**							
Peryler	ne-d12 % recovery**	%	TM218	97.9	101	95.9		
	-							
Naphth	alene	<9 ua/	'kα TM218	111	38.5	<9		
. tapita		° #9	<u>-</u>		M	Ŭ M		
Aconar	obthylene	<12	TM218	55.2	20.6	<12		
Acend		>1Z	111/210	55.2	20.0	~12		
A .	- h-th	µg/kg		M	M	M		
Acena	ontnene	<8 µg/	кд IM218	10.5	<8	<8		
				M	M	M		
Fluorer	ne	<10	TM218	21.7	<10	<10		
		µg/ka		M	M	M		
Phena	nthrene	<15	TM218	335	208	<15		
		ua/ko		M	M	 M		
Anthra	cene	<16	TM218	Q1 7	45.1	<16		
Antina	cene	10	1101210	51.7 M		~10 M		
E 1	- 11	μς/κο	TN040	IVI	IVI	17		
Fluorar	nthene	<17	TM218	520	480	<1/		
		µg/ko		M	M	M		
Pyrene	•	<15	TM218	419	399	<15		
		µg/kg		М	М	M		
Benz(a	anthracene	<14	TM218	316	261	96.7		
- (-	,	ua/ko		М	M	М		
Chryse	no	<10	TM218	332	271	87.2		
Chiryse	ine	<10 	1101210	552 M	2/1 M	07.2 M		
Deve		μς/κο	TN040	IVI	IVI	101		
Benzo(b)fluoranthene	<15	TM218	563	388	336		
		µg/kg		M	M	M		
Benzo(k)fluoranthene	<14	TM218	176	133	103		
		µg/kg		М	М	M		
Benzo(a)pyrene	<15	TM218	400	297	77.1		
		ua/ka		М	М	м		
Indeno	(1 2 3-cd)pyrene	<18	TM218	381	220	126		
macho	(1,2,0 00)		1101210	M	225 M	120 M		
Diham		μς/κα	TM040	107				
Dibenz	o(a,n)anthracene	<23	11/1218	107	04.1	0.60		
		µg/kg		M	M	M		
Benzo(g,h,i)perylene	<24	TM218	496	284	137		
		µg/kg		M	M	M		
Polyaro	omatic	<118	3 TM218	4330	3120	1030		
hydroc	arbons, Total	µg/ka		М	М	M		

Validated

1

I

			CER	TIF	ICATE OF A	NALYSIS			
SDG: 10120 Job: H_GR Client Beference:	9-93 ONTMIJ_	_SOL-41	Location: Customer:	Viev Gro	w Street ntmij eth Taylor		Order Number: Report Number:	110744	
Semi Volatile Organic Co	uoamc	nds	Attention.	Gar					
Results Legend # ISO17025 accredited.		Customer Sample R	WS1		WS3				
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * subcontracted test. * % recovery of the surrogate standar check the efficiency of the method. results of the individual compounds within the samples are not corrected this recovery.	d to The I for	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.30 Soil/Solid 07/12/2010 09/12/2010 101209-93 2555493		0.10 Soil/Soild 07/12/2010 09/12/2010 101209-93 2555501				
Component	LOD/Un	its Method							
Phenol	<100 ug/kg	TM157	<100		<100				
Pentachlorophenol	<100 µg/kg	TM157	<100		<100				
n-Nitroso-n-dipropylamine	<100 µg/kg	TM157	<100		<100				
Nitrobenzene	<100 µg/kg	TM157	<100		<100				
Isophorone	<100 µg/kg	IM157	<100		<100				
Hexachloroethane	<100 µg/kg	TM157	<100		<100				
Hexachlorocyclopentadien	<100 ug/kg	TM157	<100		<100				
Hexachlorobutadiene	<100 ug/kg	TM157	<100		<100				
Hexachlorobenzene	<100 ug/kg	TM157	<100		<100				
n-Dioctyl phthalate	<100 ug/kg	TM157	<100		<100				
Dimethyl phthalate	<100	TM157	<100		<100				
Diethyl phthalate	<100	TM157	<100		<100				
n-Dibutyl phthalate	<100	TM157	<100		<100				
Dibenzofuran	<100	TM157	<100		<100				
Carbazole	<100	TM157	<100		<100				
Butylbenzyl phthalate	<100 ug/kg	TM157	<100		<100				
bis(2-Ethylhexyl) phthalate	<100 ua/ka	TM157	<100		<100				
bis(2-Chloroethoxy)methan e	<100 µg/kg	TM157	<100		<100				
bis(2-Chloroethyl)ether	<100 µg/kg	TM157	<100		<100				
Azobenzene	<100 µg/kg	TM157	<100		<100				
4-Nitrophenol	<100 µg/kg	TM157	<100		<100				
4-Nitroaniline	<100 µg/kg	TM157	<100		<100				
4-Methylphenol	<100 µg/kg	TM157	<100		<100				
4-Chlorophenylphenylether	<100 µg/kg	TM157	<100		<100				
4-Chloroaniline	<100 µg/kg	TM157	<100		<100				
4-Chloro-3-methylphenol	<100 µg/kg	TM157	<100		<100				
4-Bromophenylphenylether	<100 µg/kg	TM157	<100		<100				
3-Nitroaniline	<100 µg/kg	TM157	<100		<100				
2-Nitrophenol	<100 µg/kg	TM157	<100		<100				
2-Nitroaniline	<100 µg/kg	TM157	<100		<100				
2-Methylphenol	<100 µg/kg	TM157	<100		<100				
1,2,4-Trichlorobenzene	<100 µg/kg	TM157	<100		<100				
2-Chlorophenol	<100 µg/kg	TM157	<100		<100				
2,6-Dinitrotoluene	<100 µg/kg	TM157	<100		<100				
2,4-Dinitrotoluene	<100 µg/kg	TM157	<100		<100				

CERTIFICATE OF ANALYSIS

Validated

Semi Volatile Organic Compounds

	game een	npea					
# ISO17025 accredite M mCERTS accredite	_egend ed. ed.		Customer Sample R	WS1	WS3		
§ Non-conforming was an Aqueous / settled s	ork. sample		Depth (m)	0.30	0.10		
diss.filt Dissolved / filtered	sample.		Sample Type	Soil/Solid	Soil/Solid		
tot.unfilt Total / unfiltered sa	ample.		Date Sampled	07/12/2010	07/12/2010		
** % recovery of the s	surrogate standard to	.	Date Received	09/12/2010	09/12/2010		
check the efficienc	y of the method. The	,	Lab Sample No.(s)	2555493	2555501		
within the samples	are not corrected for	r	AGS Reference				
this recovery.		I OD/Un	uits Method				
2 4-Dimethylphenol		<100) TM157	<100	<100		
2, i Dimotry phonor		ua/ka	1	100	100		
2,4-Dichlorophenol		<100) TM157	<100	<100		
, I		µg/ko	4				
2,4,6-Trichlorophen	ol	<100) TM157	<100	<100		
		µg/ko	7				
2,4,5-Trichlorophen	ol	<100	D TM157	<100	<100		
4.4 Disklasskassa		µg/kc		.400	.400		
1,4-Dichlorobenzen	e	<100	J IN157	<100	<100		
1.2 Diablarahanzan			J TM157	<100	<100		
1,3-Dicitiorobenzen			1 101137	<100	<100		
1 2-Dichlorobenzen	e	<100	TM157	<100	<100		
, , ,		µq/ka	1				
2-Chloronaphthalen	ne	<100) TM157	<100	<100		
		µg/ko	1			 	
2-Methylnaphthalen	ne	<100	D TM157	<100	<100		
		µg/ko	1				
Acenaphthylene		<100	D TM157	<100	<100		
		µg/ko	1	(00	(00	 	
Acenaphthene		<100	D TM157	<100	<100		
Anthropopo		µg/K0		167	<100	 	
Anthracene		<100	J IN157	167	<100		
Benzo(a)anthracen	<u>م</u>	μq/κα <100	J TM157	744	<100		
Denzo(a)antinacent			1 101107	/ + +	\$100		
Benzo(b)fluoranthe	ne	<100	1) TM157	771	<100		
201120(2)110010111110		ua/ka	1				
Benzo(k)fluoranther	ne	<100) TM157	666	<100		
()		µg/ko	1				
Benzo(a)pyrene		<100) TM157	828	<100		
		µg/ko	1				
Benzo(g,h,i)perylen	e	<100	D TM157	548	<100		
		µg/ko	1		100		
Chrysene		<100) IM157	878	<100		
Fluerenthene		µq/K0		1970	<100		
Fluoranthene		<100 ug/kg	111157	1870	<100		
Fluorene		μy/κι <100) TM157	<100	<100		
i idorene			1 101107	\$100	\$100		
Indeno(1.2.3-cd)pyr	rene	<100	1) TM157	490	<100		
		µg/ko	7				
Phenanthrene		<100	D TM157	1160	<100		
		µg/ko	1			 	
Pyrene		<100	D TM157	1690	<100		
New Hall		µg/ko				 	
Naphthalene		<100	J IM157	<100	<100		
Dibenzo(a b)anthra	cene	µg/K0 ∠100	1) TM157	<100	<100		
Dibenzo(a,ii)antilla		- 100 Un/kr	3	-100	-100		
		MMIN	·				
			_				

Validated

				CER		-ICATE OF	- A	NALYSIS		
SDG: Job: Client Reference:	101209-9 H_GROI	93 NTMIJ	_SOL-41	Location: Customer: Attention:	Vie Gre Ga	ew Street ontmij reth Tavlor		Order Number Report Numbe Superseded R	:: er: 110744 deport:	
TPH CWG (S)										
Results Legend # ISO17025 accredited.			Customer Sample R	WS1		WS3				
M mCERTS accredited. § Non-conforming work. aq Aqueous / sottled sample. diss.fit Dissolved / filtered sample. tot.unfiit Total / unfiltered sample. * subcontracted test. * % recovery of the surrogat check the efficiency of the results of the individual co- within the samples are not this recovery.	method. The mpounds corrected for	D I	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.30 Soil/Solid 07/12/2010 09/12/2010 101209-93 2555493		0.10 Soil/Solid 07/12/2010 09/12/2010 101209-93 2555501				
Component		LOD/Ur	Nits Method	27		40				
recovery**		%	110089	27		40				
GRO >C5-C12		<44 µg/k	TM089	<44		<44				
Methyl tertiary butyl ethe (MTBE)	r	<5 µg	/kg TM089	<5	#	<5	#			
Benzene		<10 µg/k	TM089	<10	М	<10	М			
Toluene		<2 µg	/kg TM089	7.8	М	5.24	М			
Ethylbenzene		<3 µg	/kg TM089	28.6	М	17	М			
m,p-Xylene		<6 µg	/kg TM089	<6	м	<6	М			
o-Xylene		<3 µg	/kg TM089	<3	М	<3	М			
m,p,o-Xylene		<10 µg/k	TM089	<10		<10				
BTEX, Total		<10 µg/k	TM089	36.4		22.3				
Aliphatics >C5-C6		<10 µg/k	TM089	<10		<10				
Aliphatics >C6-C8		<10 µg/k	TM089	<10		<10				
Aliphatics >C8-C10		<10 µg/kg	TM089	<10		<10				
Aliphatics >C10-C12		<10 µg/k	TM089	<10		<10				
Aliphatics >C12-C16		<10 µg/k) TM173	2190		2350				
Aliphatics >C16-C21		<10 µg/k) TM173	3450		3640				
Aliphatics >C21-C35		<10 ug/k) TM173	53900		38800				
Aliphatics >C35-C44		<10 ug/k) TM173	13100		5910				
Total Aliphatics >C12-C4	14	<10 µg/k) TM173	72600		50700				
Aromatics >EC5-EC7		<10 µg/k	TM089	<10		<10				
Aromatics >EC7-EC8		<10 µg/k	TM089	<10		<10				
Aromatics >EC8-EC10		<10 µg/k	TM089	33.8		22.3				
Aromatics >EC10-EC12		<10 µg/k	TM089	<10		<10				
Aromatics >EC12-EC16		<10 µg/k) TM173	8760		5060				
Aromatics >EC16-EC21		<10 µg/k	D TM173	22500		9600				
Aromatics >EC21-EC35		<10 µg/k	TM173	101000		64700				
Aromatics >EC35-EC44		<10 µg/k) TM173	56400		51200				
Aromatics >EC40-EC44		<10 µg/k) TM173	20200		12900				
Total Aromatics >EC12-EC44		<10 µg/k) TM173	189000		131000				
Total Aliphatics & Aromatics >C5-C44		<10 µg/k) TM173	262000		181000				
Total Aliphatics >C5-35		<10 µa/ka) TM173	59500		44800				
Total Aromatics >C5-35		<10 µa/ka) TM173	133000		79400				
Total Aliphatics & Aromatics >C5-35		<10 µa/k) TM173	192000		124000				

