Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Exploratory Site Investigation

Land East of Hunter Road, Cannock

April 2013

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 1st Floor, Yorke House Arleston Way Shirley Solihull B90 4LH

T 0121 7116600 F 0121 7116749 E sasha.layton@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
106270/PW/190413	19/04/13	Draft	Name	Jim Summers	Sasha Layton	Phil Waine
			Position	Graduate Environmental Consultant	Senior Geo- Environmental Consultant	Principal Consultant

© Grontmij 2013 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTRODUCTION1
1.1	Terms of Reference1
2	BACKGROUND INFORMATION 3
2.1	Site Setting 3
2.2	Previous Investigations and Reports4
2.2.1	Grontmij Desk Top Study and Preliminary Site Investigation
2.2.2	Grontmij November 2011 Site Investigation5
3	GROUND INVESTIGATION
3.1	Scope, Methodology and Rationale8
3.2	Ground Conditions9
3.2.1	Adequacy of Investigation Depth and Spatial Extent9
3.3	Field Evidence of Contamination9
4	GENERIC QUANTITATIVE RISK ASSESSMENT 11
4.1	Soil Analysis Results 11
4.2	Discussion of Results 12
4.2.1	Soils 12
4.2.2	Leachability Assessment 12
4.2.3	Ground Gas Assessment 12
4.2.4	Safety of Water Supply Pipes 12
5	ASSESSMENT OF POTENTIAL HUMAN HEALTH RISKS
5.1	Benzo(a)pyrene
5.2	Institute of Occupational Medicine (IOM) – Assessment of
	benzo(a)pyrene and other PAHs13
5.2.1	Use of GAC within Part 2A 13
5.2.2	Selection of Assessment Criterion14
5.2.3	Derivation of IOM Assessment Criterion14
5.2.4	Use of benzo(a)pyrene as a Surrogate Marker Compound 15
5.2.5	Conclusion
5.3	Asbestos
6	UPDATED CONCEPTUAL SITE MODEL
7	SUMMARY AND CONCLUSION 19
7.1	Summary19
7.2	Conclusion

FIGURES

Figure 2.1 – Site Location		4
----------------------------	--	---

TABLES

Table 2.1 - Site Setting	3
Table 3.1 - Field Evidence of Potential Contamination	10
Table 4.1 - Soil Analysis Results Summary	11
Table 6.1 - Pollutant Linkages, Post-2012 Site Investigation	18

DRAWINGS

Drawing 106270-600-D: Exploratory Hole Location Plan

APPENDICES

Appendix A	Limitations Statement
Appendix B	Grontmij March 2012 Investigation Report (incorporating 2010 Desk Study
	and 2010 investigation)
Appendix C	Exploratory Hole Logs (2012 and 2013)
Appendix D	Laboratory Chemical Analysis Certificates (2012 and 2013)
Appendix E	Soil Screening Tables against GAC
Appendix F	PAH Risk Assessment Approach
Appendix G	Severity and Probability of Risk (after CIRIA 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Contaminated Land is defined in Section 78(2) of Part 2A of the Environmental Protection Act 1990 as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused.

Further information is provided in the Act and the April 2012 Contaminated Land Statutory Guidance.

Grontmij assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, located to the east of Hunter Road, Cannock (hereafter referred to as 'the site') was identified as a priority for inspection. The site was considered as a priority for inspection because:

- There are 35 residential properties with gardens and 12 blocks of two/three storey maisonettes with communal gardens which overlie an area of infilled land, recognised as a former (1940s/50s) landfill site.
- The site is underlain by two secondary A aquifers (superficial and bedrock geology), potential at risk from leachate from the infill and or leachable concentrations from the infill soils.

The inspection process has been undertaken in series of phases which has included a desk study and phased approached site investigations. The previous works undertaken by Grontmij included:

- Appointed by the Council to undertake a Desk Top Study (completed August 2010) and subsequent limited initial (shallow excavation by hand pitting) exploratory site investigation. This investigation was undertaken in December 2010 and reported in May 2011.
- Site investigation undertaken in November 2011 based on the recommendations within the May 2011 report which included gaining further soil and leachate data together with the installation of gas monitoring wells with subsequent gas monitoring. These works were Capital Project Grant Funded and the report associated with these works was submitted to the Council in March 2012.

1

Further details of these previous investigations are discussed in Section 2.2.

Based on the findings of the November 2011 investigation, a further refined phase of investigation was undertaken, which concentrated solely on polycyclic aromatic hydrocarbons (PAH) and asbestos in relation to human health as these were the only pollutant linkages which remained as requiring further assessment. These works were also Capital Project Grant Funded and were undertaken in September 2012. The information contained herein details the results and findings of this 2012 investigation and incorporates the PAH and asbestos results of the previous investigations to provide and overall assessment of the site with regard to these determinands.

A final phase of work was undertaken in by Grontmij in February 2013. The scope of this phase of work was to obtain more soil samples in the northwest corner of the site for asbestos analysis and identification.

The report and the information contained herein, is the reporting aspect requirement of the Council's 2012 Capital Project grant application and presents the findings of the November 2011, September 2012 and February 2013 exploratory investigation with regard to PAH and asbestos within the soil, together with an assessment on the condition of the land with regard Part 2A.

This Exploratory Site Investigation Report is subject to the limitations presented in Appendix A.

2 BACKGROUND INFORMATION

2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1.

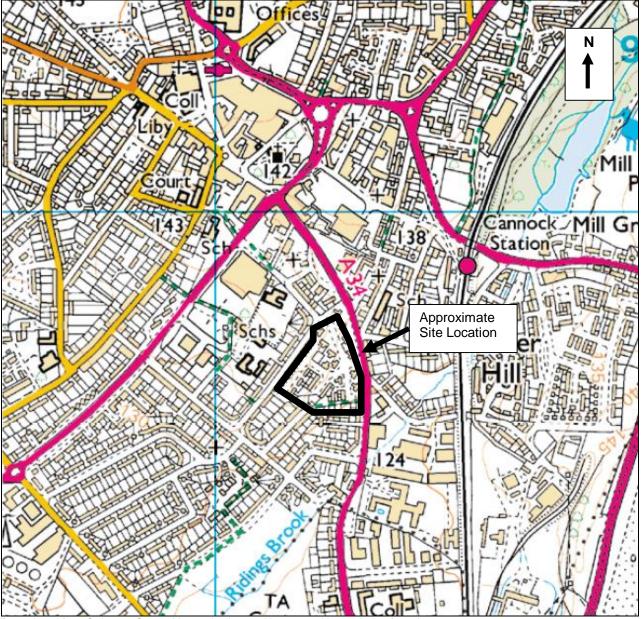

Data	Information
Address	Hunter Road and Carfax (and roads branching off this road), north of Bridgtown, Cannock, Staffordshire. Nearest postcode: WS11 0YT.
Current site use	Mix of two storey terraces with private gardens (predominantly southern end of site) and three-storey flats surrounded by communal landscaped areas. Architectural style of buildings indicates that the buildings date from the 1960s or 1970s. Council records indicate approximately 50% are privately owned and 50% within housing association ownership.
Grid Reference	Approximate centre of site is located at NGR 398250, 309650
Site Area	The site occupies approximately 3 ha
Topography	General topographic gradient within the area is moderate, sloping downwards towards the south east. However, the site is on multiple levels as a result of cut and fill earthworks.
Surrounding land use	The site is located within a wider residential area. The A34 road is adjacent to the eastern boundary of the site. St Marys Primary School is located 50m to the north west of the site.
Mapped Geology	British Geological Survey (BGS) mapping indicates that the north and west of the site (comprising approx 66% of the total site) is underlain by superficial glaciofluvial deposits (sand and gravel), while the east and south of the site (approx 33% of the total site) is underlain by Diamicton Till (clay, silt, sand and gravel). The superficial deposits are underlain by bedrock of mudstone, siltstone and sandstone of the Pennine Middle Coal Measures Formation.
Hydrogeology	Both the bedrock and superficial deposits are Secondary A aquifers. Secondary A aquifers are "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers".
Groundwater Abstractions	The closest public potable abstraction wells are located approximately 7km to the north and east.
Source Protection Zones (SPZs)	The Environment Agency indicate that the site does not lie within a SPZ.
Surface Waters	Ridings Brook is located 200m south east (inferred downgradient) of the site based on the topography of the area.
Historical Land Use	Environment Agency data provided to the Council indicate that the site comprises a former landfill site, operational between 1945 and 1955. The type of waste received by the site is unknown. The operational period pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal licence.
Ecologically designated sites ¹	MAGIC search indicates no statutory protected ecologically significant sites exist within 500m of site boundary.
Scheduled Monuments	Pastscape website indicates no monuments on site or in close proximity.

Table 2.1 - Site Setting

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright (not to scale)

2.2 Previous Investigations and Reports

2.2.1 Grontmij Desk Top Study and Preliminary Site Investigation

Grontmij has previously completed a desktop assessment of the site (August 2010). The assessment included the review of on-line data resources, in-house mapping and records provided by the Council, and a site walkover. Based on the findings of the desk study a limited, shallow preliminary site investigation, comprising five shallow hand-dug trial holes and chemical analysis of five soil samples, was undertaken in December 2010 and reported in May 2011. The exploratory holes were labelled as TP1 to TP5 and the chemical testing comprised:

- 5 x soils metals and inorganics analysis (arsenic, barium beryllium, boron (water soluble), cadmium, chromium (trivalent and hexavalant), copper, lead, mercury, nickel, selenium, vanadium, zinc)
- 5 x soil speciated PAH analysis
- 5 x Soil organic matter (SOM)
- 3 x Asbestos screen and identification

The initial investigation identified PAH concentrations which could potentially pose an unacceptable risk to sensitive receptors (both human health and environmental receptors. The Conceptual Site Model (CSM) of potential pollutant linkages, developed upon completion of the initial investigation (2010) in accordance with the model procedures², and statutory guidance³ was used to identify the further investigation requirements (undertaken in November 2011). The recommendation of the initial study was that further soil and leachate data was required together with the installation of gas monitoring wells with subsequent gas monitoring and this formed the basis of the exploratory work that was undertaken in November 2011.

2.2.2 Grontmij November 2011 Site Investigation

The November 2011 investigation report was issued to the Council in March 2012. This 2012 report (which includes the Grontmij 2010 desk study and initial May 2011 investigation as an appendix) is reproduced in Appendix B. The site works comprised:

- 7 No. window sample holes (WS01 WS07), to a maximum depth of 4.0m bgl and installed with gas monitoring wells.
- 20 No. hand dug pits (HP06 to HP24, plus HPA) to a maximum depth of 0.9mbgl
- 5 No. gas monitoring rounds recording concentrations of methane (CH₄), carbon dioxide (CO₂), oxygen (O₂), carbon monoxide (CO) and hydrogen sulphide (H₂S), together with flow rates, differential pressure and atmospheric pressure.

The chemical analysis comprised both soil and leachate analysis. The soil analysis consisted of:

- 28 No. soil metal analysis (as previous investigation)
- 22 No. soil PAH analysis
- 4 No. soil Total petroleum hydrocarbons Criteria Working Group (TPHCWG) (which includes BTEX (benzene, toluene, ethylbenzene, xylene) analysis
- 10 asbestos screen and identification.
- 5 No. soil volatile organic compound (VOC) analysis and 9 No soil semi volatile organic compound (SVOC) analysis
- 19 No. soil SOM analysis
- 8 No. pH and sulphate total analysis

The soil leachability analysis comprised:

- 6 No metals analysis (arsenic, boron, cadmium, chromium (total), copper, lead, mercury, nickel, selenium, zinc)
- 5 No. speciated PAH analysis

³, Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance:, April 2012.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

Tap water samples were also obtained from 6 of the residential properties and analysed for a suite of metals and speciated PAHs.

The findings of the November 2011 investigation are discussed below.