CERTIFICATE OF ANALYSIS

Validated

						FICATEO	ГА	ANAL 1515
SDG: Job: Client Reference:	101209-93 H_GRONTM	IJ_SOL	-41	Location: Customer: Attention:	Vie Gr Ga	ew Street ontmij areth Taylor		Order Number: Report Number: 110744 Superseded Report:
Results Legend		Custo	mer Sample R	WS1		WS3		
# ISO17025 accredited. M mCERTS accredited.								
§ Non-conforming work. aq Aqueous / settled sample.			Depth (m)	0.30		0.10		
diss.filt Dissolved / filtered sample tot.unfilt Total / unfiltered sample.	9.		Date Sampled	07/12/2010		07/12/2010		
* subcontracted test. ** % recovery of the surroga	te standard to	'	Date Received	09/12/2010		09/12/2010		
check the efficiency of the results of the individual of	e method. The	Lab	SDG Ref Sample No.(s)	2555493		2555501		
within the samples are no	t corrected for	A	GS Reference					
Component	LOD/	Units	Method					
Dibromofluoromethane*	* 0	6	TM116	151		113		
Toluene-d8**	, c	%	TM116	93.2		91.3		
4-Bromofluorobenzene*	* 0	%	TM116	146		151		
Dichlorodifluoromethane	e <4 µ	ıg/kg	TM116	<4	м	<4	м	
Chloromethane	<7 ļ	ıg/kg	TM116	<7	#	<7	#	¥
Vinyl Chloride	<'	10	TM116	<10		<10		
December 11	µg/	kg	Thirty		#		#	¥
Bromomethane	<	13 ka	IM116	<13	N.4	<13	N.4	
Chloroethane	μų/ <'	к <u>и</u> 14	TM116	<14	IVI	<14	IVI	
	μg/	kg			М		Μ	1
Trichlorofluorormethane	<6 µ	ıg/kg	TM116	<6		<6		
1.1-Dichloroethene	<'	10	TM116	<10	IVI	<10	IVI	
Carbon Disulphide	μg/ <7 μ	kg Ig/kg	TM116	<7	#	<7	#	¥
Dichloromethane	<	10	TM116	98.3	М	28.6	М	
Methyl Tertiary Butyl Eth	µg/ / her <	kg I 1	TM116	<11	#	<11	#	¥
trans 4.0 Disblars officer	/gu	kg	TN444C	-44	Μ	-11	М	۸ <u> </u>
trans-1-2-Dichloroethen	e <'	ka	TM116	<11	м	<11	м	Λ
1.1-Dichloroethane	-8 µ -8 µ	ig/kg	TM116	<8	м	<8		Α
cis-1-2-Dichloroethene	<5 µ	ıg/kg	TM116	<5	M	<5	M	Α
2.2-Dichloropropane	<	12 ka	TM116	<12	M	<12	M	Δ
Bromochloromethane	μ <u>μ</u> ς/ <	kg 4	TM116	<14	м	<14	M	Α
Chloroform	µير <8 ب	ig/kg	TM116	<8	M	<8	M	Α
1.1.1-Trichloroethane	<7 µ	ıg/kg	TM116	<7	м	<7	M	Λ
1.1-Dichloropropene	<	l1 ka	TM116	<11	м	<11	м	Λ
Carbontetrachloride	<u>بہ بر</u> (۲	4	TM116	<14		<14		
	µg/	kg	This		Μ	_	Μ	<u>л </u>
1.2-Dichloroethane	<5 μ	ig/kg	11/11/16	<5	М	<5	М	Λ
Benzene	<9 k	ıg/kg	TM116	44.4	М	17.2	М	Λ
Trichloroethene	<9 k	ıg/kg	TM116	<9	М	<9	М	Λ
1.2-Dichloropropane	`> /µg	l2 kg	TM116	<12	М	<12	М	л
Dibromomethane	<9 ŀ	ıg/kg	TM116	<9	М	<9	М	л
Bromodichloromethane	<7 μ	ıg/kg	TM116	<7	М	<7	М	л
cis-1-3-Dichloropropene	< /µg	l4 kg	TM116	<14	М	<14	М	Λ
Toluene	<5 µ	ıg/kg	TM116	37.1	М	28.9	М	<u> </u>
trans-1-3-Dichloroprope	ne <' µg/	I4 kg	TM116	<14		<14		
1.1.2-Trichloroethane	`> /µg	IO kg	TM116	<10	М	<10	М	Λ
1.3-Dichloropropane	<7 µ	ıg/kg	TM116	<7	#	<7	#	¥
Tetrachloroethene	<5 µ	ıg/kg	TM116	36.3	М	25.3	М	<u> </u>
Dibromochloromethane	<^ 	l3 kg	TM116	<13	М	<13	м	
	· • • • • • • • • • • • • • • • • • • •							

CERTIFICATE OF ANALYSIS

Validated

VOC MS (S)						
Results Legend # ISO17025 accredited. M mCERTs accredited. S Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. * % recovery of the surrogate standa check the efficiency of the method. results of the individual compound within the samples are not executed	rd to The S	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	WS1 0.30 Soli/Solid 07/12/2010 09/12/2010 101209-93 2555493	WS3 0.10 Soii/Solid 07/12/2010 09/12/2010 101209-93 2555501		
this recovery.						
Component 1.2-Dibromoethane	LOD/Un <12	its Method TM116	<12	<12		
Chlorobenzene	μg/kg <5 μg/	ı /kg TM116	M <5	M <5		
1.1.1.2-Tetrachloroethane	<10	TM116	M <10	M <10		
Ethylbenzene	μ <u>α/kc</u> <4 μg	/kg TM116	54.3	52.8		
p/m-Xylene	<14	TM116	M <14	M <14		
o-Xylene	μ <u>g</u> /kg <10	1 TM116	// # <10	# <10		
Styrene	μ <u>α</u> /κα <10	TM116	<10	<10		
Bromoform	μ <u>α</u> /κα <10	TM116	<10	<10		
Isopropylbenzene	<5 µg/kg	/kg TM116	<5 M	<5 M		
1.1.2.2-Tetrachloroethane	<10	TM116	<10 #	<10 #		
1.2.3-Trichloropropane	<17	TM116	<17 M			
Bromobenzene	<10	TM116	<10 M	<10 M		
Propylbenzene	<11 ua/ka	TM116	<11 M	<11 M		
2-Chlorotoluene	<9 µg/	kg TM116	<9 M	<9 M		
1.3.5-Trimethylbenzene	<8 µg/	/kg TM116	<8 #	<8 #		
4-Chlorotoluene	<12 ua/ka	TM116	<12 M	<12 M		
tert-Butylbenzene	<12 µg/ko	TM116	<12 #	<12 #		
1.2.4-Trimethylbenzene	<9 µg/	/kg TM116	<9 #	<9 #		
sec-Butylbenzene	<10 µg/ko	TM116	<10 M	<10 M		
4-Isopropyltoluene	<11 µg/kg	TM116	<11 M	<11 M		
1.3-Dichlorobenzene	<6 µg/	/kg TM116	<6 M	<6 M		
1.4-Dichlorobenzene	<5 µg/	/kg TM116	<5 M	<5 M		
n-Butylbenzene	<10 µg/kc	TM116	<10 M	<10 M		
1.2-Dichlorobenzene	<12 µg/ko	TM116	<12 M	<12 M		
1.2-Dibromo-3-chloropropa ne	<14 µg/ko	TM116	<14 M	<14 M		
Tert-amyl methyl ether	<15 µg/kc	TM116	<15	<15		
1.2.4-Irichlorobenzene	<6 µg,	/kg IM116	<6 #	<6 #		
Hexachlorobutadiene	<12 µg/kc	TM116	<12	<12		
Naphthalene	<13 µg/kc	I M116	<13 M	<13 M		
1.2.3- I richlorobenzene	<6 hð	кд IM116	<6 M	<6 M		
		_				

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 101209-93
 Location:
 View Street
 Order Number:

 Job:
 H_GRONTMIJ_SOL-41
 Customer:
 Grontmij
 Report Number:
 110744

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:

Table of Results - Appendix

REPOR	RT KEY						Resu	Its expressed a	s (e.g.) 1.03E-07 is equivalent to	o 1.03x10-7	
NDP	No Determinatio	n Possible	#	ISO 17025 Accredited			Subcontracted Test	М	MCERTS Accredited	I	
NFD	No Fibres Detec	ted	PFD	Possible Fibres Detected			Result previously reported (Incremental reports only)	Equivalent Carbon (Aromatics C8-C35)			
Note: Meth	od detection limits	are not always achievable	due to vario	us circumstances beyond our c	ontrol						
N	lethod No		Refe	ence			Description		Wet/Dry Sample ¹	Surrogate Corrected	
	PM001				Preparatio	on of San	ples for Metals Analysis				
	PM024	Modified BS 1377			Soil prepa soils for A	ration ind sbestos (luding homogenisation, moistur Containing Material	e screens of			
	TM001	In - house Method			Determina solids	ation of a	sbestos containing material by s	creening on			
	TM089	Modified: US EPA	Methods	8020 & 602	Determina BTEX (MT	ation of G TBE) corr	asoline Range Hydrocarbons (G pounds by Headspace GC-FID	RO) and (C4-C12)			
	TM116	Modified: US EPA 624, 610 & 602	Method 8	260, 8120, 8020,	Determination of Volatile Organic Compounds by Headspace / GC-MS						
	TM132	In - house Method			ELTRA CS	5800 Op	erators Guide				
	TM133	BS 1377: Part 3 19	90;BS 60	068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter						
	TM151	Method 3500D, AV	WA/API	IA, 20th Ed., 1999	Determina	ation of H	exavalent Chromium using Kone	e analyser			
	TM157	HP 6890 Gas Chro HP 5973 Mass Sel	matogra ective De	bh (GC) system and tector (MSD).	Determina sonication	ation of S in DCM/	VOC in Soils by GC-MS extracte Acetone	d by			
	TM173	Analysis of Petrole Environmental Meo Hydrocarbon Criter	um Hydro Jia – Tota ˈia	ocarbons in Il Petroleum	Determina Hydrocarb	ation of S oons in S	peciated Extractable Petroleum bils by GC-FID				
	TM181	US EPA Method 6	010B		Determina ICP-OES	ation of R	outine Metals in Soil by iCap 65)0 Duo			
	TM184	EPA Methods 325.	1 & 325.3	2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers						
	TM218	Microwave extracti	on – EPA	method 3546	Microwave	e extracti	on - EPA method 3546				
	TM222	In-House Method			Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer						
	TM243										

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

SDG:

Job:

Client Reference:

101209-93

H_GRONTMIJ_SOL-41

CERTIFICATE OF ANALYSIS

View Street

Gareth Taylor

Grontmij

Order Number: Report Number: Superseded Report:

110744

Test Completion Dates

Lab Sample No(s)	2555493	2555497	2555501	2555506	2555513
Customer Sample Ref.	WS1	WS2	WS3	WS3	WS4
AGS Ref.					
Depth	0.30	0.10	0.10	0.70	0.30
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
Anions by Kone (soil)	10-Jan-2011	10-Jan-2011	10-Jan-2011		10-Jan-2011
Asbestos Containing Material Screen	06-Jan-2011	06-Jan-2011	06-Jan-2011	06-Jan-2011	06-Jan-2011
Boron Water Soluble	11-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011	11-Jan-2011
EPH CWG (Aliphatic) GC (S)	11-Jan-2011		11-Jan-2011		
EPH CWG (Aromatic) GC (S)	11-Jan-2011		11-Jan-2011		
GRO by GC-FID (S)	13-Jan-2011		13-Jan-2011		
Hexavalent Chromium (s)	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
Metals by iCap-OES (Soil)	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
PAH by GCMS		11-Jan-2011		11-Jan-2011	08-Jan-2011
pН	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
Sample description	06-Jan-2011	06-Jan-2011	06-Jan-2011	06-Jan-2011	06-Jan-2011
Semi Volatile Organic Compounds	10-Jan-2011		10-Jan-2011		
Total Organic Carbon	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
TPH CWG GC (S)	13-Jan-2011		13-Jan-2011		
VOC MS (S)	11-Jan-2011		11-Jan-2011		

Location:

Customer:

Attention:

CERTIFICATE OF ANALYSIS

SDG:	101209-93	Location:	View Street
Job:	H_GRONTMIJ_SOL-41	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylor

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 110744 Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH ONG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
PCB TOT / PCB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLVAROMATIC HYDROCARBONS RARD GC	WET	HEXANEACETONE	SHAVER	900 EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
EPH .	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPH CWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID'LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLD PHASE EXTRACTION	HPLC
PEST 00P/0PP	DOM	LIQUID'LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID'LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID'LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID'LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Oroádalte	Blue Asbestos
Fibrous Adindite	-
Fibrous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Grontmij 41 Corn Street Bristol Avon BS1 1HS

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 14 January 2011 H_GRONTMIJ_BRI 101230-5

View Street 111108

We received 15 samples on Saturday December 11, 2010 and 4 of these samples were scheduled for analysis which was completed on Friday January 14, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

SDG:	101230-5	Location:	View Street	Order Number:	
Job:	H_GRONTMIJ_BRI-5	Customer:	Grontmij	Report Number:	111108
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2573515	PSWHP06		0.10	
2573516	PSWHP06		0.30	
2573517	PSWHP06		0.70	
2573518	PSWHP07		0.10	
2573519	PSWHP07		0.30	
2573522	PSWHP07		0.70	
2573523	PSWHP08		0.10	
2573524	PSWHP08		0.30	
2573527	PSWHP08		0.70	
2573528	PSWHP09		0.10	
2573529	PSWHP09		0.30	
2573530	PSWHP09		0.70	
2573531	PSWHP10		0.10	
2573532	PSWHP10		0.30	
2573533	PSWHP10		0.70	

Only received samples which have had analysis scheduled will be shown on the following pages.

	horatories										Valide
		C	ER	ΓIFIC	A	ΤE	OF ANALYS	IS			
SDG: Job: H Client Reference:	101230-5 H_GRONTMIJ_BRI-5	Location Custome Attention	: er: n:	View S Grontn Gareth	tree iij Tav	et ylor		C F S	Order Number: Report Number: Superseded Report:	111108	
			•	Tes	t :	Sc	hedule		· · · ·		
Results Legend	Lab Sample	e No(s)	2570	797		257	2573				
Tost			3515	3524		3527	3532				
No Determination	on		-		-	+	_				
Possible	Custon	her	Po	τ		Po	PG				
	Sample Ref	erence	WHPO	WHP C		WHPO	WHP 1				
			ő	ŭ		õ	0				
			-				-				
	AGS Refe	rence									
			-		-	_	_				
	Donth ((m)	0.1	0.3		0.7	0.3				
	Deptil	,	0	Ċ		o	õ				
			25	25	25	25					
	Contair	her	400g 0g An	400g Og Am	Og An	0g An 400a	400g				
	Contain		Tub Iber Ja	Tub ber Ja	ber Ja	lber Ja Tub	Tub				
Anions by Kone (soil)	All	NDPs: 0	5	7	7	-					
		Tests: 3	x	x		x					
Asbestos Containing Materia Screen	al All	NDPs: 0 Tests: 4		×		×	Y				
Boron Water Soluble	All	NDPs: 0				^					
EPH CWG (Aliphatic) GC (S) All	NDPs: 0	X	<mark>X</mark>	X	X					
	, 	Tests: 1		x							
EPH CWG (Aromatic) GC (S	i) All	NDPs: 0 Tests: 1	\vdash	x		-					
GRO by GC-FID (S)	All	NDPs: 0									
Hexavalent Chromium (s)	All	NDPs: 0	\vdash	×		+					
		Tests: 4	x	x		x	<mark>x</mark>				
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 4	x	X	X	x					
	Barium	NDPs: 0									
	Beryllium	NDPs: 0	X	X	X	X					
		Tests: 4	x	x	x	x					
	Cadmium	NDPs: 0 Tests: 4	X	X	X	X					
	Chromium	NDPs: 0									
	Copper	NDPs: 0	X	X	X	X					
		Tests: 4	x	x	x	x					
	Lead	NDPs: 0 Tests: 4	X	X	X	X					
	Mercury	NDPs: 0									
	Nickel	NDPs: 0	X	X	X	X					
		Tests: 4	x	x	x	x					
	Selenium	NDPs: 0 Tests: 4	x	X	Y	Y					
	Vanadium	NDPs: 0	^	<u>^</u>	^	^					
	Zino	Tests: 4	x	x	X	X					
		Tests: 4	x	X	x	X	-				