- The metal concentrations at the site pose a very low risk to human health and controlled waters. With regard to human health all of the metal concentrations which exceeded Tier 1 screening values (arsenic, copper, nickel, vanadium, zinc) were recorded in soil samples obtained from one location (WS07) at depths of 1.8 mbgl and below. Therefore, dermal contact with the soils and subsequent ingestion (directly or via contact with home-grown vegetables) is unlikely. A sample taken at a shallower depth (0.7 mbgl) from the same exploratory location recorded concentrations less than the screening value for all metals analysed thus validating the lack of exposure scenario. The depth of the contamination, the lack of risk associated with the shallower soils and that the location of where these soils were identified is public open space and not within a residential plot all reduce the potential risk posed by these contaminants to human health. With regard to inhalation (vapour) risk from these contaminants, under "normal" conditions, the metals detected are not volatile, nor produce and/or form a gaseous state. Therefore, the inhalation pathway was also deemed as negligible. As for groundwater no leachable metals were recorded greater than the UK drinking water standards (DWS). Leachable concentrations of cadmium and copper were recorded in excess of Environmental Quality Standards (EQS). However, both copper and cadmium are hardness dependent and the EQS value used for screening was taken as the most stringent of the values which could have been used. Therefore, even though copper and cadmium exceed it is unlikely that the concentrations recorded would pose a risk to surface water (which is located 200 m from the site).
- **PAHs** were recorded at leachable concentrations greater than UKDWS and EQS. However, it is unlikely that concentrations that exceed the UKDWS would result in significant pollution or the significant possibility of significant pollution of controlled waters. Given the relatively low concentrations observed within the soil and subsequent leachate analysis, the lack of a continuing source combined with the lower sensitivity of the site (subject to confirmation that there are no private water abstractions in proximity to the site) the risk to **groundwater** from the soils at the site is **not significant**. With regard to **surface water**, given the distance to the nearest downgradient surface water receptor (200m), and the opportunity for attenuation and dilution along this flow-path, the PAH recorded leachable concentrations are of **very low risk** to the surface water receptor.
- The TPH, VOC, SVOC and BTEX concentrations at the site were deemed as not sufficient to pose a significant risk to human health and/or controlled waters.
- The concentrations of contaminants within drinking water in six samples tested are compliant with UK drinking water standards. Therefore, the risk to residents and/or the pipe work integrity is very low.
- The results of the gas monitoring indicated that, in regard to CH₄ and CO₂ a CIRIA characteristic situation 1 was likely suitable protection measures which would need to be applied to dwellings. This is the lowest risk category (of six) presented in CIRIA report 665, and indicates that no special gas precautions would be required in the construction of new buildings. Additionally, zero H₂S and CO was recorded. In view of the

monitoring results highlighted above, ground gases are unlikely to pose a risk to the housing or residents at the site.

The viable pollutant linkages that remained as a result of the November 2011 investigation are discussed below.

- PAH were found in the Made Ground at concentrations which may pose a risk to human health as they exceeded residential with plant uptake GACs. Further sampling in residential gardens was recommended to improve confidence that the results to date are representative of the Made Ground at the site. Assuming greater concentrations are not identified, it is likely that further qualitative risk assessment would allow the concentrations identified to date to be viewed as posing an acceptable level of risk to residents.
- ACM was found in one sample (WS02), although "free" asbestos fibres were not found in the surrounding soil. Further sampling around this location was recommended to improve confidence that there is not a (relatively localised) asbestos-affected area at the site.

The previous 2011 investigation report (reported in March 2012), which includes the desk study and initial investigation as an appendix, is included within Appendix B.

3 GROUND INVESTIGATION

In order to further examine the remaining significant potential pollutant linkages identified in Table 2.2, (associated with PAH and asbestos with regard to human health) a further exploratory site investigation was undertaken on the 10th to 12th September 2012 and the 13th February 2013 to take additional samples. This section describes the two site investigations undertaken, the results obtained and a discussion of the results.

3.1 Scope, Methodology and Rationale

The scope, methodology and rationale of the intrusive site investigation undertaken in November September 2012 was as follows:

- 29 No. hand dug pits (HP101-HP129) to a maximum depth of 0.85m bgl.
 - HP101-HP105 were positioned within a grassed open space area (with one sample in a rear garden) where ACM had been identified in a single location (WS02) in the November 2011 investigation, in order to examine whether ACM is widespread in this part of the site;
 - HP106-114 and HP118-125 were positioned in residential gardens which were not investigated in the November 2011 investigation, to ensure an overall coverage of at least one soil sample would be analysed for PAHs per residential garden;
 - During the advancement of the hand pits described above further suspected ACM was identified in two of the locations (HP112 and HP125). As such a dynamic strategy was adopted, whereby further samples were taken around the potential ACM to allow the relative abundance of ACM to be assessed. Three additional hand pits (HP115-117) were advanced at 4 Oriel Close and four additional pits (HP126-129) at 30/32 Hunter Road for this purpose.

Based on the presence of ACM identified within the September 2012 investigation (at 30/32 Hunter Road), a further delineation exercise was undertaken in February 2013 in the northwest area of the site and comprised the following:

- Two hand dug pits (HP130/HP131) positioned in 17/15 High Bank front landscaped garden.
- Three hand dug pits in 34/36 Hunter Road rear landscaped garden facing onto High Bank (HP132-HP134)
- Two hand dug pits (HP135-HP136) in the front garden of 34/36 Hunter Road
- Two hand dug pits advanced in 30/32 Hunter Road (HP137-HP138).

During each of the investigations logging of soil arisings was undertaken in accordance with BS5930:1999, and also, the any visual or olfactory evidence of potential contamination was noted.

Representative soil samples of the strata encountered were retained, which were selected on the basis of field observations of potential contamination and the aim of achieving good spatial and depth coverage of the site.

The retained samples were submitted to Scientific Analytical Laboratory (SAL) of Manchester in cooled coolboxes and under full chain of custody documentation. A total of 18 No. soil samples were scheduled for speciated PAH analysis, with a further 30 (20 as part of the September 2012 investigation and 10 as part of the February 2013 investigation) No. for asbestos screen and identification and presence of fibres. Four samples were also analysed for SOM.

The results of the fieldwork programme outlined above and where appropriate the previous investigations are discussed in the following sections.

3.2 Ground Conditions

The ground conditions have been based on information obtained from all four site investigations undertaken at site. Exploratory hole logs, providing full details of the strata encountered, are included within Appendix C for the 2012 and 2013 investigations and within the report included in Appendix B for the previous (2010 and 2011) investigations.

The ground conditions encountered at the site generally comprised Made Ground over gravelly sand (firm clay in one location), as detailed below:

Made Ground

The Made Ground was predominantly granular in nature, consisting of gravelly sand. The gravel content of the Made Ground was variable, including fine to coarse gravel of ash, clinker, brick, ceramics, slate, (locally) possible asbestos tile, metal fragments and cobbles of brick and concrete. Further details of field evidence of potential contamination are provided in Section 3.2.3. Made Ground was encountered to a maximum depth of 3.2 mbgl, within WS07, although this exploratory hole was atypical, with Made Ground generally being encountered to a maximum of 1.3 mbgl.

Superficial Deposits

Superficial deposits were encountered across the site within the windowless sampler holes. The superficial deposits generally comprised sand and gravel, consistent with the mapped geology of fluvio-glacial deposits. The superficial deposits were encountered from a minimum depth of 0.4 mbgl, within HP09 and were generally encountered to a maximum (unproven) depth of 3 mbgl (termination depth of WS01 and WS02), although sand and gravel was also encountered beneath the made ground in WS07 at 3.2m and was proven to 4.0m bgl.

Within WS06, drilled towards the eastern site boundary, firm to stiff gravelly clay was encountered from 1.4 mbgl to termination depth of 2.0 mbgl. This material is consistent with the mapped superficial deposit of Diamicton Till indicated in the east part of the site.

Groundwater

Groundwater was not encountered during the advancement of any of the exploratory holes.

3.2.1 Adequacy of Investigation Depth and Spatial Extent

Superficial deposits were encountered across the site during the investigations, meaning that the full depth of the Made Ground beneath the site has been encountered and that the data collected is likely to be representative of the site as a whole. The exploratory hole coverage is considered to provide good coverage of the site, with a deliberate emphasis on properties which have private gardens and where exposure to subsurface contaminants is more likely than within communal grassed landscaped parts of the site.

3.3 Field Evidence of Contamination

The drilling arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1:

	idence of Potential Co		Donth to	Visual and Olfactory Evidence
Date	Exploratory Hole	Depth from (mbgl)	Depth to (mbgl)	Visual and Olfactory Evidence of Contamination ¹
December 2010	TP1	0	0.8	Ash, clinker and slag
2000111001 2010	TP2	0	0.8	Ash and clinker
	TP3	0	1.0	Ash
	TP4	0	0.7	Ash
	TP5	0	0.7	Ash
November 2011	WS02	0	0.1	Clinker
	WS04	0.6	1.25	Clinker
	WS07	0.5	0.9	Clinker
	WS07	1.5	3.2	Ash and clinker, green/blue
			0.2	discolouration
	HP07	0	0.8	Clinker
	HP08	0.4	0.55	Ash
	HP10	0	0.6	Clinker
	HP11	0	0.7	Clinker
	HP18	0	0.5	Clinker
	HP20	0	0.3	Clinker
	HP22	0	0.5	Clinker
	HP23	0.4	0.5	Clinker
September 2012	HP101	0	0.48	Ash
	HP102	0	0.45	Ash
	HP103	0	0.5	Ash
	HP104	0	0.5	Ash
	HP105	0	0.35	Ash
	HP106	0	0.55	Ash
	HP107	0	0.85	Ash
	HP109	0	0.7	Black staining and odour from
				0.45 to 0.65m bgl
	HP110	0	0.7	Rare clinker
	HP111	0	0.75	Rare clinker
	HP112	0	0.7	Potential ACM
	HP114	0	0.6	Rare clinker
	HP117	0	0.4	Ash
	HP112	0	0.2	Clinker
	HP124	0	0.6	Clinker
	HP125	0	0.6	Possible ACM material
	HP126	0	0.3	Ash, clinker and possible ACM
	HP127	0	0.3	Clinker and possible ACM
	HP128	0	0.1	Potential ACM material
	HP129	0	0.28	Ash
February 2013	HP132	0	0.3	Clinker

Table 3.1 - Field Evidence of Potential Contamination

¹ Visual and olfactory evidence noted within the soil matrix

4 RISK ASSESSMENT

4.1 Soil Analysis Results

Soil samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to Scientific Analysis Laboratories (SAL) Ltd of Manchester. SAL Ltd holds UKAS and/or MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve good spatial coverage of the site.

Table 4.1 presents a summary of the analysis results. As PAHs and asbestos were the only contaminants concluded to be (during the previous investigations) remaining as a possible risk to receptors only data relating to PAH and asbestos (from all four investigations) has been included.

The PAH soil results were compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used were:

 Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) – 2nd Edition 2009

Full analytical testing results for the 2012 and 2013 investigations are included as Appendix D. The previous analytical testing results of the 2010 and 2011 investigations are included with the report contained within Appendix B.

Tier 1 Soil screening tables including the data from all of the four investigations are included within Appendix E

Determinand	No. of Samples	Minimum Value	Maximum Value	SGV / GAC ¹	Locations where SGV or GAC are exceeded		
	Tested						
Polyaromatic				creening values were	-		
Hydrocarbons (PAHs)	45			speciated results are			
			presented in App	pendix D			
Benz(a)anthracene	45	<0.1	21	4.7	8 locations		
Benzo(a)pyrene	45	<0.1	15	0.94	21 locations		
Benzo(b)fluoranthene	45	<0.1	18	6.5	6 locations		
Chrysene	45	<0.1	16	8	4 locations		
Dibenzo(ah)anthracene	45	<0.1	3.4	0.86	7 locations		
Indeno(123-cd)pyrene	45	<0.1	8.5	3.9	5 locations		
Asbestos screen	30	Asbestos-containing material detected in six samples: WS02 0.2m bgl: amosite & chrysotile detected within tile HP112 0.3m bgl: chrysotile detected in asbestos-cement HP125 0.2m bgl: chrysotile detected in asbestos-cement HP126 0.2m bgl: chrysotile in insulation board HP127 0.1m bgl: chrysotile free fibres in asbestos-cement HP128 0.05m bgl: amosite and chrysotile in insulation board					
		Note that in all above cases, the soil matrix surrounding the ACM did NOT contain asbestos fibres.					

Table 4.1 - Soil Analysis Results Summary

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding).

¹ 23 samples were tested for Soil Organic Matter (%SOM) content. An SOM average of 5% was calculated based on the soil samples tested. Therefore as a conservative estimate, SGVs and GAC generated using a 2.5% SOM value was used in the above screen

4.2 Discussion of Results

4.2.1 Soils

The concentrations of PAH compounds in 21 of the 45 samples analysed exceeded the adopted Tier 1 screening values. The specific PAHs were benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene chrysene, dibenzo(ah)anthracene and indeno(123-cd)pyrene. The locations where more than one speciated PAH was detected at a concentration greater than the GAC were: TP1, TP5, HP07, HP08, HP20, HP106, HP124 and WS02. All are located within the southern half of the site. Given the spatial extent of the exceedances, PAH continues to be considered as a potential contaminant of concern and has been taken through for further assessment.

ACMs were identified in six samples (WS02, HP112 and also HP125, HP126, HP127 HP128 to the southeast of properties 30/32 Hunter Road. However, "free" asbestos fibres within the soil matrix were not encountered in these samples. During the February 2013 investigation (which was designed to delineate the extent of asbestos in this area) confirmed no presence of Asbestos as "free fibres" or ACM within the vicinity of HP130 to HP138. Therefore, asbestos is only located within isolated areas of the site and not within the soil matrix but contained within fragments of ACM sporadically present at the site.

4.2.2 Leachability Assessment

The impact of leachable metals and organics at the site was identified as not being significant with regard to groundwater or surface water during the previous (November 2011) investigation. Therefore no further leachate sampling or analysis was undertaken.

4.2.3 Ground Gas Assessment

The impact of ground gas at the site was identified as not being significant with regard to sensitive receptors during the previous (November 2011) investigation. Therefore no further gas monitoring and/or analysis were undertaken.

4.2.4 Safety of Water Supply Pipes

The impact of contaminants within the soil at the site was identified as not being significant with regard to pipe integrity or water supply during the previous (November 2011) investigation. Therefore no further tap sampling or analysis was undertaken.

12

5 ASSESSMENT OF POTENTIAL HUMAN HEALTH RISKS

The results of the intrusive investigations with regard to PAHs identified the following species of PAH as a potential human health risk:

• Benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, chrysene, indeno(123cd)pyrene,

The assessment of the degree of the potential human health risks posed from these contaminants is considered in the following report sections.

5.1 Benzo(a)pyrene

The concentration of benzo(a)pyrene was greater than the adopted Tier 1 screening value at the following locations:

• TP1, TP2, TP4, TP5, HP06 to HP10, HP20 to HP22, WS2, HP106 to HP108, HP111, HP113 to HP115 and HP124 to HP125.

The results at these locations ranged from 0.1 mg/kg to 15 mg/kg. Therefore, these concentrations were greater than a limit which is representative of a concentration at which risk to human health would be negligible (i.e greater than a GAC). Given these exceedances, further assessment was required and undertaken. The approach adopted to form the basis of risk of exposure to benzo(a)pyrene (and the other PAHs identified) was based on the work undertaken by the Institute of Occupational Medicine and is detailed below. This approach considers the toxicology of PAHs and specifically the concentrations in soils that may represent a significant possibility of significant harm..

5.2 Institute of Occupational Medicine (IOM) – Assessment of benzo(a)pyrene and other PAHs

This section provides an outline summary of the IOM approach to generating its assessment criterion for benzo(a)pyrene and other PAHs. Further, more detailed information is included within Appendix F and should be read in conjunction with the sections below.

5.2.1 Use of GAC within Part 2A

The assessment criterion used for benzo(a)pyrene and other PAHs throughout the previous phases of the work was the GAC (derived by the CIEH and LQM). Soil GAC are criteria which combine a set of generic, conservative assumptions regarding exposure with toxicological criteria (health criteria values or HCVs), which represent minimal risks to health.

With regard to GACs, the 2012 revised Statutory Guidance states that:

"GACs relating to human health risk assessment represent cautious estimates of levels of contaminants in soil at which there is considered to be no risk to health or, at most, a minimal risk to health.

(a) They may be used to indicate when land is very unlikely to pose a significant possibility of significant harm to human health. This is on the basis that they are designed to estimate levels of contamination at which risks are likely to be negligible or minimal and far from posing a significant possibility of significant harm to human health.

(b) They should not be used as direct indicators of whether a significant possibility of significant harm to human health may exist."

Therefore, on this basis Grontmij considered that an exceedance of the GAC of 0.94 mg/kg benzo(a)pyrene in soil derived by CIEH/LQM does not constitute a *significant possibility of significant harm* SPOSH (Category 1). However, further assessment would still required, as the maximum concentration encountered at the site was 15 mg/kg, over an order of magnitude greater than the GAC, suggesting the potential of more than a "minimal" risk to human health remains.

5.2.2 Selection of Assessment Criterion

To provide further assessment of those concentrations which exceed the GAC (i.e those which may pose more than a minimal risk to human health) the assessment criterion value derived by IOM has been used.

The IOM carried out a review for Brent Council on polycyclic aromatic hydrocarbons (PAHs) in 2009, to assess the toxicological properties of PAH above GACs in residential housing sites to support Brent Council to make an assessment of soil concentrations above which may constitute significant possibility of significant harm (SPOSH) at the Brent site.⁴ Although the report was developed specifically for one site in Brent, the toxicological considerations used provide a useful input into other similar sites. The IOM toxicological review has been assessed by Grontmij and is considered authoritative and the lines of evidence appropriate for use at other situations.

Following review of the IOM work it has been agreed between Grontmij and the Council that an assessment criterion of 17 mg/kg will be adopted for benzo(a)pyrene as a threshold below which SPOSH will not be considered to occur.

5.2.3 Derivation of IOM Assessment Criterion

The information provided below is a summary of the how the derivation of the IOM value of 17mg/kg was achieved. Further, more detailed information is provided within Appendix F.

The value of 17 mg/kg is the lower end of a range (for which the upper end is 36 mg/kg) proposed by IOM as a concentration range at which it could be argued that, if greatly exceeded "*the potential for significant harm would be significant, unless measures are in place to prevent exposure*"⁵.

The range of 17mg/kg to 36 mg/kg benzo(a)pyrene was derived by considering a number of toxicological assumptions, and assumptions about exposure. These are described in detail within Appendix F. Appropriate toxicological criteria for cancer endpoints were identified by expert toxicologists and were based on rodent studies for the oral route of entry and on epidemiological studies for the inhalation pathway. IOM selected appropriate uncertainty factors, based on guidance from the Committee on Carcinogenicity.

IOM identified "a typical toddler aged between 1 and 2 years with a body weight of 11.4 kg" as the critical receptor and assumed a "long term mean intake of soil and dust" of 100 mg/day. This is a conservative assumption as typically the critical receptor is identified as being a young child between 0 and 6 years of age. An additional allowance of a factor of two was made for inhalation

⁵ The report also notes that "It would clearly be inappropriate to discriminate between soils that contained PAH contents that were marginally above a discrete guideline value from those that were marginally below that value."

⁴ Toxicological Review of the Risks of Exposure to Soil Containing Polycyclic Aromatic Hydrocarbons 2009

of indoor dust. An adjustment was also made for the fact that other PAHs besides benzo(a)pyrene were present within the soil. This resulted in a range of 1.7 mg/kg to 3.6 mg/kg. This range was adjusted by a further factor of ten to exclude normal background concentrations of benzo(a)pyrene content in urban soils, resulting in the range of 17 mg/kg to 36 mg/kg of benzo(a)pyrene in soil.

It is also noted that the report undertaken by IOM states that:

"Given that the exposure modelling is based on reasonable worst case assumptions, soil concentrations between 7 and 17 mg/kg may be tolerable given that the removal of contaminated soils could give rise to temporary exposure of residents to B[a]P during any remediation works and that this could have a much greater impact on their lifetime exposure than if the soil had remained undisturbed."

5.2.3.1 Other Assessment Criterion

It should be noted that it is acknowledged that the Health Protection Agency⁶ identified a different toxicological criterion for the assessment of land contamination, which is lower than that used in the derivation of the IOM value of 17 mg/kg. The different toxicological criterion was the use of a lower range of Point of Departure⁷ (POD) which in the case of Benzo(a)pyrene is referred to as a BMDL₁₀.⁸ However, the differences between the two values are relatively small, compared to the uncertainty factors that are subsequently applied. Further discussion regarding the different criterion used is provided in Appendix F. Equally we are aware of decisions on SPOSH made by other local authorities where selecting a different POD has resulted in the threshold of SPOSH has been selected at higher soil concentrations.

Overall the arguments presented by IOM are considered to be a robust starting point for considering the question of SPOSH at sites where PAH contamination is present.

5.2.4 Use of benzo(a)pyrene as a Surrogate Marker Compound

The HPA Contaminated Land Information Sheet (CLIS) proposes the use of benzo(a)pyrene as a surrogate marker (a single substance that may be used to represent a wider group of substances) for total PAHs in soils, provided that the profile of PAHs is of sufficient similarity to the mixture used within a study on which their toxicological assessment is based. The HPA CLIS reports a study of 52 contaminated sites across the UK and notes that:

"Categorisation of the data, according to previous industrial use, showed no substantial differences in the relative PAH profiles. Moreover, the PAH profile in contaminated land was similar to that found in industrial, urban and rural UK soil samples and in other surveys of soil within the UK."

It would therefore appear that benzo(a)pyrene is a good surrogate marker for total PAHs in contaminated soil. As the criterion derived by IOM is considered to be a robustly derived and an authoritative criterion, appropriate as a value below which land will not be considered to be contaminated, the approach of using benzo(a)pyrene as a marker compound for the other four

⁸ BMDL₁₀

⁶ HPA Contaminated Land Information Sheet Risk Assessment Approaches for Polycyclic Aromatic Hydrocarbons (PAHs), Health Protection Agency v5 2010

^{&#}x27; POD

speciated PAHs which exceeded their GAC is considered suitable for evaluation of the total PAH concentrations at the Hunter Road site.

5.2.5 Conclusion

As the maximum concentration for benzo(a)pyrene from the 45 soils samples analysed was 15mg/kg is less than the IOM value of 17 mg/kg the site is not considered to present a significant possibility of significant harm with regard to benzo(a)pyrene.

Also, using benzo(a)pyrene as a surrogate marker for total PAHs the other four PAHs which exceeded their GAC are also considered to be at concentrations which would not pose an unacceptable risk to human health.

5.3 Asbestos

ACM has been found at the site within isolated areas. The 2012 investigation determined that the ACM within WS02 0.2m bgl (amosite & chrysotile detected within tile) and HP112 0.3m bgl (chrysotile detected in asbestos-cement) were isolated occurrences. This was because delineation samples taken around these locations recorded no asbestos material or fibres within the soil samples obtained. Therefore, these areas are not considered to pose an unacceptable risk to human health.

The initial delineation samples taken in 2012 from the area surrounding HP125 (where chrysotile was detected in asbestos-cement) identified more ACM (but no fibres) within the surrounding soils. This area was in soft landscaping adjacent to 30/32 Hunter Road. The 2013 additional investigation recorded no further ACM and no asbestos fibres within the soils surrounding this soft landscaped area. Therefore, it can be concluded that the ACM is contained within the landscaped area adjacent to 30/32 Hunter Road but is confined to the material within which it is found. As no free fibres were detected, the risk from asbestos in this area to human health is reduced.

6 UPDATED CONCEPTUAL SITE MODEL

Based on the information provided from the September 2012 report and subsequent additional asbestos analysis, the CSM for the site has been revised. This is presented as Table 6.1 overleaf and is based on the recognised contamination/pathway/receptor relationships and identification of their contaminant linkages⁹.

The CSM presented in Table 6.1, relates to those pollutant linkages that remained post the 2011 investigation, i.e. those linkages associated with PAHs and asbestos posing a risk to human health. For clarification those linkages discounted post 2011 are presented below.