ALcontrol Labora	tories	C	ERI	FIFIC	ΑΤΙ	ΕO	FANALYSIS	Validat
SDG: 101230 Job: H_GR0 Client Reference: 101230	-5 DNTMIJ_BRI-5	Location Custome Attention	: ` r: (View St Grontmi Gareth	reet ij Taylo	or	Order Number: Report Number: 111108 Superseded Report:	
SOLID Results Legend X Test	Lab Sample N	No(s)	2573515	2573524	2573527	2573532		
No Determination Possible	Customer Sample Reference			PSWHP08	PSWHP08	PSWHP10		
	AGS Refere	nce						
	Depth (m)	0.10	0.30	0.70	0.30		
	Containe	r	400g Tub 250g Amber Jar	60g VOC 400g Tub 250g Amber Jar	400g Tub 250g Amber Jar	400g Tub 250g Amber Jar		
PAH by GCMS	All	NDPs: 0 Tests: 3	X		X	X		
pH	All	NDPs: 0 Tests: 4	x	X	X	X		
Sample description	All	NDPs: 0 Tests: 4	<mark>x</mark>	<mark>x</mark>	x	x		
Semi Volatile Organic Compounds	All	NDPs: 0 Tests: 1		x				
Total Organic Carbon	All	NDPs: 0 Tests: 4	x	x	x	x		
TPH CWG GC (S)	All	NDPs: 0 Tests: 1		x				
VOC MS (S)	All	NDPs: 0 Tests: 1		X				

CERTIFICATE OF ANALYSIS

Validated

SDG: Job: Client Reference:	101230-5 H_GRONTMIJ_BRI-5	Location: Customer: Attention:	View Street Grontmij Gareth Taylor	Order Number: Report Number: Superseded Report:	111108
-----------------------------------	------------------------------	--------------------------------------	--	---	--------

Sample Descriptions

Grain Sizes														
very fine	ry fine <0.063mm fine 0		0.063mm - 0.1mm	me	dium	0.1mm	- 2mm	coar	se	2mm - 10)mm	very coa	rse	>10mm
Lab Sample I	lo(s) Cust	omer Sample R	ef. Depth (m)	T	Colour		Descript	tion	Grai	n size	Inclu	isions	Inc	lusions 2
2573515	3515 PSWHP06		0.10		Dark Brown		Top Soil		0.063 -	0.1 mm	Sto	ones		None
2573524		PSWHP08			Light Brown		Sandy Clay Loam		0.1 -	2 mm	Sto	ones		None
2573527		PSWHP08	0.70	0.70 Ligh		wn	vn Sandy Loam		0.1 - 2 mm		Brick		Stones	
2573532		PSWHP10	0.30		Dark Brown Sandy Lo		Loam 0.1 - 2 mm		2 mm	Stones			None	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

ALcontrol Laboratories ()₇

SDG:

Job:

CERTIFICATE OF ANALYSIS

Client Reference:			Attention: Ga	reth Taylor		Superseded Report:	:
Results Legend	(Customer Sample R	PSWHP06	PSWHP08	PSWHP08	PSWHP10	
# ISO17025 accredited. M mCERTS accredited.							
§ Non-conforming work. aq Aqueous / settled sample.		Depth (m)	0.10	0.30	0.70	0.30	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid	Soil/Solid	Soil/Solid -	Soil/Solid -	
* subcontracted test.	d to	Date Received	11/12/2010	11/12/2010	11/12/2010	11/12/2010	
check the efficiency of the method. T	The	SDG Ref	101230-5 2573515	101230-5 2573524	101230-5 2573527	101230-5 2573532	
results of the individual compounds within the samples are not corrected	l for	AGS Reference					
this recovery.		Mathad					
Ashestos Containing	LOD/Unit	TM001			No ACM Detected		
Material Screen	_	110001	NO ACINI Delected	NO ACINI Delected	NO ACIVI Delected	NO ACINI Delected	
Soil Organic Matter (SOM)	<0.35 9	% TM132	6.48	2.74	1.98	5.84	
			#	#	#	#	
рН	1 pH	TM133	6.79 M	7.98 M	6.2	6.82	
Chromium Hexavalent	<0.6	TM151	 <0.6	<0.6	<0.6	<1.2	
	mg/kg	THE TOT	#	#	#	#	
Arsenic	<0.6	TM181	12.1	10.7	6.07	14.5	
	mg/kg		M	M	M	M	
Barium	<0.6	TM181	136 #	153 #	56.6 #	221 #	
Beryllium	<0.01	TM181	1.47	1.63	0.476	1.01	
,	mg/kg		M	M	M	M	
Cadmium	<0.02	TM181	1.26	1.01	0.327	1.72	
Chromium	mg/kg	TN404	M	M	M	M	
Ghromium	<0.9 ma/ka	11/1/81	24 M	30.1 M	10.1 M	15.7 M	
Copper	<1.4	TM181	33.7	35.9	10.5	48.9	
P.P	mg/kg		M	M	М	M	
Lead	<0.7	TM181	112	64	15	139	
Moroury	mg/kg	TM101	M	M	M	M	
Mercury	~0.14 ma/ka	TIVITOT	<0.14 M	<0.14 M	<0.14 M	<0.14 M	
Nickel	<0.2	TM181	22.4	32.9	9.03	25.9	
	mg/kg		М	M	M	M	
Selenium	<1 mg/ł	kg IM181	1.02 #	<1 #	<1 #	<1 #	
Vanadium	<0.2	TM181	22.3	44.2	18.3	26.8	
	mg/kg		#	#	#	#	
Zinc	<1.9	TM181	378	133	53.4	587	
Boron, water soluble	 <1 ma/kg	(n TM222	<1	<1	<1	<1	
boron, water soluble	st ting/i	Ng TWIZZZ	M	M	M	M	
Water Soluble Sulphate as	<0.008	3 TM243	0.026	0.0194		0.0313	
SO4 2:1 Extract	g/l	_	M	M		M	
						-	
						<u> </u>	
						<u>├</u>	

				CER		FICATE OF A	AN.	AL 1 515				
SDG: Job: Client Reference:	101230-5 H_GRONT	MIJ_B	RI-5	Location: Customer: Attention:	Vie Gr Ga	ew Street ontmij areth Taylor				Order Number: Report Number: Superseded Repo	111108 rt:	
PAH by GCMS												
Results Legend		Ci	ustomer Sample R	PSWHP06		PSWHP08		PSWHP10				
M mCERTS accredited.												
§ Non-conforming work. aq Aqueous / settled sample.			Depth (m)	0.10		0.70 Spil/Spild		0.30				
diss.filt Dissolved / filtered sample tot.unfilt Total / unfiltered sample.	9.		Date Sampled	-		-		-				
* subcontracted test. ** % recovery of the surroga	te standard to		Date Received	11/12/2010 101230-5		11/12/2010 101230-5		11/12/2010 101230-5				
check the efficiency of the results of the individual co	e method. The ompounds	1	Lab Sample No.(s)	2573515		2573527		2573532				
within the samples are no this recovery.	t corrected for		AGS Reference									
Component	LOI	D/Units	Method									
Naphthalene-d8 %		%	TM218	102		103		108				
recovery**		0/	TM040	00.3		404	+	407				
recoverv**		70	111/12/10	99.5		101		107				
Phenanthrene-d10 %		%	TM218	96.2		101	+	105				
recovery**							_					
Chrysene-d12 %		%	TM218	92.6		97.5		102				
Pervlene-d12 % recover	v**	%	TM218	92.8		101	+	103				
	,	,-										
Naphthalene	<9	µg/kg	g TM218	69.6		14		156				
Acception		~12	TM219	56.6	Μ	N	1	72.2	М			
Acenaphinylene	u	≤1∠ a/ka	111/12/10	0.00	м	<12 M	1	73.2	м			
Acenaphthene	<u>م</u> 8>	µg/kg	g TM218	<8		<8	+	79.1				
					Μ	M	1		М			
Fluorene		<10	TM218	15.5		<10		90.4				
Phenanthrene	μ	<u>q/кд</u> <15	TM218	247	IVI	28.6		1670	IVI			
	μ	g/kg			М	M	1		М			
Anthracene		<16	TM218	99.7		<16		270				
Fluerenthene	μ	<u>g/kg</u>	TM019	269	Μ	N 25.6	1	2150	М			
Fluoranthene		<17 a/ka	111/12/10	300	м	25.0 M	1	2150	м			
Pyrene	<u>м</u>	<15	TM218	304		28.5		1640				
	μ	g/kg			Μ	M	1		М			
Benz(a)anthracene		<14	TM218	233		<14		857				
Chrysene	μ	<u>q/кд</u> <10	TM218	252	IVI	16.4	1	894	IVI			
	μ	g/kg			М	M	1		М			
Benzo(b)fluoranthene		<15	TM218	485		22.6		1210				
Ponzo(k)fluoranthana	μ	<u>q/kg</u>	TM219	154	Μ	N	1	407	М			
Denzo(k)ildorantinene	u	a/ka	1101210	134	М	×14 M	1	427	м			
Benzo(a)pyrene		<15	TM218	335		22.1		842				
	μ	g/kg	T14040	000	М	M	1	504	М			
Indeno(1,2,3-cd)pyrene		<18 a/ka	11/1218	263	м	<18 M	1	591	м			
Dibenzo(a,h)anthracene	<u>ч</u>	<23	TM218	67.8		<23	+	157				
	μ	g/kg			Μ	M	1		М			
Benzo(g,h,i)perylene		<24 a/ka	TM218	342	м	<24 M		745	м			
Polvaromatic	μ >	(118	TM218	3290	IVI	158	+	11900	IVI			
hydrocarbons, Total	μ	g/kg			М	M	1		М			
							+					
			+				+					
			++				+					
							+					
							+					
			+				-					
			1									

ALcontrol Laboratories								Validated	
SDG Job: Clier	: 10 H_ It Reference:	1230-5 _GRONTMIJ	I_BRI-5	Location: Customer: Attention:	View Street Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	111108 rt:	
Semi	Volatile Organic	: Compou	inds						
# M § aq	Results Legend ISO17025 accredited. mCERTS accredited. Non-conforming work. Aqueous / settled sample.		Customer Sample R Depth (m) Sample Ture	PSWHP08 0.30					
tot.unfilt	Dissolved / httpred sample. Total / unfiltered sample. subcontracted test. % recovery of the surrogate st check the efficiency of the met results of the individual compo within the samples are not com	tandard to thod. The ounds rected for	Date Sample Type Date Received SDG Ref Lab Sample No.(s) AGS Reference	11/12/2010 101230-5 2573524					
Compo	nent	LOD/U	nits Method						
Pheno	I	<10	0 TM157	<100					
Pentad	chlorophenol	<10 μg/k	9 0 TM157 9	<100					
n-Nitro	so-n-dipropylamine	<10 µg/k	0 TM157 q	<100					
Nitrobe	enzene	<10	0 TM157	<100					
Isopho	prone	μg/κ <10 μg/k	g 0 TM157 g	<100					
Hexac	hloroethane	<10	0 TM157	<100					
Hexac e	hlorocyclopentadien	μg/κ <10 μg/k	g TM157 g	<100					
Hexac	hlorobutadiene	<10	0 TM157	<100					
Hexac	hlorobenzene	<10 μg/k	g TM157 g	<100					
n-Dioc	tyl phthalate	<10	0 TM157	<100					
Dimeth	yl phthalate	<10 μg/k	g TM157 g	<100					
Diethy	l phthalate	<10 µg/k	0 TM157 q	<100					
n-Dibu	tyl phthalate	<10 µg/k	0 TM157 g	<100					
Dibenz	zofuran	<10 µg/k	0 TM157 q	<100					
Carba	zole	<10 ug/k	0 TM157 a	<100					
Butylb	enzyl phthalate	<10 ug/k	0 TM157 a	<100					
bis(2-E	Ethylhexyl) phthalate	<10 µg/k	0 TM157 g	<100					
bis(2-0 e	Chloroethoxy)methan	n <10 ug/k	0 TM157 a	<100					
bis(2-0	Chloroethyl)ether	<10 µg/k	0 TM157 g	<100					
Azobe	nzene	<10 µg/k	0 TM157 q	<100					
4-Nitro	phenol	<10 µg/k	0 TM157 g	<100					
4-Nitro	aniline	<10 µg/k	0 TM157 g	<100					
4-Meth	nylphenol	<10 µg/k	0 TM157 g	<100					
4-Chlo	rophenylphenylether	· <10 μg/k	0 TM157 g	<100					
4-Chlo	roaniline	<10 µg/k	0 TM157 g	<100					
4-Chlo	ro-3-methylphenol	<10 µg/k	0 TM157 g	<100					
4-Bron	nophenylphenylether	· <10 μg/k	0 TM157 g	<100					
3-Nitro	aniline	<10 µg/k	0 TM157 g	<100					
2-Nitro	phenol	<10 µg/k	0 TM157 g	<100					
2-Nitro	aniline	<10 µg/k	0 TM157 g	<100					
2-Meth	nylphenol	<10 µq/k	0 TM157 g	<100					
1,2,4-7	Frichlorobenzene	<10 µg/k	0 TM157 g	<100					
2-Chlo	rophenol	<10 µg/k	0 TM157 g	<100					
2,6-Dii	nitrotoluene	<10 µg/k	0 TM157 g	<100					
2,4-Dii	nitrotoluene	<10 µg/k	0 TM157 g	<100					

CERTIFICATE OF ANALYSIS

SDG:	101230-5	Location:	View Street	Order Number:	
Job:	H_GRONTMIJ_BRI-5	Customer:	Grontmij	Report Number:	111108
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Semi	Volatile Organic Co	ompoun	ds				
#	Results Legend		Customer Sample R	PSWHP08			
M.	mCERTS accredited.						
š aq	Non-conforming work. Aqueous / settled sample.		Depth (m)	0.30			
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample.		Date Sample Type	-			
*	subcontracted test. % recovery of the surrogate standar	rd to	Date Received	11/12/2010			
	check the efficiency of the method. results of the individual compounds	The	Lab Sample No.(s)	2573524			
	within the samples are not corrected	d for	AGS Reference				
Compo	nent	LOD/Unit	s Method				
2,4-Di	methylphenol	<100	TM157	<100			
		µg/kg					
2,4-Di	chlorophenol	<100	TM157	<100			
246	Trichlorophenol	μ <u>g</u> /κg <100	TM157	<100			
2, 1,0		µq/kq	inition .	100			
2,4,5-	Trichlorophenol	<100	TM157	<100			
4.4.0		µg/kg	71457	-100		 	
1,4-DI	chlorobenzene	<100	TM157	<100			
1,3-Di	chlorobenzene	<100	TM157	<100			
		µg/kg					
1,2-Di	chlorobenzene	<100	TM157	<100			
2-Chlo	oronanhthalene	μ <u>α</u> /κα <100	TM157	<100			
- 0	i enaprila alente	µg/kg					
2-Met	hylnaphthalene	<100	TM157	<100			
A		µg/kg	TN457	-100			
Acena	ipntnyiene	<100 ua/ka	1101157	<100			
Acena	phthene	<100	TM157	<100			
		µg/kg					
Anthra	acene	<100	TM157	<100			
Benzo	(a)anthracene	<u>µg/кд</u> <100	TM157	<100			
DONEO	(u)uninuoono	µg/kg	inition .	100			
Benzo	(b)fluoranthene	<100	TM157	<100			
Deres	(1)(1)	µg/kg	71457	.100			
Benzo	(K)fluorantnene	<100	TM157	<100			
Benzo	(a)pyrene	<100	TM157	<100			
		µg/kg					
Benzo	o(g,h,i)perylene	<100	TM157	<100			
Chrvs	ene	μg/kg <100	TM157	<100			
		µg/kg					
Fluora	Inthene	<100	TM157	<100			
Eluore	200	µg/kg ∠100	TM157	<100			
i iuore		ua/ka	1101137	<100			
Inden	o(1,2,3-cd)pyrene	<100	TM157	<100			
D		µg/kg		100	 		
Phena	anthrene	<100	TM157	133			
Pyren	е	<100	TM157	128			
		µg/kg					
Napht	halene	<100	TM157	<100			
Diben	zo(a.h)anthracene	μg/kg <100	TM157	<100			
2.201	20(0,1.)0.11.1.000110	µg/kg					

ALcontrol La	boratories	\$	CEF	RTII	FICATE OF A	NALYSIS				Validated
SDG: Job: Client Reference:	101230-5 H_GRONTMIJ	I_BRI-5	Location: Customer: Attention:	Vie Gro Ga	ew Street ontmij areth Taylor		Order Number: Report Number: Superseded Repo	111108		
TPH CWG (S)							<u> </u>			
Results Legend Hold Science S	e standard to method. The mpounds operated for	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s)	0.30 Soii/Solid - 11/12/2010 101230-5 2573524							
this recovery.	corrected for	AGS Reference								
Component	LOD/U	nits Method							_	
GRO Surrogate %	%	TM089	70							
GRO >C5-C12	<44 µg/k	4 TM089 g	<44							
Methyl tertiary butyl ethe (MTBE)	r <5 μg	J/kg TM089	<5	#						
Benzene	<1(µg/k) TM089 g	<10	М						
Toluene	<2 µg	J/kg TM089	<2	М						
Ethylbenzene	<3 µg	j/kg TM089	<3	М						
m,p-Xylene	<6 µg	J/kg TM089	<6	м						
o-Xylene	<3 µg	j/kg TM089	<3	М						
m,p,o-Xylene	<1(µg/k) TM089 q	<10							
BTEX, Total	<1(µg/k) TM089 q	<10							
Aliphatics >C5-C6	<1(µg/k) TM089 g	<10							
Aliphatics >C6-C8	<1(µg/k) TM089 g	<10							
Aliphatics >C8-C10	<1(µg/k) TM089 g	<10							
Aliphatics >C10-C12	<1(µg/k) TM089 g	<10							
Aliphatics >C12-C16	<10 µg/k	0 TM173 g	4290							
Aliphatics >C16-C21	<10 µg/k	0 TM173 g	4150							
Aliphatics >C21-C35	<10 µg/k	0 TM173 g	12800							
Aliphatics >C35-C44	<10 µg/k	0 TM173 g	2210							
Total Aliphatics >C12-C4	l4 <10 μg/k	0 TM173 g	23500							
Aromatics >EC5-EC7	<10 µg/k) TM089 g	<10							
Aromatics >EC7-EC8	<1(µg/k) TM089 g	<10							
Aromatics >EC8-EC10	<1(µg/k) TM089 g	<10							
Aromatics >EC10-EC12	<1(µg/k) TM089 g	<10							
Aromatics >EC12-EC16	<10 µg/k	0 TM173 g	5270							
Aromatics >EC16-EC21	<10 µg/k	0 TM173 g	10800							
Aromatics >EC21-EC35	<10 µg/k	0 TM173 g	39700							
Aromatics >EC35-EC44	<10 µg/k	0 TM173 g	15600							
Aromatics >EC40-EC44	<10 µg/k	0 TM173 g	6500							
Total Aromatics >EC12-EC44	<10 µg/k	0 TM173 g	71300							
Total Aliphatics & Aromatics >C5-C44	<10 ua/k	0 TM173 a	94800							
Total Aliphatics >C5-35	<10 µa/k	0 TM173 g	21300							
Total Aromatics >C5-35	<10 µg/k	0 TM173 g	55800							
Total Aliphatics & Aromatics >C5-35	<10 µg/k	0 TM173 g	77000							

ALcontrol Labor	ratories	i	CEF		ATE OF A	NALYSIS			Validated
SDG: 1012 Job: H_G Client Reference:	30-5 RONTMIJ	_BRI-5	Location: Customer: Attention:	View Str Grontmij Gareth	eet aylor		Order Number: Report Number: Superseded Repo	111108	
VOC MS (S)									
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. * % recovery of the surrogate stand check the efficiency of the methor results of the individual compoun within the samples are not correct	lard to d. The ds ted for	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.30 Soil/Solid - 11/12/2010 101230-5 2573524						
this recovery.	LOD/Ur	nits Method							
Dibromofluoromethane**	%	TM116	112						
Toluene-d8**	%	TM116	96.6						
4-Bromofluorobenzene**	%	TM116	123						
Dichlorodifluoromethane	<4 µg	/kg TM116	<4	м					
Chloromethane	<7 µg	/kg TM116	<7	#					
Vinyl Chloride	<10) TM116	<10	#					
Bromomethane	<13	5 TM116	<13	M					
Chloroethane	<14	TM116	<14	м					
Trichlorofluorormethane	<6 µg	/kg TM116	<6	м					
1.1-Dichloroethene	<10	TM116	<10	#					
Carbon Disulphide	<7 μg	/kg TM116	<7	M					
Dichloromethane	<10	TM116	71.6	#					_
Methyl Tertiary Butyl Ether	<11	TM116	<11	M					
trans-1-2-Dichloroethene	<11	TM116	<11	M					
1.1-Dichloroethane	<8 µg	/kg TM116	<8	M					
cis-1-2-Dichloroethene	<5 µg	/kg TM116	<5	м					
2.2-Dichloropropane	<12	2 TM116	<12	м					
Bromochloromethane	<14	TM116	<14	м					
Chloroform	<8 µg	/kg TM116	<8	м					
1.1.1-Trichloroethane	<7 µg	/kg TM116	<7	м					
1.1-Dichloropropene	<11 ug/kg	TM116	<11	м					
Carbontetrachloride	<14	TM116	<14	м					
1.2-Dichloroethane	<5 µg	/kg TM116	<5	м					
Benzene	<9 µg	/kg TM116	<9	м					
Trichloroethene	<9 µg	/kg TM116	<9	м					
1.2-Dichloropropane	<12 ua/ka	2 TM116	<12	м					
Dibromomethane	<9 µg	/kg TM116	<9	м					
Bromodichloromethane	<7 µg	/kg TM116	<7	м					
cis-1-3-Dichloropropene	<14 ua/ka	TM116	<14	м					
Toluene	<5 µg	/kg TM116	<5	м					
trans-1-3-Dichloropropene	<14 µa/ka	TM116	<14						
1.1.2-Trichloroethane	<10 µa/ka) TM116	<10	м					
1.3-Dichloropropane	<7 µg	/kg TM116	<7	#					
Tetrachloroethene	<5 µg	/kg TM116	<5	м					
Dibromochloromethane	<13 µg/kg	5 TM116	<13	м					

Validated **ALcontrol Laboratories CERTIFICATE OF ANALYSIS** 101230-5 Location: View Street SDG: Order Number: Job: H_GRONTMIJ_BRI-5 Customer: Grontmij Report Number: 111108 Superseded Report: **Client Reference:** Attention: Gareth Taylor VOC MS (S) Customer Sample R ults Legend PSWHP08 Results Legend ISO17025 accredited. MCERTS accredited. Non-conforming work. Aqueous / settled sample. Dissolved / filtered sample. # M § Depth (m) 0.30 Sample Type Soil/Solid diss.filt Total / unfiltered sample Date Sampled tot.unfilt subcontracted test. Date Received 11/12/2010 ** % recovery of the surrogate standard to check the efficiency of the method. The results of the individual compounds within the samples are not corrected for SDG Ref 101230-5 2573524 Lab Sample No.(s) AGS Reference this recovery. Component LOD/Units Method 1.2-Dibromoethane <12 <12 TM116 Μ µg/kg TM116 Chlorobenzene <5 µg/kg <5 Μ 1.1.1.2-Tetrachloroethane <10 TM116 <10 µg/kg М Ethylbenzene <4 µg/kg TM116 <4 Μ p/m-Xylene <14 TM116 <14 # µg/kg o-Xylene <10 TM116 <10 µg/kg Μ Styrene TM116 <10 <10 µg/kg М Bromoform TM116 <10 <10 µg/kg Μ Isopropylbenzene TM116 <5 <5 µg/kg М 1.1.2.2-Tetrachloroethane <10 TM116 <10 # µg/kg 1.2.3-Trichloropropane <17 TM116 <17 М µg/kg Bromobenzene TM116 <10 <10 µg/kg Μ Propylbenzene TM116 <11 <11 Μ µg/kg 2-Chlorotoluene TM116 <9 µg/kg <9 Μ 1.3.5-Trimethylbenzene TM116 <8 <8 µg/kg # 4-Chlorotoluene TM116 <12 <12 µg/kg Μ tert-Butylbenzene TM116 <12 <12 # µg/kg 1.2.4-Trimethylbenzene TM116 <9 <9 µg/kg # sec-Butylbenzene <10 TM116 <10 Μ µg/kg 4-Isopropyltoluene TM116 <11 <11 µg/kg Μ 1.3-Dichlorobenzene TM116 <6 <6 µg/kg Μ 1.4-Dichlorobenzene TM116 <5 µg/kg <5 Μ n-Butylbenzene <10 TM116 <10 Μ µg/kg 1.2-Dichlorobenzene TM116 <12 <12 µg/kg Μ 1.2-Dibromo-3-chloropropa TM116 <14 <14 Μ µg/kg ne Tert-amyl methyl ether TM116 <15 <15 µg/kg 1.2.4-Trichlorobenzene <6 µg/kg TM116 <6 # Hexachlorobutadiene <12 TM116 <12 µg/kg Naphthalene <13 TM116 <13 Μ µg/kg TM116 1.2.3-Trichlorobenzene <6 <6 µg/kg М

(

SDG:

Job:

CERTIFICATE	OF ANALYSIS
-------------	--------------------

Validated

101230-5 Location: View Street Order Number: H_GRONTMIJ_BRI-5 111108 Customer: Grontmij Report Number: Client Reference: Attention: Gareth Taylor . Superseded Report:

Table of Results - Appendix

REPO	RT KEY						Result	s expressed a	as (e.g.) 1.03E-07 is equivalent to 1.03x10-7							
NDP	No Determinatio	n Possible	#	ISO 17025 Accredited			Subcontracted Test	М	MCERTS Accredited							
NFD	No Fibres Detec	ted	PFD	Possible Fibres Detected			Result previously reported (Incremental reports only)	Equivalent Carbon (Aromatics C8-C35)								
Note: Meth	od detection limits															
N	lethod No		Refe	ence	Description Wet/Dry Surrogate Sample 1 Corrected											
	PM001				Preparation of Samples for Metals Analysis											
	PM024	Modified BS 1377			Soil prepa soils for A	ration ind	cluding homogenisation, moisture Containing Material	screens o	f							
	TM001	In - house Method			Determina solids	ation of a	sbestos containing material by sc	reening on								
	TM089	Modified: US EPA	Methods	8020 & 602	Determina BTEX (M1	ation of G (BE) com	asoline Range Hydrocarbons (GF pounds by Headspace GC-FID (RO) and C4-C12)								
	TM116	Modified: US EPA 624, 610 & 602	Method 8	3260, 8120, 8020,	Determination of Volatile Organic Compounds by Headspace / GC-MS											
	TM132	In - house Method			ELTRA CS800 Operators Guide											
	TM133	BS 1377: Part 3 19	90;BS 60	068-2.5	Determina Meter	ation of p	H in Soil and Water using the GL	оН рН								
	TM151	Method 3500D, AV	/WA/API	HA, 20th Ed., 1999	Determina	ation of H	exavalent Chromium using Kone	analyser								
	TM157	HP 6890 Gas Chro HP 5973 Mass Sel	matogra ective De	oh (GC) system and etector (MSD).	Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone											
	TM173	Analysis of Petrole Environmental Mec Hydrocarbon Criter	um Hydro lia – Tota ia	ocarbons in Il Petroleum	Determina Hydrocart	ation of S oons in S	peciated Extractable Petroleum oils by GC-FID									
	TM181	US EPA Method 60	010B		Determina ICP-OES	ation of R	outine Metals in Soil by iCap 650) Duo								
	TM184	EPA Methods 325.	1 & 325.2	2,	The Deter Kone Spe	mination ctrophoto	of Anions in Aqueous Matrices us ometric Analysers	sing the								
	TM218	Microwave extraction	on – EPA	method 3546	Microwave	e extracti	on - EPA method 3546									
	TM222	In-House Method			Determina Water:soil	ation of H	lot Water Soluble Boron in Soils (Emission Spectrometer	10:1								
	TM243															