Human Health:

 Residents of properties above infilled ground CH₄, CO₂, H₂S and CO from decomposition of degradable elements of landfill material Metal contamination within the soils CH₄, CO₂, H₂S and CO from decomposition of degradable elements of landfill material Metal contamination within the soils Contaminant(s) Secondary A aquifer Contaminant(s) Contaminant(s) Pathway(s) Risk Leachable benzene and 	Human F	Health:			
above infilled ground from decomposition of degradable elements of landfill material subsequent asphyxiation and explosion risk additional matrix Metal contamination within the soils Dermal, ingestion. inhalation of soils Low Groundwater: Contaminant(s) Pathway(s) Risk Low / Moderate Secondary A aquifer (solid geology: Pennine Middle Coal Measures) beneath site Leachable benzene and PAHs No obvious pathway Low Supface Water: Leachable benzene and PAHs No obvious pathway Low Supface Water: Contaminant(s) Pathway(s) Risk Supface Water: Leachable metals and PAHs No obvious pathway Low Supface Water: Contaminant(s) Pathway(s) Risk Supface Water: Leachable metals and PAHs Migration of disolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity) Moderate Property and services: Contaminant(s) Pathway(s) Risk Very low taining vater quality identified metals, cyanide and And gravel deposits (assuming hydraulic connectivity) Woderate Property (structures) - sub-surface concrete Sulphate and pH Contact between contaminants and concrete Low / Moderate • Property (s	Re	ceptor	Contaminant(s)	Pathway(s)	Risk
Bit and vapours Groundwater: Contaminant(s) Pathway(s) Risk • Secondary A aquifer (superficial sand and gravel) beneath site Leachable benzene and PAHs Pathway(s) Risk • Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site Leachable benzene and PAHs No obvious pathway Low Surface Water: Contaminant(s) Pathway(s) Kisk Low Receptor Contaminant(s) Pathway(s) Low • Ridings Brook 200m to south-east Contaminant(s) Pathway(s) Risk • Ridings Brook 200m to south-east Contaminant(s) Pathway(s) Risk • Subsurface services: Contaminant(s) Pathway(s) Risk • Subsurface services: Contaminant(s) Pathway(s) Risk • Subsurface services: UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK Pathway(s) Risk • Property (structures)- sub-surface concrete Sulphate and pH Contact between contaminants and concrete Low / • Property (structures)- residential buildings on cresidential buildings on cresidential buildings on Decomposable or compressible elements of Differential settlement of infill, acuising structural failure of	•		from decomposition of degradable elements of	subsequent asphyxiation and	Low
Receptor Contaminant(s) (superficial sand and gravel) beneath site Pathway(s) Risk Leachable benzene and PAHs • Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site Leachable benzene and PAHs No obvious pathway Low Surface Water: Leachable benzene and Middle Coal Measures) beneath site Pathway(s) Risk Leachable benzene and PAHs Surface Water: Contaminant(s) Pathway(s) Risk Leachable benzene and PAHs No obvious pathway Low Surface Water: Contaminant(s) Pathway(s) Receptor Contaminant(s) Pathway(s) • Ridings Brook 200m to south-east Leachable metals and PAHs Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity) Risk Property and services: Contaminant(s) Pathway(s) Risk Receptor Contaminant(s) Pathway(s) Risk • Subsurface services serving the buildings (principally water supply) UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations Contact between contaminants and concrete Low / Moderate • Property (structures) – residential buildings on residential buildings on Decomposable or compressible elements of compressible ele					Low
 Secondary A aquifer (superficial sand and gravel) beneath site Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site Leachable benzene and PAHs Leachable benzene and PAHs No obvious pathway Low / Moderate Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site Contaminant(s) Ridings Brook 200m to south-east Ridings Brook 200m to south-east Contaminant(s) Pathway(s) Risk Leachable metals and PAHs Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity) Subsurface services: Subsurface services serving the buildings (principally water supply) Sulphate and pH Property (structures) – sub-surface concrete Property (structures) – sub-surface concrete Property (structures) – sub-surface concrete Property (structures) – seidential buildings on Pecomposable or compressible elements of Decomposable or compressible elements of 	Groundw	vater:			
(superficial sand and gravel) beneath sitePAHsaquiferModerate• Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath siteLeachable benzene and PAHsNo obvious pathwayLowSurface Water: ReceptorContaminant(s)Pathway(s)Risk Low/Low / Moderate• Ridings Brook 200m to south-eastContaminant(s)Pathway(s)Risk Low / ModerateLow / Moderate• ReceptorContaminant(s)Pathway(s)Risk Low / ModerateLow / Moderate• ReceptorContaminant(s)Pathway(s)Risk Very low to saud and gravel deposits (assuming hydraulic connectivity)No etail Moderate• Subsurface services serving the buildings (principally water supply)UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK drinking water standardsPathway(s)Risk Very low tainting / contaminants and concreteRisk Very low tainting / contaminants and concreteLow / Moderate• Property (structures) - residential buildings on compressible elements of compressible elements of compressible elements ofContact between contaminants and concreteLow	Re	ceptor	Contaminant(s)	Pathway(s)	Risk
(solid geology; Pennine Middle Coal Measures) beneath sitePAHsSurface Water: ReceptorContaminant(s)Pathway(s)Risk Low / Moderate sand and gravel deposits (assuming hydraulic connectivity)Property and services: ReceptorContaminant(s)Pathway(s)Risk Low / Moderate sand and gravel deposits (assuming hydraulic connectivity)Property and services: ReceptorContaminant(s)Pathway(s)Risk Low / Moderate sand and gravel deposits (assuming hydraulic connectivity)Property and services: serving the buildings (principally water supply)Contaminant(s)Pathway(s)Risk Very low tainting / contaminantion of drinking water standards•Property (structures) – sub-surface concreteSulphate and pHContact between contaminants and concreteLow / Moderate•Property (structures) – residential buildings on residential buildings onDecomposable or compressible elements ofDifferential settlement of infill, causing structural failure ofLow	•	(superficial sand and			Low / Moderate
ReceptorContaminant(s)Pathway(s)Risk• Ridings Brook 200m to south-eastLeachable metals and PAHsMigration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)Low / Moderate• Subsurface services: serving the buildings (principally water supply)Contaminant(s)Pathway(s)Risk• Property (structures) – sub-surface concreteContaminant (s) UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK drinking water standardsPathway(s)Risk• Property (structures) – sub-surface concreteSulphate and pHContact between contaminants and concreteLow / Moderate• Property (structures) – residential buildings onDecomposable or compressible elements ofDifferential settlement of infill, causing structural failure ofLow	•	(solid geology; Pennine Middle Coal Measures)		No obvious pathway	Low
 Ridings Brook 200m to south-east Leachable metals and PAHs Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity) Property and services: Subsurface services serving the buildings (principally water supply) Sulphate and pH Property (structures) – sub-surface concrete Property (structures) – residential buildings on Property (structures) – compressible elements of Property (structures) – residential buildings on 					
south-eastPAHscontaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)ModerateProperty and services:Contaminant(s)Pathway(s)Risk• Subsurface services serving the buildings (principally water supply)Contaminant(s)Pathway(s)Risk• Property (structures) – sub-surface concreteSulphate and pHContact between contaminants and concreteLow / Moderate• Property (structures) – residential buildings onSulphate and pHContact between contaminants and concreteLow / Moderate	Rec				
ReceptorContaminant(s)Pathway(s)Risk•Subsurface services serving the buildings (principally water supply)UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK 	•	south-east		contaminants within fluvioglacial sand and gravel deposits	
 Subsurface services serving the buildings (principally water supply) Property (structures) – sub-surface concrete Property (structures) – sub-surface concrete Property (structures) – cesidential buildings on Decomposable or compressible elements of Chemical attack of pipes and/or tainting / contamination of drinking water supply Chemical attack of pipes and/or tainting / contamination of drinking Contact between contaminants and concrete Decomposable or compressible elements of Differential settlement of infill, causing structural failure of 	Property	and services:			
 serving the buildings (principally water supply) exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK drinking water standards Property (structures) – sub-surface concrete Property (structures) – residential buildings on Decomposable or compressible elements of Differential settlement of infill, causing structural failure of Low 	Re				
sub-surface concrete and concrete Moderate Property (structures) – residential buildings on compressible elements of compressi	•	serving the buildings (principally water	exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were less than UK	tainting / contamination of drinking	Very low
residential buildings on compressible elements of causing structural failure of	•		Sulphate and pH		
	•	residential buildings on	compressible elements of	causing structural failure of	Low

⁹ The 2012 revised Statutory Guidance for Part 2A of the 1990 Environmental Protection Act uses the terminology "contaminant/source/receptor"

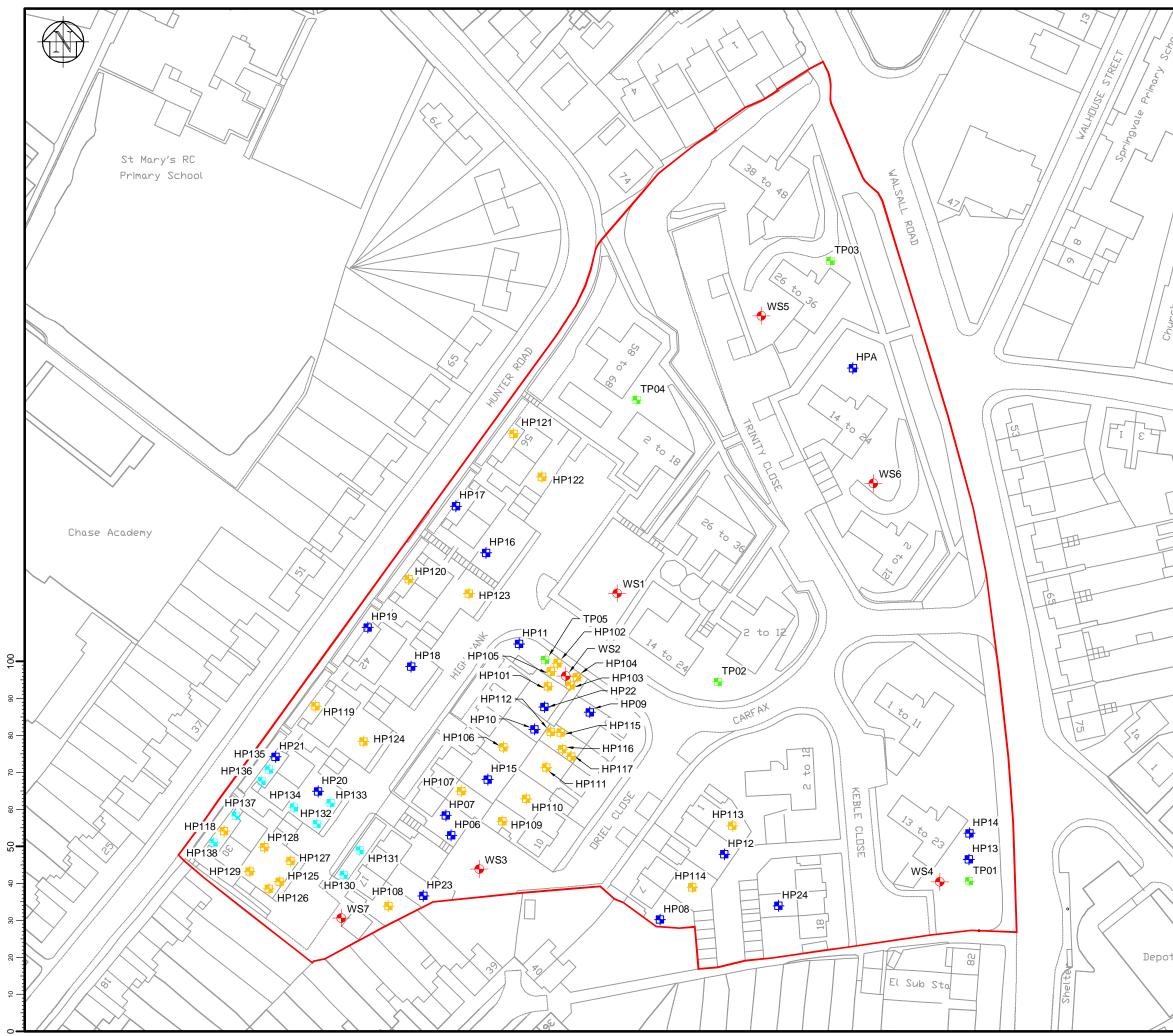
Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of properties above infilled ground (including children playing in gardens)	Concentrations of PAH compounds in shallow soils greater than GAC	Dermal contact and direct ingestion, inhalation of dust/vapours consumption of home- grown vegetables	Minor	Low Likelihood	Very Low	Concentrations of benzo(a)pyrene, (also used as a surrogate compound for other PAHs) were recorded less than 17 mg/kg, which is the value demonstrated by work undertaken by IOM that the human health risk, whilst not negligible, is still acceptably low. Based on the above, the potential severity of the linkage has been reduced to minor, as the concentrations identified are not regarded as posing "significant harm" as defined in the 2012 Statutory Guidance.
Residents of the Hunter Road/Carfax estate	 Asbestos containing material (ACM) found in six samples taken at between 0.05m and 0.5m bgl in an open space area, possibly used for play. WS02 0.2m bgl: amosite & chrysotile detected within tile HP112 0.3m bgl: chrysotile detected in asbestos- cement HP125 0.2m bgl: chrysotile detected in asbestos- cement HP126 0.2m bgl: chrysotile in insulation board HP127 0.1m bgl: chrysotile free fibres in asbestos- cement HP128 0.05m bgl: amosite and chrysotile in insulation board HP128 0.05m bgl: amosite and chrysotile in surrounding the ACM did NOT contain asbestos fibres. 	Inhalation of asbestos fibres	Medium	Unlikely	Low	The asbestos results identified isolated areas of the site contained ACM. However, only in one sample were fibres detected. These fibres were not identified within the soil matrix but contained within the material from which it was found. The lack of "free fibres" reduces the severity to medium. During the follow up investigation in February 2013 there were no "free fibres" or ACM within the Made Ground matrix – HP130-38. Therefore, the ACM is likely to be confined to the open space area adjacent to 30/32 Hunter Road. The likelihood has been reduced to low given the absence of fibres within the soil.