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

Test Completion Dates

Lab Sample No(s)	2573515	2573524	2573527	2573532
Customer Sample Ref.	PSWHP06	PSWHP08	PSWHP08	PSWHP10
AGS Ref.				
Depth	0.10	0.30	0.70	0.30
Туре	SOLID	SOLID	SOLID	SOLID
Anions by Kone (soil)	07-Jan-2011	07-Jan-2011		07-Jan-2011
Asbestos Containing Material Screen	05-Jan-2011	05-Jan-2011	05-Jan-2011	05-Jan-2011
Boron Water Soluble	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
EPH CWG (Aliphatic) GC (S)		10-Jan-2011		
EPH CWG (Aromatic) GC (S)		10-Jan-2011		
GRO by GC-FID (S)		13-Jan-2011		
Hexavalent Chromium (s)	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
Metals by iCap-OES (Soil)	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
PAH by GCMS	11-Jan-2011		11-Jan-2011	11-Jan-2011
pН	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
Sample description	06-Jan-2011	06-Jan-2011	06-Jan-2011	06-Jan-2011
Semi Volatile Organic Compounds		10-Jan-2011		
Total Organic Carbon	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
TPH CWG GC (S)		13-Jan-2011		
VOC MS (S)		11-Jan-2011		

CERTIFICATE OF ANALYSIS

SDG:	101230-5	Location:	View Street
Job:	H_GRONTMIJ_BRI-5	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylo

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 111108 Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	d/C Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (MNOL)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH CMG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
PCB TOT / PCB CON	D&C	HEXANEACETONE	END OVEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
C8-C40(C6-C40)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLVAROMATIC HYDROCARBONS RARD GC	WET	HEXANEACETONE	SHAVER	900 EZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS		
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
EPH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID		
POB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS		
SVOC	DOM	LIQUID'LIQUID SHAKE	GCMS		
FREESULPHUR	DOM	SOLD PHASE EXTRACTION	HPLC		
PEST 00P/0PP	DOM	LIQUID'LIQUID SHAKE	GCMS		
TRIAZINE HERBS	DOM	LIQUID'LIQUID SHAKE	GCMS		
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS		
TFH by INFRARED (IR)	TCE	LIQUID'LIQUID SHAKE	HPLC		
MINERALOIL by IR	TCE	LIQUID'LIQUID SHAKE	HPLC		
GLYCOLS	NONE	DIRECT INJECTION	GCMS		

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Oroádalie	Blue Asbestos
Fibraus Adindite	-
Fibrous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode Iane Solihull West Midlands B912AA

Attention: Gareth Taylor

Note that this laboratory report provides the results of sampling at multiple sites. Only the samples prefixed by "View Street" relate to the subject site.

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 10 June 2011 H_GRONTMIJ_SOL 110602-58

Part 2a Assistance 133432

We received 29 samples on Thursday June 02, 2011 and 25 of these samples were scheduled for analysis which was completed on Friday June 10, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

CERTIFICATE OF ANALYSIS

Validated

SDG:	110602-58	Location:	Part 2a Assistance	Order Number:	
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij	Report Number:	133432
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
3588820	1 NEWLANDS LANE FIVEWAYS		0.30	31/05/2011
3588809	10 WESTGATE			31/05/2011
3588808	11 GOODWOOD			31/05/2011
3588826	11 NEWLANDS COURT FIVEWAYS		0.30	31/05/2011
3588818	110 STAFFORD LANE			31/05/2011
3588805	121 ARMITAGE ROAD			31/05/2011
3588806	125 ARMITAGE ROAD			31/05/2011
3588811	2 SANDOWN			31/05/2011
3588819	21 HERONDALE			31/05/2011
3588807	3 SLADE VIEW RISE			31/05/2011
3588787	3A BLAKE CLOSE			31/05/2011
3588810	4 KEMPTON			31/05/2011
3588813	41 SWALLOWFIELDS			31/05/2011
3588822	5 NEWLANDS COURT FIVEWAYS		0.30	31/05/2011
3588814	73 STAGBOROUGH			31/05/2011
3588815	8 STAGBOROUGH WAY			31/05/2011
3588788	83 BLAKE CLOSE			31/05/2011
3588823	9 NEWLANDS COURT FIVEWAYS		0.30	31/05/2011
3588803	99 ARMITAGE ROAD			31/05/2011
3588802	FIVEWAYS 1 NEWLANDS LANE			31/05/2011
3588798	FIVEWAYS 11 NEWLANDS COURT			31/05/2011
3588799	FIVEWAYS 5 NEWLANDS COURT			31/05/2011
3588800	FIVEWAYS 9 NEWLANDS COURT			31/05/2011
3588795	VIEW ST. 32 FOSTERS AVE.			31/05/2011
3588793	VIEW ST. 53 VIEW ST.			31/05/2011
3588797	VIEW ST. 9 WARD ST.			31/05/2011
3588790	VIEW ST. WS2		1.20	31/05/2011
3588791	VIEW ST. WS3		1.10	31/05/2011
3588789	VIEW ST. WS4		1.60	31/05/2011

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol L	aborator	ies	С	EF	۶T	IFI	CA	١TE	0	F	۵ N		∟Y	'SI	S											V	alidate	ed
SDG: Job: Client Reference:	110602-58 H_GRONT	- MIJ_SOL-54	Location Custome Attentior	: er: n:	P G G	art 2 Gront	2a A tmij th T	Assis aylo	tanc	e								O Re Si	dei po pe	'Nu rtN	ımt lum ded	ber be	: r: eport:	13	33432			
LIQUID Results Legend		Lab Sample	No(s)	3588802	3588811	3588790	3588807	3588787	3588810	3588789	3588799	3588800 3588815	3588797	3588809	3588798	3588819	3588705	3588793	3588814	3588803	3588818	3588805	3588806					
No Determina Possible	ation	Custom Sample Refe	er rence	FIVEWAYS 1	2 SANDOWN	VIEW ST. WS2	3 SLADE VIEW		4 KEMPTON	VIEW ST. WS4	FIVEWAYS 5	FIVEWAYS 9 8 STAGBOROUGH	VIEW ST. 9 WARD	10 WESTGATE	FIVEWAYS 11	21 HERONDALE	41 VIEW ST 32	VIEW ST. 53 VIEW	73 STAGBOROUGH	99 ARMITAGE	110 STAFFORD	121 ARMITAGE	135 ADMITACE					
		AGS Refer	ence																									
		Depth (r	n)			1.20		-	4 40	1.60																		
		Contain	ər	1l green glass bottle	11 green glass bottle	Vial 11 green glass hottle	11 green glass bottle	11 green glass bottle	1l green glass bottle	Vial 11 green glass bottle	1l green glass bottle	11 green glass bottle 11 green glass bottle	11 groop glass bottle															
Dissolved Metals by ICP-I	WS	All	NDPs: 0 Tests: 25	x	x	x	x >	<mark>k x</mark>	x	x	x	x x	x	x)	<mark>k</mark> X	x	x >	(X	x	k x	x	x	×					
Mercury Dissolved		All	NDPs: 0 Tests: 25	x	x	×	x >	<mark>k x</mark>	x	x	x	x x	x	x >	x x	x	x >	(X	x	x x	x	x	×					
PAH Spec MS - Aqueous	(W)	All	NDPs: 0 Tests: 25	x	x	x	x >	<mark>k x</mark>	x	x	x	x x	x	x)	x x	x	x >	(X	x	x x	x	x	×					
VOC MS (W)		All	NDPs: 0 Tests: 3			x			x	×													-					

CERTIFICATE OF ANALYSIS

Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer	r Sample R	99 ARMITAGE ROA D	4	121 ARMITAGE RC AD)	125 ARMITAGE RO AD	83 BLAKE C	LOSE	3A BLAKE CLOSE	FIVEWAYS 5 NEWL ANDS COURT
 Non-conforming work. aq Aqueous / settled sample. diss.fitt Dissolved / filtered sample. tot.unfit Total / unfiltered sample. Subcontracted test. % % recovery of the surrogate standar check the efficiency of the method. 1 results of individual compounds with samples aren't corrected for the record. (F) Trigger breach confirmed 	d to Fhe hin overy	Sau Date Date Lab Sam AGS	Depth (m) imple Type e Sampled e Received SDG Ref nple No.(s) Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588803		Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588805		Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588806	Water(GW/ 31/05/20 02/06/20 110602-{ 358878	SW) 11 11 58 3	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588787	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588799
Component Antimony (diss filt)	LOD/Ur	nits M	Method M152	0 367	_	0 327	-	0.881	0 297		0 301	2 25
	-0.1 μg/l	0 1	101132	0.307	#	0.327	#	0.881	0.297	#	0.301	2.25
Arsenic (diss.filt)	<0.1 µg/l	2 T	M152	3.67	#	5.16	#	3.97 #	2.1	#	1.42 #	2.13 #
Boron (diss.filt)	<9.4 µ	Jg/I T	M152	58.5	#	57.7	#	66.9 #	125	#	85.7 #	102 #
Cadmium (diss.filt)	<0.1 µ	Jg/I T	M152	<0.1	#	<0.1	#	<0.1 #	0.117	#	0.201 #	0.165 #
Chromium (diss.filt)	<0.2 µg/l	2 Т	M152	12.4	#	12.2	#	13.7	13.4	#	7.95 #	16.5 #
Copper (diss.filt)	8.0> ا/یو	5 T	M152	288	#	9.02	#	5.51 #	24.7	#	740 #	266 #
Lead (diss.filt)	0.0> µg/l	2 Т	M152	0.107	#	0.293	#	1.09 #	0.165	#	0.311 #	0.266 #
Nickel (diss.filt)	<0.1 µg/l	5 T	M152	2.16	#	1.01	#	1.4 #	0.993	#	4.32 #	1.19 #
Zinc (diss.filt)	<0.4 µg/l	1 T	M152	74.4	#	7.67	#	29.2 #	14.5	#	606 #	94.9 #
Mercury (diss.filt)	0.0> ua/l	1 T	M183	<0.01	#	<0.01	#	<0.01 #	<0.01	#	<0.01 #	<0.01 #
							+					

CERTIFICATE OF ANALYSIS

Results Legend		Customer	r Sample R	11 GOODWOOD	21 HERONDAL	E	4 KEMPTON	FIVEWAYS 9 N	EWL	FIVEWAYS 11 NEW	FIVEWAYS 1 NEWL
# ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / filtered sample. tot.unfitt Total / unfiltered sample. * Subcontracted test. ** % recovery of the surrogate standar	d to	Sa Date Date	Depth (m) Imple Type te Sampled e Received SDG Ref	Water(GW/SW) 31/05/2011 02/06/2011 110602-58	Water(GW/SW 31/05/2011 02/06/2011 110602-58)	Water(GW/SW) 31/05/2011 02/06/2011 110602-58	ANDS COUR Water(GW/SV 31/05/2011 02/06/2011 110602-58	T V)	LANDS COURT Water(GW/SW) 31/05/2011 02/06/2011 11/06/2-58	ANDS LANE Water(GW/SW) 31/05/2011 02/06/2011 11/06/2-58
check the efficiency of the method. T results of individual compounds with samples aren't corrected for the reco (F) Trigger breach confirmed	Гhe hin overy	Lab San AGS	nple No.(s) Reference	3588808	3588819		3588810	3588800		3588798	3588802
Antimony (diss.filt)	<0.1	nits N 6 T	Method M152	0.344	0.266		0.421	0.489		0.381	0.246
Arsenic (diss.filt)	µg/l <0.1	2 Т	M152	1.85	2.08	#	2.03	2.22	#	1.94	2.06
Boron (diss.filt)	µg/l 9.4>	µg/I T	M152	# 96.5	114	#	# 88.8	92.2	#	# 113	# 80.7
Cadmium (diss.filt)	<0.1	µg/l T	M152	# <0.1	<0.1	#	# <0.1	<0.1	#	# 0.101	# <0.1
Chromium (diss.filt)	<0.2	2 T	M152	# 14.2	11.2	#	# 12.8	14.1	#	# 13.1	# 8.22
Copper (diss.filt)	ا/ <u>مب</u> 8.0>	5 T	M152	# 49	96.6	#	# 32.7	176	#	# 48.5	# 73.3
Lead (diss.filt)	µg/l <0.0	2 T	M152	# 0.109	0.184	#	# 0.093	0.048	#	# 0.057	# 0.231
Nickel (diss.filt)	µg/l <0.1	5 T	M152	# 1.68	0.594	#	# 1.6	0.559	#	# 1.02	# 1.79
Zinc (diss.filt)	µg/l <0.4	·1 T	M152	# 21.6	18	#	7.11	6.25	#	# 9.53	# 8.76
Mercury (diss.filt)	<u>ا/وµ</u> 0.0>)1 T	M183	# <0.01	<0.01	#	# <0.01	<0.01	#	# <0.01	# <0.01
	µg/l			#		#	#		#	#	#
		_									
		_									
		_									
					ļ						

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 110602-58
 Location:
 Part 2a Assistance
 Order Number:

 Job:
 H_GRONTMIJ_SOL-54
 Customer:
 Grontmij
 Report Number:
 133432

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 13432

Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sam	ple R 2 SANDOWN	1	3 SLADE VIEW RI SE	110 STAFFORD LA NE	73 STAGBOROUGH	8 STAGBOROUGH W AY	41 SWALLOWFIELD S
Sint Conforming work. Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfit Total / unfiltered sample. Subcontracted test. " Subcontracted test. " % recovery of the surrogate standan check the efficiency of the method. results of individual compounds with samples aren't corrected for the rec. (F) Tridger breach confirmed	d to Fhe hin overy	Dep Sample Date Sar Date Rec SD Lab Sample AGS Refe	h (m) Type Water(GW/SW 31/05/2011 bived 02/06/2011 3 Ref 110602-58 lo.(s) 3588811 rence	V)	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588807	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588818	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588814	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588815	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588813
Component	LOD/Ur	nits Meth	d						
Antimony (diss.filt)	<0.1 µg/l	6 TM1	0.202	#	0.426 #	0.303 #	0.246 #	0.239 #	0.298 #
Arsenic (diss.filt)	<0.12 ua/l	2 TM1	52 1.92	#	1.85 #	2.03 #	2.32 #	2.03 #	2.16 #
Boron (diss.filt)	<9.4 µ	ug/I TM1	52 107	#	128 #	123 #	135 #	118 #	123 #
Cadmium (diss.filt)	<0.1 µ	Jg/I TM1	0.201	#	<0.1	0.179 #	0.142 #	0.276 #	0.108
Chromium (diss.filt)	<0.2	2 TM1	52 12.5	#	13.3 #	11.2 #	13.5 #	11.9 #	11.3
Copper (diss.filt)	<0.8	5 TM1	52 118	#		120 #	19.2 #	91.2 #	9.23
Lead (diss.filt)	<0.0	2 TM1	0.862	#	0.042	0.329	0.121	0.398	0.126
Nickel (diss.filt)	<0.1	5 TM1	62 4.46	#	1.69	1.06 #	1.49 #	15.3 #	0.697
Zinc (diss.filt)	<0.4	1 TM1	2 295	#	26 #	29.9 #	6.85 #	356 #	2.69
Mercury (diss.filt)	μ <u>μ</u> η// <0.0	1 TM1	3 <0.01	#	<0.01 #	<0.01 #	<0.01 #	<0.01 #	<0.01
	μg/i			#	#	#	#	#	#
			_						
			_						
		1					1		

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 110602-58
 Location:
 Part 2a Assistance
 Order Number:

 Job:
 H_GRONTMIJ_SOL-54
 Customer:
 Grontmij
 Report Number:
 133432

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 13432

Results Legend		Custor	mer Sample R	VIEW ST. 32 FOS	VIEW ST. 53 VIE	VIEW ST. 9 WARD	VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4
# ISO17025 accredited. M mCERTS accredited.				TERS AVE.	W ST.	ST.			
§ Non-conforming work. ag Aqueous / settled sample.			Depth (m)				1.20	1.10	1.60
diss.filt Dissolved / filtered sample.			Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
tot.unfilt Total / unfiltered sample. * Subcontracted test.			Date Sampled Date Received	02/06/2011	02/06/2011	02/06/2011	31/05/2011 02/06/2011	02/06/2011	02/06/2011
** % recovery of the surrogate standar check the efficiency of the method.	d to The		SDG Ref	110602-58	110602-58	110602-58	110602-58	110602-58	110602-58
results of individual compounds wit	hin	Lab S	Sample No.(s) GS Reference	3588795	3588793	3588797	3588790	3588791	3588789
(F) Trigger breach confirmed	, and the second s								
Component	LOD/Ur	nits	Method	0.440	0.007	0.020			
Antimony (diss.filt)	<0.1	6	TM152	0.449 #	0.697	0.236			
Arsenic (diss.filt)	<0.1	2	TM152	1.71	1.88	3.17	0.535	1.1	0.912
, , ,	µg/l			#	#	#	#	#	#
Boron (diss.filt)	<9.4 j	µg/l	TM152	121	102	106	171	226	59.5
Codmium (dioc filt)	-0.1.	u <i>a</i> /l	TM150	#	#	#	#	#	#
Caumum (uiss.nit)	-0.1 p	µy/i	1101132	0.179	0.301	0.149	0.005 #	~0.1 #	0.107
Chromium (diss.filt)	<0.2	2	TM152	11.7	13.8	10	11.5	20.9	28.6
	µg/l			#	#	#	#	#	#
Copper (diss.filt)	<0.8	5	TM152	302	644 #	361	2.24	3.42	<0.85
Lead (diss filt)	μg/i <0.0	2	TM152	4 37	0 103	0.23	# 0.072	0 16	0.05
	ua/l	2	1101102	4.07	#	#	#	#	0.00 #
Nickel (diss.filt)	<0.1	5	TM152	4.71	1.66	3.73	3.9	3.3	3.91
	µg/l			#	#	#	#	#	#
Vanadium (diss.filt)	<0.2	4	TM152				2.88	4.02 #	8.48
Zinc (diss filt)	μg/i <0.4	.1	TM152	175	661	293	15.9	4 05	<0.41
	µg/l		1111102	#	#	#	#	#	#
Mercury (diss.filt)	<0.0	1	TM183	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	µg/l			#	#	#	#	#	#
		_							
		-							
		-							
		-+							
							L		

CERTIFICATE OF ANALYSIS								
SDG: Job: Client Reference:	110602-58 H_GRONTMIJ	_SOL-54	Location: Customer:	Part 2a Assistance Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	133432	
Client Reference.			Attention.	Galetti Tayloi		Superseded Repo	11.	
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. iss.fit Discolved / filtered sample. totunfitt Total / unfiltered sample. * % recovery of the surrogat check the efficiency of the results of individual compr samples aren't corrected for	te standard to method. The ounds within or the recovery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	10 WESTGATE Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588809					
(F) Trigger breach confirmed	LOD/Ur	nits Method						
Antimony (diss.filt)	<0.1	6 TM152	0.203	#				
Arsenic (diss.filt)	<0.1	2 TM152	2.18	#				
Boron (diss.filt)	µ <u>q</u> /ı <9.4 ہ	ıg/I TM152	106	и				
Cadmium (diss.filt)	<0.1 μ	ıg/l TM152	<0.1	#				
Chromium (diss.filt)	<0.2	2 TM152	13.9	# 				
Copper (diss.filt)	ا/ <u>م</u> µ 8.0>	5 TM152	27.6	#				
Lead (diss.filt)	<u>ا/وµ</u> 0.0>	2 TM152	0.066	#				
Nickel (diss.filt)	μ <u>q</u> /l <0.1	5 TM152	1.47	#				
Zinc (diss.filt)	μg/l <0.4	1 TM152	9.15	#				
Mercury (diss.filt)	μ <u>g</u> /l <0.0	1 TM183	<0.01	#				
	µg/l			#				
								_

CERTIFICATE OF ANALYSIS

PAH Spec MS - Aqueous	s (W)							
Results Legend # ISO17025 accredited. M mCERTS accredited.	Ci	ustomer Sample R	99 ARMITAGE ROA D	121 ARMITAGE RO AD	125 ARMITAGE RO AD	83 BLAKE CLOSE	3A BLAKE CLOSE	FIVEWAYS 5 NEWL ANDS COURT
S Non-conforming work. aq Aqueous / settled sample. diss.fitt Discolved / filtered sample. tot.unfitt Total / unfiltered sample. Subcontracted test. ** %, recovery of the surrogate standar check the efficiency of the method. results of individual compounds will samples aren't corrected for the rec	rd to The hin I overy	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588803	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588805	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588806	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588788	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588787	Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588799
(F) Trigger breach confirmed								
Component Naphthalene (aq)	LOD/Units <0.1 µg/	Method TM178	<0.1	<0.1	<0.1	0.11	<0.1	<0.1
Acenaphthene (aq)	<0.015	TM178	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015
Acenaphthylene (aq)	μ <u>q/l</u> <0.011	TM178	# <0.011	# <0.011	# <0.011	# <0.011	# <0.011	# <0.011
Fluoranthene (aq)	μ <u>g/l</u> <0.017	TM178	# <0.017	# <0.017	# <0.017	# <0.017	# <0.017	# <0.017
Anthracene (aq)	μ <u>g/l</u> <0.015	TM178	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015
Phenanthrene (aq)	μ <u>g/l</u> <0.022	TM178	# <0.022	# <0.022	# <0.022	# <0.022	# <0.022	# <0.022
Fluorene (aq)	μg/l <0.014	TM178	# <0.014	# <0.014	# <0.014	# <0.014	# <0.014	# <0.014
Chrysene (aq)	μg/l <0.013	TM178	# <0.013	# <0.013	# <0.013	# <0.013	# <0.013	# <0.013
Pyrene (aq)	μg/l <0.015	TM178	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015
Benzo(a)anthracene (aq)	μ <u>q</u> /I <0.017	TM178	# <0.017 #	# <0.017 #	# <0.017 #	# <0.017	# <0.017 #	# <0.017 #
Benzo(b)fluoranthene (aq)	<0.023	TM178	* <0.023 #	# <0.023 #	<0.023 #	~0.023 #	~0.023 #	~0.023 #
Benzo(k)fluoranthene (aq)	<0.027	TM178	<0.027 #	<0.027 #	<0.027 #	<0.027 #	<0.027 #	<0.027 #
Benzo(a)pyrene (aq)	<0.009	TM178	<0.009 #	<0.009 #	<0.009 #	<0.009 #	<0.009 #	<0.009 #
Dibenzo(a,h)anthracene	<0.016	TM178	<0.016 #	<0.016 #	<0.016 #	<0.016 #	<0.016 #	<0.016 #
Benzo(g,h,i)perylene (aq)	<0.016	TM178	<0.016 #	<0.016 #	<0.016 #	~0.016 #	<0.016 #	<0.016 #
Indeno(1,2,3-cd)pyrene	<0.014	TM178	<0.014 #	<0.014 #	<0.014 #	<0.014 #	<0.014 #	<0.014 #
PAH, Total Detected USEPA 16 (aq)	µg/l	TM178	none detected	none detected	none detected	0.11	none detected	none detected

CERTIFICATE OF ANALYSIS

Results Legend	· (vv)	Customer Sample R	11 GOODWOOD	21 HERONDALE	4 KEMPTON	FIVEWAYS 9 NEWL	FIVEWAYS 11 NEW	FIVEWAYS 1 NEWL
# ISO17025 accredited. M mCERTS accredited. & Non-conforming work						ANDS COURT	LANDS COURT	ANDS LANE
aq Aqueous / settled sample.		Depth (m) Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
tot.unfilt Total / unfiltered sample.		Date Sampled	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011
** % recovery of the surrogate standar	d to	Date Received SDG Ref	110602-58	110602-58	110602-58	110602-58	110602-58	110602-58
check the efficiency of the method. results of individual compounds wit	he hin	Lab Sample No.(s)	3588808	3588819	3588810	3588800	3588798	3588802
samples aren't corrected for the reco (F) Trigger breach confirmed	overy	AGS Reference						
Component	LOD/Un	its Method	<u></u>	<u>-0 1</u>	<i>c</i> 0 1	<u></u>	0.121	<u>1</u>
Naphinalene (aq)	<υ.1 μ	Ig/1 11V1170	<0.1 #	~0.1 #	~0.1 #	<0.1 #	0.121 #	~0.1 #
Acenaphthene (aq)	<0.01	5 TM178	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Acenaphthylene (ag)	μ <u>q</u> /i <0.01	1 TM178	# <0.011	# <0.011	# <0.011	# <0.011	# <0.011	# <0.011
	µg/l		#	#	#	#	#	#
Fluoranthene (aq)	0.01> µq/l	7 IM178	<0.017 #	<0.017 #	<0.017 #	<0.017 #	<0.017 #	<0.017 #
Anthracene (aq)	<0.01	5 TM178	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015
Phenanthrene (ag)	µg/l <0.02	2 TM178	# <0.022	# <0.022	# <0.022	# <0.022	# <0.022	# <0.022
	µg/l		#	#	#	#	#	#
Fluorene (aq)	0.01> ارمار	4 TM178	<0.014 #	<0.014 #	<0.014 #	<0.014 #	<0.014 #	<0.014 #
Chrysene (aq)	<0.01	3 TM178	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013
Pyrene (ag)	µg/l <0.01	5 TM178	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015	# <0.015
	μ <u>μ</u> μ		#	40.010	#	#	#	40.010
Benzo(a)anthracene (aq)	<0.01	7 TM178	<0.017 #	<0.017 #	<0.017 #	<0.017 #	<0.017 #	<0.017 #
Benzo(b)fluoranthene (aq)	<0.02	3 TM178	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023
Benzo(k)fluoranthene (ag)	µg/l <0.02	7 TM178	# <0.027	# <0.027	# <0.027	# <0.027	# <0.027	# <0.027
	µg/l	0 71470	#	#	#	#	#	#
Benzo(a)pyrene (aq)	0.00> µg/l	19 IM178	<0.009 #	<0.009 #	<0.009 #	<0.009 #	<0.009 #	<0.009 #
Dibenzo(a,h)anthracene	<0.01	6 TM178	<0.016 #	<0.016 #	<0.016 #	<0.016 #	<0.016 #	<0.016 #
Benzo(g,h,i)perylene (aq)	<0.01	6 TM178	<0.016	<0.016	<0.016	<0.016	<0.016	<0.016
Indeno(1,2,3-cd)pyrene	µg/l <0.01	4 TM178	# <0.014	# <0.014	# <0.014	# <0.014	# <0.014	# <0.014
(aq)	µg/l	T1470	#	#	#	#	#	#
USEPA 16 (aq)	µg/i	11178	none detected	none detected	none detected	none detected	0.121	none detected
		_						

(

CERTIFICATE OF ANALYSIS

ÞΔ	н	Spec	MS -	- Aqueous	: (W)	