Table 6.1 - Pollutant Linkages, Post-2012 Site Investigation

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix G for further details

7 SUMMARY AND CONCLUSION

7.1 Summary


- A review of historical mapping and EA records provided to Cannock District Council, plus anecdotal evidence obtained during public consultation, identified that a parcel of land south-east of Hunter Road, Cannock was infilled with unknown material in the 1940s/1950s. The residual material potentially posed a risk to the health of residents now living at the site, and a risk to the quality of controlled waters.
- Exploratory investigations in December 2010, November 2011 and September 2012 identified ground conditions comprising a typical thickness of 1.3m of Made Ground (3.2m of made ground in one location), which included ash, clinker, brick, ceramics, slate, metal fragments and concrete. The underlying strata, interpreted to be Glacio-fluvial Deposits where generally sand and gravel were identified and Diamicton Till where clay was encountered in one location. This observation was consistent with geological mapping.
- Previous investigations (December 2010 and November 2011) determined that metals, TPH, VOC, SVOCs, BTEX and ground gas do not present an unacceptable risk to human health, controlled waters, buildings/services.
- PAHs and asbestos with regard to human health were the only significant pollutant linkages identified after the 2011 investigation which required further assessment.
- The September 2012 investigation obtained more soil samples for PAH analysis and asbestos detection. The results of the PAH analysis identified PAH concentrations greater than Tier 1 GACs but all samples were recorded at a concentration less than the greatest PAH concentration recorded in December 2010.
- Using IOM assessment criterion of 17mg/kg for benzo(a)pyrene and using benzo(a)pyrene as a marker compound for all other PAHs, as a value which if concentrations are less than would not pose an unacceptable risk to human health, the site is not deemed as constituting a significant possibility of significant harm with regard the PAHs recorded at the site.
- Asbestos containing material (ACM) was found in a further five samples during the 2012 investigation. Delineation of these areas as part of the 2012 investigation and additional February 2013 investigation indicated that the asbestos affected area is contained within landscaped area adjacent to 30/32 Hunter Road and that in this area, the asbestos was contained within the material in which it was found and that no free fibres were detected within the soil.

7.2 Conclusion

On the basis of the information obtained and the limitations listed in Appendix A, we conclude that it is unlikely that the site would meet the definition of contaminated land under Part 2A of the Environmental Protection Act 1990.

DRAWINGS

/		NOTES								
, noor		NOTES								
200	<u>KEY</u>									
/	STUDY SITE BOUNDARY									
4	WS1 WINDOW SAMPLER HOLES (6No.), (1+2 REAR WEST HP'S)									
~	-	TP1 TRIAL PITS, DECEMBE	R 2010)						
4	-	HP1 HAND PITS, NOVEMBER 2011								
	-	HP1 HAND PITS, SEPTEMB	ER 201	2						
/-		HP1 HAND PITS, FEBRUAR	Y 2013							
/	D	DEC 2010 HP CHANGED TO TP	МІС	JS	GT	12.04.13				
5	С	FEB 2013 INFO ADDED	МІС	JS	GT	01.03.13				
anurch	в	SEPT 2012 INFO ADDED	PSN	RH	GT	11.10.12				
5 //	A	FIRST ISSUE	sw	RH	GT	06.02.12				
14	REV	AMENDMENTS	BY	CHKD	APR'D	DATE				
		🖌 Grontmij								
L		1st Floor Yorke House								
		Arleston Way Shirley	el : +44	(0)121	7116	600				
٦ ١		Solihull Fa		(0)121		749				
		B90 4LH WV	ww.gro	ntmij.co	D.UK					
	Bristol .	Cumbria . Dublin . Edinburgh . Glasgow . Leeds . London .	Peterborou	igh . Readin	g . Solihull .	Wrexham				
1	CLIEN	NT								
1	- See									
-1		Canr	nock							
		Cho	ise iunc	il						
ſ										
	PROJECT									
	PROJ	IECT								
	PROJ	IECT								
	PROJ									
	PROJ	HUNTER R	RO/	٩D						
	PROJ		20/	٩D						
		HUNTER R	20/	٩D						
	PROJ TITLE	HUNTER R	20/	٩D						
	TITLE	HUNTER R)					
	TITLE	HUNTER R	RY	НС						
	TITLE	HUNTER R	RY	НС		Ξ				
	TITLE	HUNTER R	RY	НС		E				
	TITLE	HUNTER R EXPLORATOR LOCATION	RY Pl	НС _АГ	N					
	TITLE	HUNTER R EXPLORATOF LOCATION		НС _АГ						
	TITLE	HUNTER R EXPLORATOR LOCATION				/ /LOR				
	TITLE	HUNTER R EXPLORATOF LOCATION				/ /LOR 2.12				
t	TITLE STAT DRAV DATE SCAL	HUNTER R EXPLORATOF LOCATION		HC APPROV DATE		/ /LOR 2.12 NG SIZE				
t	TITLE STAT DRAV DATE SCAL	HUNTER R EXPLORATOF LOCATION	RY Pl ION RN 12	HC APPROV DATE		/ /LOR 2.12 NG SIZE				

\\uksolls01\ShareNetData\U3064\proj\106270 Cannock 2a batch 2\011 Hunter Rd Sept 2012\Drawings & sketches\DWG\Hunter Rood - 106270-600-C.dwg

APPENDIX A LIMITIATIONS STATEMENT

Appendix A: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council and other information supplied by third parties, such and laboratory test data, to be accurate, and has not taken steps to independently check the accuracy of the data provided. We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 5. Similarly, our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report.

Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.

APPENDIX B

Grontmij March 2012 Investigation Report (incorporating 2010 Desk Study and 2010 investigation)

Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Exploratory Site Investigation

Land East of Hunter Road, Cannock

March 2012

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 **F** 0121 7116749 **E** gareth.taylor@grontmij.co.uk

Cannock Chase District Council Land East of Hunter Road, Cannock EPA 1990 Part 2A Exploratory Site Investigation

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
R940/106270/V1 /2012	29/03/12	First Issue	Name	Rebecca Hearn	Gareth Taylor	Nik Dixon
			Position	Assistant Environmental Consultant	Principal Environmental Consultant	Technical Manager, Land Quality

© Grontmij 2012 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1		1
1.1	Terms of Reference	1
2	BACKGROUND INFORMATION	2
2.1	Site Setting	2
2.2	Previous Investigations and Reports	4
3	EXPLORATORY SITE INVESTIGATION	9
3.1	Scope, Methodology and Rationale	9
3.2	Results and Discussion10	D
3.2.1	Ground Conditions10	D
3.2.2	Adequacy of Investigation Depth and Spatial Extent10	D
3.2.3	Field Evidence of Contamination10	D
3.2.4	Soil Analysis Results and Discussion1	1
3.2.5	Leachability Assessment13	3
3.2.6	Ground Gas Assessment10	6
3.2.7	Safety of Water Supply Pipes1	7
4	UPDATED CONCEPTUAL SITE MODEL	9
5	SUMMARY AND CONCLUSION	4

FIGURES

Figure 2.1 – Site Location	
TABLES	
Table 2.1 – Site Setting	2
Table 2.2 - Potential Pollutant Linkages	
Table 3.1 - Field Evidence of Potential Contamination	11
Table 3.2 - Soil Analysis Results Summary	12
Table 3.3 - Soil Leachate Analysis Results Summary	15
Table 3.4 - Summary of Gas Monitoring Data	16
Table 3.5- Tap Water Analysis Results	18
Table 4.1 - Pollutant Linkages, Post-Site Investigation	20

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

APPENDICES

Appendix A	May 2011 Initial Investigation Report (incorporating Jan 2010 Desk Study)
Appendix B	Limitations Statement
Appendix C	Exploratory Hole Logs
Appendix D	Laboratory Chemical Analysis Certificates
Appendix E	Gas Monitoring Data
Appendix F	Severity and Probability of Risk (after CIRIA 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Contaminated Land is defined in Section 78(2) of Part 2A of the Environmental Protection Act 1990 as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that

- significant harm is being caused or there is a significant possibility of such harm being caused; or
- pollution of controlled waters is being, or is likely to be, caused.

Further information is provided in the above Act and associated statutory guidance¹ (DEFRA Circular 01/2006 – EPA 1990, Part 2A: Contaminated Land).

Grontmij assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, located at / east of Hunter Road, Cannock (hereafter referred to as 'the site') was identified as a priority for inspection. The site is considered to be sensitive as 35 residential properties with gardens and 12 blocks of two/three storey maisonettes with communal gardens overlie an area of infilled land, indicated on the Environment Agency website to be a 1940s/50s landfill site. The site is also underlain by two secondary aquifers, which leachate from the infill could be adversely affecting.

Following the completion of a desktop study (see Appendix A), Grontmij was subsequently appointed by the Council to implement a limited shallow initial exploratory site investigation, which was undertaken in December 2010 and reported in May 2011 (Appendix A). The initial investigation identified PAH concentrations which could potentially pose an unacceptable risk to sensitive receptors, meaning that further soil and leachate data was required and the installation of gas monitoring wells with gas monitoring was also recommended. Further exploratory work was therefore undertaken in November 2011. This report presents the findings of the November 2011 exploratory investigation and assesses the significance of the contaminant and gas concentrations detected.

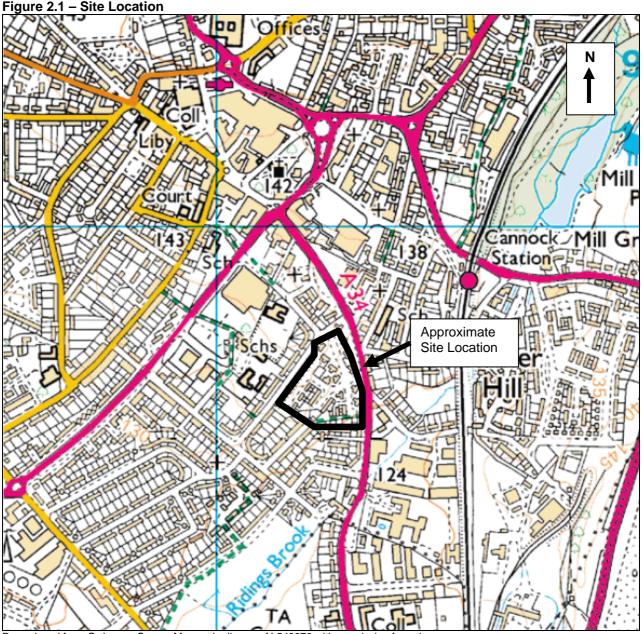
This report is subject to the limitations presented in Appendix B.

¹ Note that revised draft statutory guidance has been laid in parliament on 7/2/12 and will come into force / be published on / shortly after 6/4/12 if neither house of parliament objects. The existing regulations currently remain in force. See http://www.defra.gov.uk/environment/guality/land/ for more details

2 BACKGROUND INFORMATION

2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1.