PAH Spec MS - Aqueous	5 (W)						-	
Results Legend ISO17025 accredited. M mCERTS accredited. S Non-conforming work. aq Aqueous / settled sample. tot.unfit Total / unfittered sample.	c	Customer Sample R Depth (m) Sample Type Date Sampled	2 SANDOWN Water(GW/SW) 31/05/2011	3 SLADE VIEW RI SE Water(GW/SW) 31/05/2011	110 STAFFORD LA NE Water(GW/SW) 31/05/2011	73 STAGBOROUGH Water(GW/SW) 31/05/2011	8 STAGBOROUGH W AY Water(GW/SW) 31/05/2011	41 SWALLOWFIELD S Water(GW/SW) 31/05/2011
 Subcontracted test. % recovery of the surrogate standar check the efficiency of the method. results of individual compounds with samples aren't corrected for the rec (F) Trigger breach confirmed 	rd to The thin overy	Date Received SDG Ref Lab Sample No.(s) AGS Reference	02/06/2011 110602-58 3588811	02/06/2011 110602-58 3588807	02/06/2011 110602-58 3588818	02/06/2011 110602-58 3588814	02/06/2011 110602-58 3588815	02/06/2011 110602-58 3588813
Component	LOD/Unit	s Method						
Naphthalene (aq)	<0.1 µg	/I TM178	<0.1 #	0.103 #	0.131 #	<0.1 #	<0.1 #	<0.1 #
Acenaphthene (aq)	<0.015 ug/l	TM178	<0.015	<0.015	<0.015	<0.015	<0.015 #	<0.015
Acenaphthylene (aq)	<0.011	TM178	<0.011 #	<0.011 #	<0.011 #	<0.011 #	-0.011 #	<0.011 #
Fluoranthene (aq)	<0.017	TM178	<0.017 #	<0.017 #	<0.017 #	<0.017	~0.017 #	<0.017 #
Anthracene (aq)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	<0.015 #	<0.015
Phenanthrene (aq)	<0.022	TM178	<0.022	<0.022 #	<0.022	<0.022	* <0.022 #	<0.022
Fluorene (aq)	<0.014	TM178	~0.014 #	~0.014 #	~0.014 #	~0.014 #	+ <0.014 #	# <0.014 #
Chrysene (aq)	<0.013	TM178	<0.013 #	~0.013 #	<0.013 #	<0.013 #	* <0.013 #	# <0.013 #
Pyrene (aq)	μ <u>g/</u> <0.015	TM178	<0.015	<0.015	<0.015	<0.015 #	<0.015	<0.015
Benzo(a)anthracene (aq)	μ <u>q/</u> <0.017	TM178	<0.017 #	<0.017 #	<0.017 #	<0.017 #	+ <0.017 #	# <0.017
Benzo(b)fluoranthene (aq)	<0.023	TM178	<0.023	<0.023 #	<0.023	<0.023	+ <0.023 #	<0.023
Benzo(k)fluoranthene (aq)	<0.027	TM178	<0.027 #	~0.027 #	<0.027 #	<0.027 #	* <0.027 #	# <0.027 #
Benzo(a)pyrene (aq)	<0.009	TM178	<0.009	<0.009 #	<0.009	<0.009	<0.009 #	<0.009
Dibenzo(a,h)anthracene	<0.016	TM178	<0.016	<0.016 #	<0.016	<0.016	<0.016 #	<0.016
Benzo(g,h,i)perylene (aq)	<0.016	TM178						
Indeno(1,2,3-cd)pyrene	<0.014	TM178	<0.014 #	<0.014 #	<0.014 #	<0.014 #	~0.014 #	<0.014 #
PAH, Total Detected	µg/l	TM178	none detected	0.103	0.131	none detected	none detected	none detected

CERTIFICATE OF ANALYSIS

PAH Spec MS - Aqueous	s (W)	0						
# ISO17025 accredited.		ustomer Sample R	TERS AVE.	W ST.	VIEW ST. 9 WARD ST.	VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4
M mCERTS accredited. § Non-conforming work.		Dopth (m)				1.20	1.10	1.60
aq Aqueous / settled sample.		Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	1.20 Water(GW/SW)	1.10 Water(GW/SW)	1.60 Water(GW/SW)
tot.unfilt Total / unfiltered sample.		Date Sampled	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011	31/05/2011
* Subcontracted test. ** % recovery of the surrogate standar	rd to	Date Received	02/06/2011	02/06/2011	02/06/2011	02/06/2011	02/06/2011	02/06/2011
check the efficiency of the method.	The	Lab Sample No.(s)	3588795	3588793	3588797	3588790	3588791	3588789
results of individual compounds wit samples aren't corrected for the rec	thin covery	AGS Reference						
(F) Trigger breach confirmed								
Naphthalene (ag)	LOD/Units	S Method	0.104	<0.1	<0 1	<01	<0.1	<0.1
Napitulaielle (aq)	-ν. τ μy	/1 1101170	0.104 #	~0.1 #	~0.1 #	~0.1	~0.1 #	~0.1
Acenaphthene (aq)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	0.0225	0.0156
	µg/l		#	#	#	#	#	#
Acenaphthylene (aq)	<0.011	TM178	<0.011	<0.011	<0.011	<0.011	0.0181	<0.011
	µg/l		#	#	#	#	#	#
Fluoranthene (aq)	<0.017	TM178	<0.017	<0.017 #	<0.017	<0.017	0.981 #	0.465
Anthracene (ag)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	0.0538	0.0302
	ug/l	10170	40.010	-0.010 #	40.010	40.010	#	0.0002
Phenanthrene (aq)	<0.022	TM178	<0.022	<0.022	<0.022	<0.022	0.217	0.13
	µg/l		#	#	#	#	#	#
Fluorene (aq)	<0.014	TM178	<0.014	<0.014	<0.014	<0.014	<0.014	<0.014
Chrysons ()	µg/l	TN 44 70	#	#	#	#	#	#
Unrysene (aq)	<0.013	TM178	<0.013	<0.013 #	<0.013 #	<0.013 #	0.935 #	U.434 #
Pyrene (ag)	<0.015	TM178	<0.015	<0.015	<0.015	<0.015	# 1 11	0.559
r yrelle (uq)	ua/l	10170	40.010	40.010	40.010	40.010		#
Benzo(a)anthracene (aq)	< 0.017	TM178	<0.017	<0.017	<0.017	<0.017	0.565	0.283
	µg/l		#	#	#	#	#	#
Benzo(b)fluoranthene (aq)	<0.023	TM178	<0.023	<0.023	<0.023	<0.023	0.625	0.279
	µg/l	T1470	#	#	#	#	#	#
Benzo(k)fluoranthene (aq)	<0.027	TM178	<0.027 #	<0.027 #	<0.027	<0.027	0.815	0.33
Benzo(a)pyrene (ag)	<0.009	TM178	<0 009	<0 009	<0 0.09	<0 009	0.916	0 352
201120(0)(2)10110 (04)	µg/l		#	#	#	#	#	#
Dibenzo(a,h)anthracene	<0.016	TM178	<0.016	<0.016	<0.016	<0.016	0.112	0.0359
(aq)	µg/l		#	#	#	#	#	#
Benzo(g,h,i)perylene (aq)	<0.016	TM178	<0.016	<0.016	<0.016	<0.016	0.689	0.198
Indono(1.2.2. od)nyrono	µg/l	TN4170	#	#	#	#	#	#
(ag)	<0.014	111/170	<0.014 #	<0.014 #	<0.014 #	<0.014 #	0.54 #	0.104
PAH. Total Detected	ua/l	TM178	0.104	none detected	none detected	none detected	7.6	3.28
USEPA 16 (aq)	FU							
		_						
		_						

ALcontrol Labora	atories		CERI	IFICATE OF A	NALYSIS			Validated
SDG: 11060 Job: H_GF Client Reference:)2-58 RONTMIJ_	_SOL-54	Location:	Part 2a Assistance Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	133432 rt:	
PAH Spec MS - Aqueous	s (W)		Automioni			Capologian		
Results Legend # ISO17025 accredited. M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.fit Dissolved / fittered sample. totunritit Total / unfittered sample. * Subcontracted test. ** % recovery of the surrogate standa check the efficiency of the method. results of individual compounds wi samples aren't corrected for the ret (F) Trigger breach confirmed	rd to The thin covery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	10 WESTGATE Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588809					
Component	LOD/Un	its Method						
Naphthalene (aq)	<0.1 µ	g/l TM178	<0.1	#				
Acenaphthene (aq)	<0.01 µg/l	5 TM178	<0.015	#				
Acenaphthylene (aq)	<0.01 ua/l	1 TM178	<0.011	#				
Fluoranthene (aq)	<0.01	7 TM178	<0.017	#				
Anthracene (aq)	<0.01	5 TM178	<0.015	#				
Phenanthrene (aq)	<0.02	2 TM178	<0.022	#				
Fluorene (aq)	<0.01	4 TM178	<0.014	"				
Chrysene (aq)	<0.01	3 TM178	<0.013	#				
Pyrene (aq)	<0.01	5 TM178	<0.015	и				
Benzo(a)anthracene (aq)	<0.01	7 TM178	<0.017	#				
Benzo(b)fluoranthene (aq)	<0.02	3 TM178	<0.023	#				
Benzo(k)fluoranthene (aq)	<0.02	7 TM178	<0.027	#				
Benzo(a)pyrene (aq)	<0.00	9 TM178	<0.009	<i>н</i>				
Dibenzo(a,h)anthracene	μ <u>μ</u> // <0.01	6 TM178	<0.016	<u></u>				
Benzo(g,h,i)perylene (aq)	<0.01	6 TM178	<0.016	<u>#</u>				
Indeno(1,2,3-cd)pyrene	<0.01	4 TM178	<0.014	<u></u>				
PAH, Total Detected	µg/i µg/i	TM178	none detected	#				
USEPA To (aq)								
		_						
		_						
		_						

ALcontrol Labora	atories	5	CERT			F AI	NALYSIS				Validated
SDG: 11060 Job: H_GR Client Reference:)2-58 RONTMIJ	_SOL-54	Location: F Customer: C Attention: C	Part 2a As Grontmij Gareth Tay	sistance /lor	;			Order Number: Report Number: Superseded Report	133432 ::	
VOC MS (W)											
Results Legend Results Legend Sourcestiend M mCERTS accredited. M mCERTS accredited. S Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * Subcontracted test. * % recovery of the surrogate standa check the efficiency of the method. results of individual compounds wi samples aren't corrected for the rec (F) Trigger breach confirmed	rd to The thin covery	Customer Sample R Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	1.20 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588790	VIEV Wate 31 02 11 3	1.10 er(GW/SW /05/2011 /06/2011 0602-58 588791)	VIEW ST. WS4 1.60 Water(GW/SW) 31/05/2011 02/06/2011 110602-58 3588789				
Component	LOD/Ur	nits Method	08.2		00	_	00.3				
	70	T WIZUO	90.2		99		99.5				
Methyl tertiary butyl ether (MTBE)	<1.6	ug/I TM208	<1.6	#	<1.6	#	<1.6	#			
	1.01		1.0	#	1.0	#	41.0	#			
Toluene	<1.4	ug/I TM208	<1.4	#	<1.4	#	<1.4	#			
Ethylbenzene	<2.5 µ	ug/I TM208	<2.5	#	<2.5	#	<2.5	#			
m,p-Xylene	<2.5 µ	ug/I TM208	<2.5	#	<2.5	#	<2.5	#			
o-Xylene	<1.7 µ	Jg/I TM208	<1.7	#	<1.7	#	<1.7	#			
				-							
						_					
						_					
						_					
						_					
						_		_			
		_						_			
		_				_					
								_			

ALcontrol Laboratories Validated **CERTIFICATE OF ANALYSIS** 110602-58 SDG: Location: Part 2a Assistance Order Number: H_GRONTMIJ_SOL-54 133432 Job: Customer: Grontmij Report Number: Client Reference: Attention: Gareth Taylor Superseded Report:

Table of Results - Appendix

REPOR	RT KEY					_	Results	expressed	as (e.g.) 1.03E-07 is equivale	nt to 1.03x10-7			
NDP	No Determination	Possible	#	ISO 17025 Accredited		*	MCERTS Accred	MCERTS Accredited					
NFD	NFD No Fibres Detected PFD Possible Fibres Detected					»	Equivalent Carbo (Aromatics C8-0	on (35)					
Note: Metho	od detection limits	are not always achievable	due to vario	us circumstances beyond our co	ntrol								
M	ethod No		Pofo	rence	Description Wet/Dry S								
			IVEIG	ence	Sample 1 Correg								
	TM152	Method 3125B, AV	HA, 20th Ed., 1999	Analysis o	of Aqueou								
	TM178	Modified: US EPA	Method 8	3100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by								
					GC-MS in	Waters							
	TM183	BS EN 23506:2002	2, (BS 60	68-2.74:2002) ISBN	Determination of Trace Level Mercury in Waters and Leachates								
		0 580 38924 3			by PSA Cold Vapour Atomic Fluorescence Spectrometry								
	TM208	Modified: US EPA	Method 8	3260b & 624	Determination of Volatile Organic Compounds by Headspace /								
						GC-MS in Waters							

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

()

CERTIFICATE OF ANALYSIS

Validated

133432

 SDG:
 110602-58

 Job:
 H_GRONTMIJ_SOL-54

 Client Reference:

Location:Part 2a AssistanceCustomer:GrontmijAttention:Gareth Taylor

lor Superseded Report:

Order Number:

Test Completion Dates

Lab Sample No(s)	3588803	3588805	3588806	3588788	3588808	3588787	3588799	3588800	3588798	3588802
Customer Sample Ref.	99 ARMITAGE ROA D	121 ARMITAGE RO AD	125 ARMITAGE RO AD	83 BLAKE CLOSE	11 GOODWOOD	3A BLAKE CLOSE	FIVEWAYS 5 NEWL ANDS COURT	FIVEWAYS 9 NEWL ANDS COURT	FIVEWAYS 11 NEW LANDS COURT	FIVEWAYS 1 NEWL ANDS LANE
AGS Ref.										
Depth										
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	07-Jun-2011	08-Jun-2011	09-Jun-2011	09-Jun-2011	08-Jun-2011	08-Jun-2011
Mercury Dissolved	07-Jun-2011	07-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	07-Jun-2011	08-Jun-2011
PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011

Lab Sample No(s)	3588819	3588810	3588811	3588807	3588818	3588814	3588815	3588813	3588795	3588793
Customer Sample Ref.	21 HERONDALE	4 KEMPTON	2 SANDOWN	3 SLADE VIEW RI SE	110 STAFFORD LA NE	73 STAGBOROUGH	STAGBOROUGH W AY	41 SWALLOWFIELD S	VIEW ST. 32 FOS TERS AVE.	VIEW ST. 53 VIE W ST.
AGS Ref.										
Depth										
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Dissolved Metals by ICP-MS	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	08-Jun-2011	09-Jun-2011
Mercury Dissolved	07-Jun-2011	08-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011	07-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011
PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011