Table 2.1 - Site Setting

Data	Information
Address	Hunter Road and Carfax (and roads branching off this road), north of Bridgtown, Cannock, Staffordshire. Nearest postcode: WS11 0YT
Current site use	Mix of two storey terraces with private gardens (predominantly southern end of site) and three-storey flats surrounded by communal landscaped areas. Architectural style of buildings indicates that the buildings date from the 1960s or 70s. Council records indicate approximately 50% are privately owned and 50% within housing association ownership
Grid Reference	Approximate centre of site is located at NGR 398250, 309650
Site Area	The site occupies approximately 3 ha
Topography	General topographic gradient within the area is moderate, downwards towards the south east. The site is on multiple levels as a result of cut and fill earthworks
Surrounding land use	The site is located within a wider residential area. The A34 is adjacent to the eastern boundary of the site. St Marys Primary School is located 50m to the north west of the site
Mapped Geology	British Geological Survey (BGS) mapping indicates that the north and west of the site (comprising approx 66% of the total site) is underlain by superficial glaciofluvial deposits (sand and gravel), while the east and south of the site (approx 33% of the total site) is underlain by Diamicton Till (clay, silt, sand and gravel). The superficial deposits are underlain by bedrock of mudstone, siltstone and sandstone of the Pennine Middle Coal Measures Formation
Hydrogeology	The Environment Agency website indicates both the bedrock and superficial deposits to be Secondary A aquifers. Secondary A aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers
Groundwater Abstractions	Environment Agency website indicates that the closest public potable abstraction wells are located approximately 7km to the north and east
Source Protection Zones (SPZs)	The Environment Agency website indicates that the site does not lie within a SPZ
Surface Waters	Ridings Brook is located 200m south east (inferred downgradient) of the site
Historical Land Use	Environment Agency data provided to the council and the Environment Agency "What's In Your Back Yard" website indicate that the site comprises a former landfill site, operational between 1945 and 1955. The type of waste received by the site is unknown. The operational period pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal licence
Ecologically designated sites ²	MAGIC search indicates none exist within 500m of site boundary
Scheduled Monuments	Pastscape website indicates no monuments on site or in close proximity

² Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright (not to scale)

2.2 Previous Investigations and Reports

Grontmij has previously completed a desktop assessment of the site, as presented within Appendix A. The assessment included the review of on-line data resources, in-house mapping and records provided by the council, and a site walkover.

A limited, shallow preliminary site investigation, comprising five shallow hand-dug trial holes and chemical analysis of five soil samples, was undertaken in December 2010. The investigation report is included as Appendix A. The initial investigation identified PAH concentrations which could potentially pose an unacceptable risk to sensitive receptors. The conceptual site model of potential pollutant linkages, developed upon completion of the initial investigation in accordance

.

with the model procedures^{3,} and statutory guidance⁴ and used to identify further investigation requirements, is reproduced as Table 2.2 overleaf:

⁴ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.

³ CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

Table 2.2 - Potential Pollutant Linkages

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of properties above infilled ground (including children playing in gardens)	Elevated concentrations of benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(ah)anthracene and indeno(1,2,3,cd)pyrene in shallow soils (up to 0.3m bgl) – particularly in HP5	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home- grown vegetables	Medium	Likely	Moderate	Insufficient data available to draw firm conclusion (only a basic suite of testing was undertaken, only five samples have been obtained, limited depth-specific analysis can be undertaken) – infill has been identified across the site and higher contaminant concentrations may be present. Further assessment is required in order to increase the sample population and determine the significance of the detected concentrations.
Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	As monitoring of landfill gases were not undertaken during the limited investigation (as not considered appropriate within shallow hand pits which did not prove the base of the infill/waste) gas risk is unknown. Further assessment is therefore required, to include wells drilled to the base of the infill/waste material and measurement of ground gas concentrations & flow rates

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Subsurface services serving the buildings (principally water supply)	pH values in shallow soils exceed UKWIR and WRAS guideline screening criteria	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low / Moderate	Limited investigation data is available (note no relevant parameters for UKWIR guidelines were analysed). Materials used for connection of each house to the South Staffordshire Water main are unknown, and assumed to be potentially susceptible to attack. Hence further assessment is required. Prior experience dictates that concentrations of contaminants in most Made Ground soils tend to exceed UKWIR guidelines, which are normally used to specify materials for new pipework and are deliberately conservative. Tap water testing is recommended to assess current risk to residents
Property (structures) – sub- surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low / Moderate	Based on limited investigation data (sulphate analysis was not undertaken) further assessment is required
Property (structures) – residential buildings on site	Decomposable or compressible elements of infill	Differential settlement of infill, causing structural failure of buildings	Medium	Unlikely	Low	Although a detailed inspection of buildings has not been undertaken, no obvious evidence of structural failure was noted in the field and all properties at the site appear to be currently occupied. As buildings appear to be fit for occupancy, it is unlikely that significant harm to the building has been caused or is being caused (ref: DEFRA Circular 01/2006 p86 – this is statutory guidance accompanying the Environmental Protection Act 1990)

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Secondary A aquifer (superficial deposits; fluvioglacial sand and gravels) beneath site	Potential contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Leaching of soil contaminants to aquifer (no aquiclude is indicated on BGS mapping)	Mild	Likely	Low / Moderate	Due to limited depth of initial investigation holes, which did not prove the base of the infill/waste material, and lack of soil leachate analysis, further assessment is required
Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site	Dissolved dense contaminants or DNAPL (e.g. solvents) which have leached to the overlying fluvioglacial sand and gravel aquifer (assuming both strata are in hydraulic connectivity)	Vertical migration of dense contaminants	Mild	Low	Low	Contaminant migrating vertically will first encounter the aquifer in the superficial deposits; most contaminants (except any DNAPL) are likely to mix and dissolve in the shallower unit. Coal measures normally contain significant mudstone bands, likely to behave as aquitards. No further assessment proposed
Ridings Brook 200m to south-east (inferred down- hydraulic gradient on basis of topography). Fish within the brook (assumed to be subject to fishing rights)	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)	Medium	Low	Low / Moderate	Although distance of receptor from site mitigates risk to an extent (due to attenuation along the 200m "flowpath") the lack of current information makes further assessment necessary to improve understanding of site CSM and provide clarity on potential risk

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix F

3 EXPLORATORY SITE INVESTIGATION

In order to further examine the potential pollutant linkages identified in Table 2.2, a further exploratory site investigation was undertaken on the 14th to 17th November 2011, with gas monitoring undertaken until March 2012. This section describes the site investigation undertaken and results obtained.

3.1 Scope, Methodology and Rationale

The intrusive site investigation undertaken in November 2011 – March 2012 included the following:

- A consultation exercise with residents living at the site, including a mailshot and a public open evening;
- Obtaining plans of underground services and CAT-scanning proposed drilling locations, using a Radiodetection CAT1 and signal generator;
- Drilling seven window sample holes (WS01 WS07) to a maximum depth of 4.0m bgl, at the locations shown on Drawing 1. The window sample holes, which were drilled by Sherwood Drilling Services, were positioned in areas of public open space above the extent of infill, as indicated on historical mapping. Window sampler positions were selected on the basis of achieving representative coverage of the site, but including locations in proximity to HP5, where the highest PAH concentrations were detected in the initial investigation. The purpose of the window sample holes was to examine shallow and deeper soil conditions (including determination of presence / otherwise of clay or mudstone beneath the made ground, to restrict leaching), enable the retention of samples for laboratory testing, and facilitate the installation of 50mm diameter dedicated gas monitoring wells in each window sampler hole;
- Advancing twenty hand dug pits (HP06 to HP24, plus HP A) to a maximum depth of 0.9m, to examine shallow soil conditions and augment the coverage of the site provided by the above window sampler holes;
- Logging soil arisings in accordance with BS5930:1999, and additionally noting any visual or olfactory evidence of potential contamination;
- Retaining representative soil samples of the strata encountered, which were selected on the basis of field observations of potential contamination and the aim of achieving good spatial and depth coverage of the site;
- Submitting retained samples to Scientific Analytical Laboratory (SAL) of Manchester in cooled coolboxes and under full chain of custody documentation, and instructing the analysis of samples;
- Undertaking five ground gas monitoring rounds, using a Gas Data Ltd GFM435 gas analyser with internal flow pod, and
- Collection of tap water samples from five representative properties, for analysis at SAL and screening against UK drinking water standards, to examine the risk of contaminant permeation into the drinking water supply.

The results of the entire fieldwork programme outlined above are discussed in the following sections.

3.2 Results and Discussion

3.2.1 Ground Conditions

The ground conditions encountered at the site generally comprised Made Ground over gravelly sand (firm clay in one location), as detailed below:

Made Ground

The Made Ground was predominantly granular in nature, consisting of gravelly sand. The gravel content of the Made Ground was variable, including fine to coarse gravel of ash, clinker, brick, ceramics, slate, possible asbestos tile, metal fragments and concrete; cobbles of brick and concrete were also encountered. Ash and/or clinker was encountered in twelve exploratory holes, as detailed in Section 3.2.3. Made Ground was encountered to a maximum depth of 3.2m bgl, within WS07, although this exploratory hole was atypical, with made ground generally being encountered to a maximum of 1.3m bgl.

Superficial Deposits

Superficial deposits were encountered across the site. The superficial deposits generally comprised sand and gravel, consistent with the mapped geology of fluvio-glacial deposits. The superficial deposits were encountered from a minimum depth of 0.4m, within HP09 and were generally encountered to a maximum depth of 3m bgl (termination depth of WS01 and WS02), although sand and gravel was also encountered beneath the made ground in WS07 at 3.2m and was proven to 4.0m bgl.

Within WS06, drilled towards the eastern site boundary, firm to stiff gravelly clay was encountered from 1.4 to termination depth of 2.0m bgl. This material is consistent with the mapped superficial deposit of Diamicton Till indicated in the east part of the site.

Groundwater

Groundwater was not encountered during the advancement of the exploratory holes.

The above findings are discussed further in Section 4 (updated Conceptual Site Model). Exploratory hole logs, providing full details of the strata encountered, are included within Appendix C.

3.2.2 Adequacy of Investigation Depth and Spatial Extent

Superficial deposits were encountered across the site during this investigation, meaning that the full depth of the Made Ground beneath the site has been encountered and that the data collected is likely to be representative of the site as a whole. The exploratory hole coverage is considered to provide good coverage of the site, with a deliberate emphasis on properties which have private gardens and where exposure to subsurface contaminants is more likely than within communal grassed landscaped parts of the site.

3.2.3 Field Evidence of Contamination

The drilling arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1:

Exploratory Hole	Depth from	Depth to	Visual and Olfactory Evidence of Contamination ¹
WS02	0	0.1	Clinker
WS04	0.6	1.25	Clinker
WS07	0.5	0.9	Clinker
WS07	1.5	3.2	Ash and clinker, green/blue discolouration
HP07	0	0.8	Clinker
HP08	0.4	0.55	Ash
HP10	0	0.6	Clinker
HP11	0	0.7	Clinker
HP18	0	0.5	Clinker
HP20	0	0.3	Clinker
HP22	0	0.5	Clinker
HP23	0.4	0.5	Clinker

¹ Visual and olfactory evidence noted within the soil matrix

3.2.4 Soil Analysis Results and Discussion

Thirty-three samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to Scientific Analysis Laboratories (SAL) Ltd of Manchester. SAL Ltd holds UKAS and/or MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve good spatial coverage of the site.

Tables 3.2 and 3.3 present a summary of the analysis results. The tables incorporate the results from the earlier preliminary investigation, undertaken in December 2010, and is therefore a summary of all chemical testing undertaken for the site. The results have been compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used, in order of preference, comprise:

- 2009 Soil Guideline Values (SGVs) published by the Environment Agency / DEFRA, generated using the latest Contaminated Land Exposure Assessment (CLEA) model, version 1.06
- Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) or the Environmental Industries Commission (EIC), or calculated by Grontmij, all using CLEA
- SGVs published by the Environment Agency / DEFRA between 2002 and 2007, calculated using prior versions of the CLEA model (applies to lead only).

Full analytical testing results are included as Appendix D.