Lab Sample No(s)	3588809	3588797	3588790	3588791	3588789
Customer Sample Ref.	10 WESTGATE	VIEW ST. 9 WARD ST.	VIEW ST. WS2	VIEW ST. WS3	VIEW ST. WS4
AGS Ref.					
Depth			1.20	1.10	1.60
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Dissolved Metals by ICP-MS	07-Jun-2011	10-Jun-2011	08-Jun-2011	08-Jun-2011	09-Jun-2011
Mercury Dissolved	07-Jun-2011	07-Jun-2011	07-Jun-2011	07-Jun-2011	08-Jun-2011
PAH Spec MS - Aqueous (W)	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011	09-Jun-2011
VOC MS (W)			09-Jun-2011	09-Jun-2011	09-Jun-2011

CERTIFICATE OF ANALYSIS

SDG:	110602-58	Location:	Part 2a Assistance
Job:	H_GRONTMIJ_SOL-54	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylor

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenois monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

133432

ANALYSIS	dic Or Wet	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DOM	SOXTHERM	IATROSCAN
ELEMENTALSUPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH (OLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFID
EPH ONG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
PCB TOT / PCB CON	D&C	HEXANE/ACETONE	END OVEREND	GCMS
FOLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(06-040) EZ FLASH	WET	HEXANEACETONE	SHAVER	GCFZ
POL VAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAVER	6CEZ
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHONG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
POB 700NGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
POB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST COP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TFH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratorice (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratorices (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

Asbestos Type

Chrysnile

Amosite

Orodolite

Fibrous Adinoite

Fibrous Anthophylite

Fibra & Trendie

Common Name

White Ashestos

BrownAsbestos

Blue Asbestos

-

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX E

	TABLE 1 - C	GAS MON	ITORING	DATA															
Site:	View Stree	t															Job No.	106270	
Monito	ring Well S	amplin	g & Testii	ng Recor	rd														
вн	Date	Pipe Internal	Monitored By	Gas		CH		60		0							Weather		
Bii	Date	Diameter mm	monitored by	Borehole Pressure pa	Flow I/h	%	CH₄ GSV	%	CO ₂ GSV	%	CO ppm	H2S ppm	PID CF ppm	HEX %	LEL %	Gas Analyser	Atmospheric Pressure mbar	Conditions @ Monitoring	Ambient Temp °C
WS01	28/01/2011		RJH	-4.00	-1	0	0	0.8	-0.008	19.1	0	-10	1	0	0	GFM	1008	Clear	-5
WS01	11/02/2011		KS	NM	-0.1	0	0	0.7	-0.0007	19.2	-1	-10				GFM	994		10.0
WS01	25/02/2011		KS	1.00	0.2	0.1	0.0002	0.8	0.0016	19.3	-1	-10	1	0		GFM	1006	Cloudy	11
WS01	11/03/2011		KAS	1.00	(0.2) 0.1	0.1	0.0001	0.8	0.0008	19.2	-1	-10	1	0		GFM	998	Sunny	
WS02	28/01/2011		RJH	-4.00	-1	0	0	0.8	-0.008	19.1	-1	-10	1	0	0	GFM	1007	Clear	-5.0
WS02	11/02/2011		KS	NM	0.1	0	0	0.4	0.0004	19.5	-1	-10				GFM	994		10
WS02	25/02/2011		KS	21.00	3.4	0.1	0.0034	0.7	0.0238	19.4	-3	-10	1	0.003		GFM	1006	Cloudy	11
WS02	11/03/2011		KAS	-1.00	(0.6)0.2	0.1	0.0002	0.7	0.0014	19.5	-3	-10	1	0.003		GFM	998	Sunny	
WS03	28/01/2011		RJH	-5.00	-1.2	0	0	0.6	-0.0072	19.4	-1	-10	1	0	0	GFM	1009	Clear	-5
WS03	11/02/2011		KS	NM	0.1	0	0	0.8	0.0008	19.4	-1	-10	NM	NM	NM	GFM	0995		10.0
WS03	25/02/2011		KS	-6.00	-0.5	0.1	-0.0005	0.7	-0.0035	19.4	-3	-10	1	0.002	0	GFM	1006	Cloudy	11
WS03	11/03/2011		KAS	-4.00	-0.3	0.1	-0.0003	0.8	-0.0024	19.4	-3	-10	1	0.001	0	GFM	998	Sunny	
WS04	28/01/2011		RJH	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	GFM	NM	Clear	-5
WS04	11/02/2011		KS	NM	0.3	0	0	0.6	0.0018	19.0	-1	-10	NM	NM	NM	GFM	996		10
WS04	25/02/2011		KS	0.00	0.1	0.1	0.0001	0.1	0.0001	19.8	-1	-10	1	0.004		GFM	1005	Cloudy	11.0
WS04	11/03/2011		KAS	1.00	0.1	0.1	0.0001	0.1	0.0001	19.7	-3	-10	1	0	0	GFM	998	Sunny	
-																			
												1	1						
	NOTES:	NM = Not M	easured																
	Figures in brackets indicate peak (or for O2 minimun				2 minimum)	levels recor	ded.					GSV (l/h	r) = [gas w	ell gas co	ncentratio	on (%v/v)] x [gas w	ell flow rate (l/hr)]		
																	100		

APPENDIX F

Appendix F: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Severity Category	Description	Examples
Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non-aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily- repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or,
	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

	Severity									
Probability	Severe	Medium	Mild	Minor						
High	Very high	High	Moderate	Low/moderate						
Likely	High	Moderate	Low/moderate	Low						
Low	Moderate	Low/moderate	Low	Very low						
Unlikely	Low/moderate	Low	Very low	Very low						

The above risk categories are likely to result in the following actions:

- \circ Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- $\circ\,$ Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

APPENDIX G

Information provided in this appendix is based upon records provided by British Geological Survey

British Geo	ological Survey British	Geologicars			-	Brit	tish Geological Survey
	BOREHOLE - ONE			B.H. DIA.	- 200	Dmm	
	TYPE OF BORING - Shell and Auge	r		GROUND	LEVEL :		
	DATE OF BORING - 15.9.87			WATER L	EVEL :-	'DRY	ζ'
÷	SCALE - 1;50						
	'N' = Number of blows/305mm for Standard Pen	etration T	est (SP1) or Dutch	Cone Tes	t (CPT)	British Geological Su
	Description of Strata	Sample	Depth	B. H.	Depth	0. D.	Remarks
					G.L.		N
	Coarse, grey/brown sandy	B.1	G.L.	\mathbb{K}			
British Geo	Brick fragments FILL	Geological S	rvey	\mathbb{K}		Brit	sh Geological Survey
		B.2	1.00	XX	1.00		
3	SAND with some fine, medium	3	1.45	0.00			N = 6
378 ⁴	and coarse GRAVE1	в.4	1.80	0.0	1.80		
		SPT 5	2.00	<u>0</u>			N = 8
	British Geological Survey		British Geo	0.6			British Geological Su
	sandy CLAY with fine,	RE	2 00	- <u>()</u>			
	pockets of SAND	CPT	3.00	<u>-0.00</u>			N = 34
		7	3.45				
Detter	la internet our	B.8	4.00		4.00		ish Quality is 1000
⊡riush Ge	Dense, red/brown clayey	SPI ^{cal Si} 9	4.00	0.0		Bri	N = 50 blows
	medium and coarse GRAVEL and	R 10	/ 75	DP :: 0.	/ 75		Lor 550mm penetrat
	pockets of CLAY	B.11	4.90	0.00	5.10		
	SAND with some fine and	12	5.00	00.9.0			N = 50 blows
	medium GRAVEL and sandstone	B.13	6:00	000	6.00		British Geological Su
	Very dense weekly comented (<u> </u>		
	fine and medium SAND with			+			
	tine and medium gravel (BUNTER PEBBLE BED?)			•			
				T			
British Ge	British	Geological S	rvey	+		Bri	ish Geological Survey
			· ·	↓			
				†			
	British Geological Survey		British Ger	logical Survey			
ŀ	BELT ROAD, HEDNESFORD.		Unital Off	U - U	ndisturbed		317
				B - B	ulk listurbed		в µ п

Report an issue with this borehole

British Geologica	al Sur	VEY esearch coun	ICIL	<u>10</u>		<u>113500 v</u>	oorenoice
	<<	< Prev	Page 1 of 2	Next >	>>		

British Geological Survey	Report an issue with this borehole
< < Prev Page 2 of 2	Next > >>

	HEATH ROAD			Client	CANNOCK CHAS	SE DISTRICT COUNC		19
cention upour	55000			Engineer	JOHNSON POOL	F & BLOOMER	Project No	93-759
Face	SFURD	A		B	Johnson Pool	C		D
			1)		0.20		1	
-				*			-	
Ē					F		-	
British Ge	ological Survey		2)	Şəftish Qe	ological Burvey		British G	eological Surve
	-			-	× * [1	
2				× × ×				
	-		3)	× × ×	1.60		-	
of			5)		1.80			
Pit Faces	-		4)		*		-	
- F				×	2.30			
eological Survey	-		British Geolog	jic <u>al</u> Survey	×	Britis	h Geological Survey	
			5)	* * *	* *		-	
					*		1	
-					3 50		-	
-	-			-	3.30		-	
-				+	-			
Samples and T	ests	Strata						
Depth British Ge	Type Strength	Reference and Face B Depth	Description	British Ge	ological Survey		British G	eological Sune
			Loose dark	brown sandy	SILT/TOPSOIL	with some pocke	ts of organic	
		1) 0.20	matter.					
0.50 - 1.00 0.50 - 1.00	BJ	2) 1.60	Medium den gravel. P	se orange si ockets of fi	lty fine to m rm reddish br	wedium SAND with Yown CLAY below 0	some fine .50m.	
		3) 1.80	Loose dark	brown highl	y organic sli	ghtly clayey SIL	т.	
2.00	B	4) 2.30	Medium den	se grey silt	y SAND with m	uch fine to coar	se gravel.	
2.00	J						cilty SAND	
3.50 ecsogoal Survey	В J		with fine	se to dense to coanse gr	avel some org	anic material	me pockets of	
		5) 3.30	grey and o	range singht	ty crayey med			
	1 1	1	1					
			1					
British Ge	ological Survey			British Ge	ological Survey		British G	eological Surve
British Ge	ological Survey			British Ge	ological Survey		British G	eological Surve
British Ge	ological Survey			British Ge	ological Survey		British G	eological Surve
British Ge	ological §urvey			British Ge	ological Survey		British G	eological Surve
British Ge	ological §urvey			British Ge	ological Survey		British G	eological Surve
British Ge Plant	ological survey JCB 3CX			British Ge	ological Survey	Location Sketc	British G	eological Surve
British Ge Plant Shoring	ological survey		Prilich Cort	British Ge Dimensions B	- 1.00	Location Sketc	British G	eological Surve
British Ge Plant Shoring _{ey}	JCB 3CX None		British Geolo	British Ge Dimensions B Jical Survey	elogical Survey	Location Sketc	British G h Plan h Geological Survey	eological Surve
British Ge Plant Shoring _{ey} Stability	JCB 3CX None Stable.		British Geolo	British Ge	= 1.00	Location Sketc	British G h Plan h Geological Survey	eological Surve
British Ge Plant Shooring Stability	JCB 3CX None Stable.		British Geolo	British Ge	= 1.00 c =2.90	Location Sketc	British G h Plan h Geological Survey	eological Surve
British Ge Plant Shoring _{ey} Stability	JCB 3CX None Stable. None.		British Geolo	British Ge	= 1.00 c = 2.90	Location Sketc	British G h Plan h Geological Survey	eological Surve
Plant Shooring Stability Groundwater	JCB 3CX None Stable. None.		British Geolo	British Ge	= 1.00 c = 2.90	Location Sketc	British G h Plan h Geological Survey	eological Surve
British Ge Plant Shoring Stability Groundwater	JCB 3CX None Stable. None.		British Geolo	British Ge	clogical Survey c = 1.00 c = 2.90 D	Location Sketc	British G h Plan h Geological Survey	eological Surve
Plant Shoring Stability Groundwater Remarks	JCB 3CX None Stable. None.		Brilish Geolo	British Ge	e = 1.00 c = 2.90 D	Location Sketc	British G	eological Surve
Plant Shoring Stability Groundwater Remarks _{hitsh Ge}	JCB 3CX None Stable. None.		British Geolo	British Ge	a = 1.00 c =2.90 D	Location Sketc	British G	eological Surve
Plant Shoring Stability Groundwater Remarks _{ilish} Ge	JCB 3CX JCB 3CX None Stable. None.		British Geolo	British Ge	a = 1.00 C = 2.90 D	Location Sketc	British G	eological Surve

SECTION OF West Cannock at agical Survey Communicated by J. Smithurst One-inch Map (N.S.) 154 5591SE/20 NU LaPa 9921.1295 County Date of sinking Six-inch Map 57 HEIGHT ABOVE ().). 600 ft. DIP OF STRATA 53992112 British condictionated in Mem. on 1" 154 pro243 Depth from Surface Thickness. Yards, feet ins. Thisd geological Survey. Gal 53 1 18 Gal 24 82 3 Finde Cortifice. Lastylelian R. Brooch Coal _... 3 11 108 2 SubBul NB British Geologial Su 2269 Bruches Carl. Your Yest w vel Seiten Cord 36 266 3 old Park (Man Hand 50 372 2-Coal (Ragged Jack) upper and he was sender (cards . 42 534 4-Coal Coal 14 552 1 British Geo ພະະຈາການ British Geological Survey Stinking Cred Cathornoon 21 615 10 Coal 6251 23 Yard 661 8 2 10 Cal brija in 13 ritish Geological Street ass 729 0 Britisk Geological Survey Coal 22 737 0 Cinder Coal 3 10 799 10 Cool 14 803 10 Shallow Coal 818 3 93 Coal 22 815 10 Deep Coal 44 9019 Coal 7 ydo below Beep Coal. British Geological Survey British Geological Survey M. C. Hannes -12/1.15 17. row = 2,09. A.&E.W. British Geological Survey