Determinand	No. of Samples Tested	Minimum Value	Maximum Value		Locations where SGV or GAC are exceeded
Boron (H20 Soluble)	33	<1.0	180	291	-
Arsenic	33	5.0	140	32	WS07, 1.8m and 2.15m
Cadmium	33	0.48	7.0	10	-
Chromium (trivalent)	33	7.0	38	627	-
Copper	33	15	22000	2330	WS07 2.15
Lead ²	33	30	450	450	-
Mercury ³	33	<0.14	<1.0	170	-
Nickel	33	8.0	240	130	WS07 1.8m and 2.15m
Selenium	33	<1.0	<3.0	350	-
Zinc	33	61	7800	3750	WS07 2.15
Chromium (hexavalent)	33	<0.6	<1.2	4.3	-
Vanadium	33	11	110	75	WS07 1.8m and 2.15m
Beryllium	33	0.9	25	51	
Barium	33	56	910	1300 ⁴	
Asbestos screen	10	Asbestos-	Asbestos-containing material detected in one sample		WS02 0.2m bgl, ACM found to contain amosite. No "free" fibres were detected within surrounding soil matrix
Benzene	4	<0.01	< 0.02	0.16	-
Toluene	4	<0.01	<0.02	270	-
Ethyl Benzene	4	<0.01	<0.02	150	-
Xylene	4	<0.01	<0.02	98 ⁵	-
TPH – CWG Hydrocarbons	7	None of the banded aliphatic/aromatic TPH-CWG screening criteria were exceeded. Full speciated			
			s are presented i		

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding). Bold values indicate locations where observed concentrations exceed the screening value.

¹Nineteen samples were tested for Soil Organic Matter (%SOM) content. A minimum value of 0.7% and a maximum of 23% were recorded, with a mean of 5.04% and a median of 3.9%. It is therefore justified, as a conservative measure, to use the SGVs and GAC generated using a 2.5% SOM value in CLEA in an initial screen, where the SGVs/GAC are SOM-dependant (mercury, phenol,

PAHs, TPH-CWG and abovementioned VOCs and SVOCs). All other SGVs / GAC are not SOM-dependant ² SGV quoted was generated by DEFRA using earlier version of CLEA. An Environment Agency announcement on how lead will be addressed, including agreement of an acceptable "safe" level, and whether to consider an "uptake" model such as CLEA or alternative "intake" model, is awaited.

Testing results presented represent total mercury. SGV presented is for inorganic mercury, whereas SGV presented is for inorganic mercury. Although the most stringent of the SGVs is for elemental mercury, the Environment Agency SGV for mercury in soil science report SC050021/Mercury SGV indicate that in cases where preliminary risk assessment has not identified a mercury issue at the site or conditions such as peaty or flooded soils then 'For general surface contamination and to simplify the assessment, the SGVs for inorganic mercury can normally be compared with chemical analysis for total mercury content because the equilibrium concentrations of elemental and methyl mercury compounds are likely to be very low'. ⁴ EIC GAC for "residential without uptake of homegrown produce" used, as a GAC including produce consumption has not been

calculated (calculation of plant uptake factors was excluded from the EIC project due to a lack of available volunteer time). The provided GAC is therefore not strictly comparable to the measured soil concentrations, but is presented to give an idea of the likely magnitude of a future GAC which accounts for plant uptake of contaminants and subsequent human consumption. ⁵ SGV for para-xylene quoted (most stringent of the three isomers)

Determinand	No. of Samples Tested	Minimum Value	Maximum Value		Locations where SGV or GAC are exceeded
Polyaromatic Hydrocarbons (PAHs)	29	Some of the speciated PAH screening values were exceeded, see below. Full speciated results are presented in Appendix D			-
Benz(a)anthracene	29	<0.1	21	4.7	WS02 0.2, HP08 0.5, HP07 0.7, HP20 0.4, TP1 0.1m, TP5 0.1m
Benzo(a)pyrene	29	<0.1	15	0.94	12 locations; concentrations >10mg/kg in HP07 0.7m, HP08 0.5m, TP5 0.1m
Benzo(b)fluoranthene	29	<0.1	18	6.5	WS02 0.2, HP08 0.5, HP07 0.7, HP20 0.4, TP5 0.1m
Chrysene	29	<0.1	16	8	WS02 0.2, HP08 0.5, HP07 0.7, TP5 0.1m
Dibenz(ah)anthracene	29	<0.1	3.4	0.86	WS02 0.2, HP08 0.5, HP07 0.7, HP20 0.4, TP5 0.1m
Indeno(123-cd)pyrene	29	<0.1	8.5	3.9	WS02 0.2, HP08 0.5, HP07 0.7, TP5 0.1m
Volatile Organic Compounds and Semi-Volatile Organic Compounds (excl.above)	3		results were be with exception o	low limit of detection f below:	-
2,6-Dinitotoluene	9	<0.1	0.9	1.7	-
2-Methylnaphthalene	9	<0.1	0.2	No GAC ⁶	-
Bis (2- ethylhexyl)phthalate	9	<0.1	0.4	610	-
Carbazole	9	<0.1	3.1	No GAC ⁶	-
Di-n-butylphthalate	9	<0.1	0.2	31	-
Dibenzofuran	9	<0.1	1.5	No GAC ⁷	-

Table 3.3 - Soil Analysis Results Summary – PAHs, VOCs and SVOCs

⁶ The EIC considered generating a GAC for this substance but there was insufficient data available for the volunteer group to agree upon a health criteria value (HGV) – thus precluding the generation of GAC

' A GAC or SGV has not yet been published for this compound

The concentrations of PAH compounds within six samples taken at <1m depth (12 samples in the case of benzo(a)pyrene) and the concentration of some metals with in WS07 1.8m and 2.15m exceeded the adopted Tier 1 screening values. The samples exceeding the metals screening criteria were taken at 1.8 to 2.15m bgl, at which dermal contact with soils and subsequent ingestion (directly or via contact with home-grown vegetables) is unlikely. As such the metal concentrations recorded in sample WS07 1.8m and 2.15m are not of concern in regard to human health.

3.2.5 Leachability Assessment

The strata underlying the made ground were identified to be predominantly granular, and are unlikely to prevent leaching. Moderate PAH concentrations and high heavy metal concentrations were recorded in the made ground. On this basis, soil samples were retained for leachability testing, in order to consider the potential risk to controlled waters at the site (secondary aquifer, and surface watercourse 200m from site).

Six soil samples were submitted for soil leachate analysis (BS12457 2:1 single stage test, which supersedes the older NRA leachate test) at SAL Ltd. The samples were selected for analysis on the basis of field observations of potential contamination, plus with the aim of achieving good site coverage. Samples analysed included WS07 at 1.8m, where blue/green discolouration was noted in the field.

Table 3.3 presents a summary of the leachate analysis results. Where threshold values have been published, the testing results have been compared to the following:

- For the secondary aquifer, groundwater threshold values protective of general groundwater quality (not in a drinking water protected area) and of groundwater migrating to a surface watercourse, as quoted in the River Basin Districts Typology, Standards and Groundwater Threshold Values (Water Framework Directive) (England and Wales) Directions 2010 ("WFD Directions") and, where no WFD Directions standard exists, UK Drinking Water Standards listed in the Water Supply (Water Quality) Regulations 2000 (as amended). It is noted that such screening values are potentially very conservative, assuming there are no private water abstractions in proximity to the site (there are no public groundwater abstractions for potable use within a 1km radius)
- For the closest surface water feature, 200m downgradient, the most stringent of Environmental Quality Standards published in The Surface Waters (Dangerous Substances)(Classification) Regulations 1989 and amendments (from 1992, 1997 and 1998), and standards protective of inland freshwaters in the above WFD Directions.

Full analytical testing results are included in Appendix D.

Contaminant	No of Samples Tested	Minimum Value	Maximum Value	Adopted Groundwater Screening Value	Adopted Surface Water Screening Value
Arsenic	6	2.2	7.2	7.5	50
Boron	6	0.01	0.33	750	2000
Cadmium	6	0.09	0.25	3.75	0.08 to 0.25**
Chromium	6	<50	<50	50	3.4 (VI) / 4.7 (III)
Copper	6	3.5	12	1500	1 to 28**
Lead	6	2	5.9	10	7.2
Nickel	6	2	11	15	20
Zinc	6	4	130	3750	8 to 250**
Mercury	6	< 0.05	< 0.05	0.75	0.05
Vanadium	6	<2	11	n/s	20
Benzene	5	<1	<1	0.75	10
Toluene	5	<1	<1	51	50
Xylenes	5	<1	<1	30	30
Benzo(a)pyrene	5	<0.02	2.8	0.01	0.05
Naphthalene	5	< 0.02	<0.05	2.4	2.4
Sum of Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3- cd)pyrene*	5	<mdl< td=""><td>8</td><td>0.10</td><td>n/s</td></mdl<>	8	0.10	n/s
Sum Benzo(b)fluoranthene, benzo(k)fluoranthene	5	<mdl< td=""><td>4.1</td><td>n/s</td><td>0.03</td></mdl<>	4.1	n/s	0.03
Sum benzo(g,h,i)perylene, indeno(1,2,3- cd)pyrene*	5	<mdl< td=""><td>3.9</td><td>n/s</td><td>0.002</td></mdl<>	3.9	n/s	0.002

Values are presented as **ug/l** and are rounded as applicable to the screening values used. <MDL is less that the laboratory method detection limit for each compound summed.

Bold values indicate locations where observed concentrations exceed the quoted screening value.

*There are no screening values in the WSWQ Regulations 2000 (as amended) for the remaining commonly analysed 16 PAH compounds

**Dependant on hardness of receiving surface watercourse

Comments on Groundwater Screening: concentrations of benzene and PAHs in excess of the adopted groundwater Tier 1 screening values were recorded in the analysed leachate. In the case of benzene, the exceedance was only because the method detection limit exceeded the adopted Tier 1 value, and the recorded result of <1ug/l in all five samples tested is not indicative of gross pollution of an aquifer. Slightly elevated PAH concentrations were detected in leachate, but the recorded concentrations are considered to be acceptable, and not indicative of SPOSH, given the lower sensitivity of the site (subject to confirmation that there are no private water abstractions in proximity to the site).

Comments on Surface Water Screening: concentrations of heavy metals within the hardnessdependant acceptability Tier 1 range, or in excess of the Tier 1 value but only because the method detection limit exceeded the adopted value, have been recorded. On the basis of the 200m distance to the nearest downgradient surface water receptor, and the opportunity for dilution along this flow-path, the recorded metals concentrations are considered to be acceptable, and not indicative of SPOSH.

15

Moderate concentrations of PAHs have been recorded, in some cases many times greater than the very conservative Tier 1 screening values adopted. However, on the basis of the 200m distance to the nearest downgradient surface water receptor, and the opportunity for attenuation and dilution along this flow-path, the recorded PAH concentrations are considered to be acceptable, and not indicative of SPOSH.

A controlled waters risk assessment would allow the confidence in the above assessment to be increased. We consider that it is unlikely that such a risk assessment would conclude that a SPOSH was posed to controlled waters, and at worst, that the site would fall into the grey area between what is, and what is clearly not, Contaminated Land. In light of the new draft statutory guidance laid before parliament and soon to become law, we consider that it is appropriate to cease the consideration of controlled waters at this point, on the assumption that further enquires identify that there are no private water abstractions in proximity to the site.

3.2.6 Ground Gas Assessment

Four initial rounds of ground gas monitoring were undertaken, using a Gas Data Instrument GFM435 with internal flow pod; as a moderate CO2 concentration was recorded during the last scheduled round, a further fifth round was also undertaken to confirm that there was not a rising CO2 trend at the site. A summary of the maximum gas monitoring results recorded at each well is presented in Table 3.4, with full monitoring data in Appendix E

Well	Maximu	m Values I	Recorded Durii	Gas	Situation "A"			
			Events:	-	-	Screening	Characteristic	
	Peak CH₄ (%)	Steady CO₂ (%) co	Steady H ₂ S	Flow (l/hr)	Value ¹ (l/hr)	Situation ¹	
N/CO1	0.0	0.0	(ppm)	(ppm)	0.0	.0.01	4	
WS01	0.0	0.9	0	0	0.0	<0.01	1	
WS02	0.0	0.8	0	0	0.0	<0.01	1	
WS04	0.0	1.6	0	0	0.0	<0.01	1	
WS05	0.0	1.6	0	0	0.0	<0.01	1	
WS06	0.0	1.1	0	0	0.0	<0.01	1	
WS07	0.0	4.2	0	0	0.0	<0.01	1	
Atmosp	heric Pressure	e and	07/12/2	2011		993mb, rising;	sunny but cold	
trend duri	ing day of mon	itoring,	09/01/2012			1017mb, rising; overcast and drizzle		
and weather while on site:			18/01/2012			1010mb, steady; overcast		
			26/01/2012			991mb, gently rising; cloudy		
			23/03/2012 1026mb, steady; unseasonably wa					

Table 3.5 - Summary of Gas Monitoring Data

Readings obtained within a 3 minute measurement period, obtained with a GFM435 gas analyser.

CO₂ carbon dioxide; CO - carbon monoxide; CH_4 – methane; O₂ – oxygen;

H₂S – hydrogen sulphide; mbgl – metres below ground level mb – millibars l/hr - litres per hour.

¹CIRIA Characteristic Situation based on methodology presented in CIRIA Report C665, Assessing Risks Posed by Hazardous

Gases to Buildings. Where the flow rate recorded in the field is zero or negative, a flow of 0.01 l/hr is assumed

The summary data presented above indicates that, in regard to methane and carbon dioxide, CIRIA characteristic situation 1 should be applied to all of the wells. This is the lowest risk category (of six) presented in CIRIA report 665, and indicates that no special gas precautions would be required in the construction of new buildings. Additionally, zero hydrogen sulphide and carbon monoxide was recorded.

In view of the monitoring results highlighted above, ground gases are unlikely to pose a risk to the housing at the site given that natural strata was encountered in the advancement of all monitored

window sample locations, the total depth of the fill has been encountered as such the gas monitoring undertaken is likely to be representative of the whole body of fill.

3.2.7 Safety of Water Supply Pipes

As a preliminary assessment, soil quality data was screened against current stringent UKWIR parameters⁵. This preliminary assessment indicates that the concentrations of VOCs and BTEX in soil are too high for the use of PE pipe within the soils tested. A summary of the UKWIR screen is presented in Table 3.6:

Sample Identity	HP06 0.1	HP08 0.5	HP20 0.4	WS4 0.65	WS7 2.15
Depth	0.1	0.5	0.4	0.65	2.15
1.VOC Suite	0.90	0.90	1.6	0.90	1.5
1a. BTEX and MTBE	10	0.01	10	10	20
2. SVOCs	1.1	0.00	0.10	0.00	0.00
2b. Nitrobenzene	0.05	0.05	0.05	0.05	0.05
2c. Ketones	0.05	0.05	0.05	0.05	0.05
2e. Phenols	0.00	0.00	0.00	0.00	0.00
4. Mineral Oil C11-C20	0.00	0.00	0.00	0.00	0.00
4. Mineral Oil C21-C40	0.00	0.00	0.00	0.00	0.00
6. Amines	0.00	0.00	0.00	0.00	0.00

Table 3.6 UKWIR Screen Summary

Red cells indicate concentration in excess of UKWIR guidelines. Green = acceptable.

The UKWIR screening values, and methodology of assessment, is recognised within the industry as being flawed. As an alternative means of assessing whether human health may be adversely affected by drinking water from pipes in contact with soil containing contaminants, samples of drinking water were collected from taps at six properties on 9th March 2012. The samples were generally taken from properties where the highest concentrations of contaminants were encountered in soil, i.e. at locations where the greatest risk to drinking water quality may theoretically be posed.

At the instruction of Cannock Chase Council, samples were obtained after allowing the tap to run for one minute. The samples were submitted to Alcontrol Geochem of Hawarden for chemical analysis for metals, cyanide and PAHs, as commonly occurring contaminants and parameters for which drinking water standards can be applied. The results of the analyses are summarised in Table 3.7, along with a comparison to UK Drinking Water Standards (UKDWS) taken from the Water Supply (Water Quality) Regulations 2000 (as amended). Full testing results are included in Appendix D:

⁵ 10/WM/03/21 Guidance for the Selection of Water Supply Pipes to be Use in Brownfield Sites. UK Water Industry Research, 2010 (as re-issued)

Contaminant	No of Samples Tested	Minimum Value µg/l	Maximum Value µg/l	UKDWS µg/l
Arsenic	6	0.72	0.93	10
Boron	6	26	29	1000
Cadmium	6	<0.1	<0.1	5.0
Chromium	6	<0.22	<0.22	50
Copper	6	11	100	2000
Lead	6	0.09	0.13	10
Nickel	6	1.0	1.7	20
Zinc	6	6.4	14	5000
Mercury	6	<0.01	<0.01	1.0
Cyanide (total)	6	<5.0	<5.0	50
Sum of Benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene*	6	<0.04	<0.04	0.10
Benzo(a)pyrene*	6	<0.01	<0.01	0.01

Table 3.7- Tap Water Analysis Results

*There are no screening values in the WSWQ Regulations 2010 for the remaining commonly analysed 16 PAH compounds

**Limit of detection of analytical method

The maximum recorded metal and PAH concentrations within tap water did not exceed the corresponding UK Drinking Water Standards.

4 UPDATED CONCEPTUAL SITE MODEL

The CSM presented in the earlier Grontmij desk study report (see Appendix A) has been updated, using the findings of the site investigation, as presented overleaf.

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of properties above infilled ground (including children playing in gardens)	Elevated concentrations of six PAH compounds in shallow soils	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home- grown vegetables	Medium	Likely	Moderate	Concentrations recorded could possibly be consistent with "normal" or "background" concentrations as discussed in draft statutory guidance and imminent BGS research paper. This should be reviewed prior to progressing to the proposed further assessment below. Concentrations to date are probably within the range where a Margin of Exposure (MoE) approach would demonstrate that the human health risk, whilst not negligible, is still acceptably low. This is based on a similar study undertaken by Institute of Occupational Medicine (IOM), now in public domain. Further sampling needed in garden areas, to arrive at density of at least one per garden, to increase confidence that the identified PAH concentrations are representative of site. Following this, a "lines of evidence" approach including MoE calculations is recommended. IOM or similar toxicological risk assessment specialists should be consulted as part of the process.

Table 4.1 - Pollutant Linkages, Post-Site Investigation

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of the Carfax estate	Asbestos containing material (ACM) found in one sample taken at 0.2m bgl in an open space area, possibly used for play. Free fibres not present in soil	Inhalation of asbestos fibres	Medium (arguably severe)	Low	Low/moderate	Asbestos identified to date within the affected area (single trial hole) was found as "bound" ACM and not as "free" fibres, lowering perceived risk. However, further sampling in affected area recommended to increase confidence that worse conditions (i.e. "free" fibres) are not abundant.
Residents of properties above infilled ground	Methane, carbon dioxide, H2S and CO from decomposition of degradable elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Unlikely	Low	Low gas concentrations and flow rates recorded. No further assessment proposed
Subsurface services serving the buildings (principally water supply)	UKWIR soil guidelines exceeded, but testing of drinking water quality identified metals, cyanide and PAH concentrations were below UK drinking water standards	Chemical attack of pipes and/or tainting / contamination of drinking water supply	Mild	Unlikely	Very low	Very low risk indicated by sampling undertaken. Situation could theoretically change over time, so the most risk-averse strategy would be to periodically monitor. However, considering the number of properties constructed over made ground within the council's jurisdiction, such a strategy is unrealistic.
Property (structures) – sub- surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low / Moderate	Remains a theoretical risk but considered a low priority for further assessment at this stage.

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Property (structures) – residential buildings on site	Decomposable or compressible elements of infill	Differential settlement of infill, causing structural failure of buildings	Medium	Unlikely, as direct result of land contaminants (see comments)	Moderate	Although a detailed inspection of buildings has not been undertaken, a number of significant cracks (many infilled) were noted on properties, particularly those on the steepest sloping land. Majority of properties at the site appear to be currently occupied and are thus, arguably, fit for purpose. Given the very low gas monitoring results recorded, it does not appear that settlement is occurring as a result of decomposition of degradable fill material (and virtually no such material was noted in the field). As buildings appear to be fit for occupancy, and any settlement is more likely to be due to poor selection of / implementation of foundations, it is unlikely that significant harm to the building has been caused or is being caused as a result of contaminated land (ref: DEFRA Circular 01/2006 p86)
Secondary A aquifer (superficial sand and gravel) beneath site	Leachable benzene and PAHs > Tier 1 values	Leaching of soil contaminants to aquifer (no aquiclude is indicated on BGS mapping)	Mild	Likely	Low / Moderate	Concentrations considered to be tolerable, given lower sensitivity of aquifers (no public potable abstractions within 1km of site boundary). Need to confirm no private abstractions.

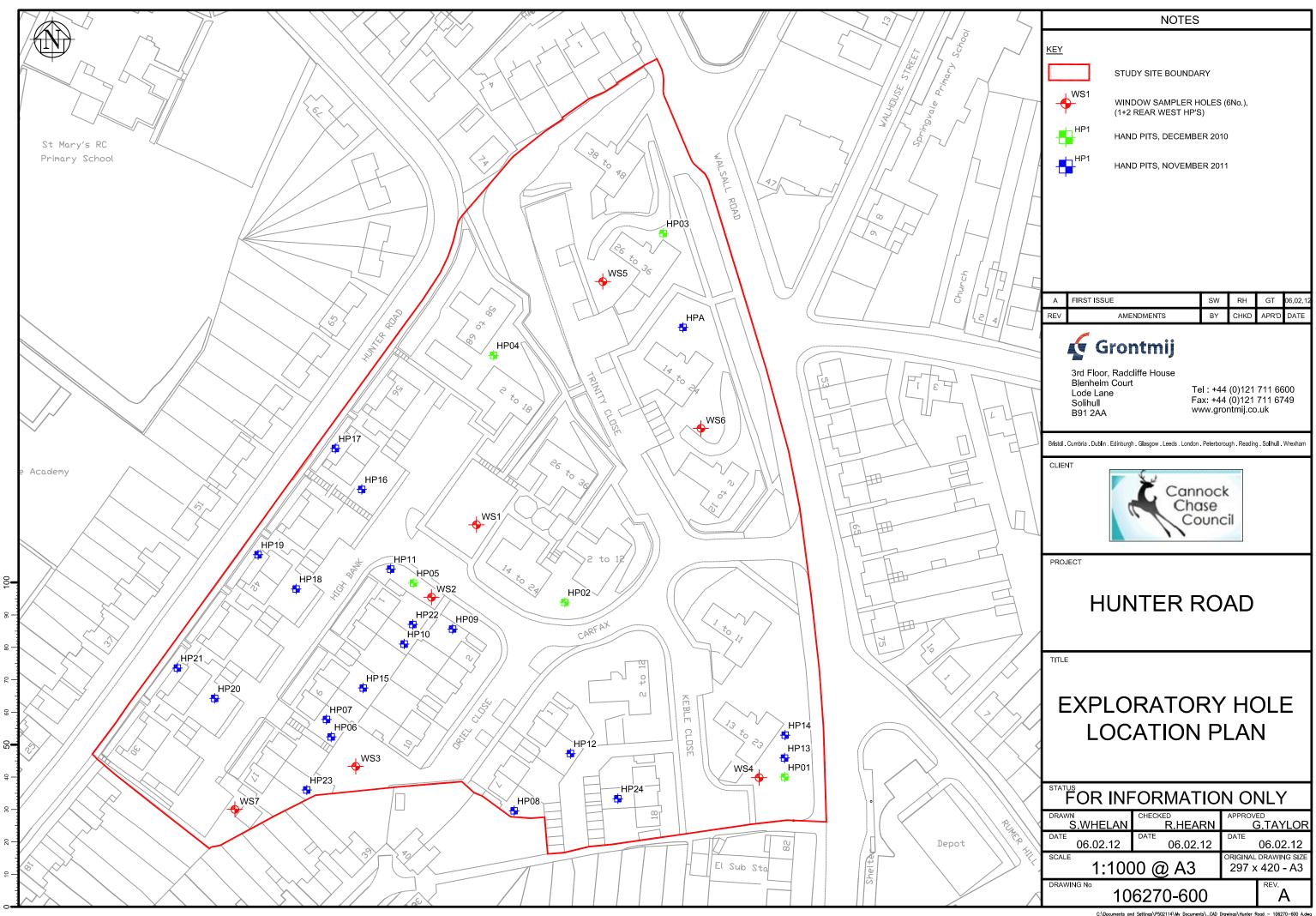
Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site	Leachable benzene and PAHs > Tier 1 values	No obvious pathway, other than mixing in the aquifers, as these contaminants are LNAPLs and will not naturally "sink" to the base of the groundwater units	Mild	Low	Low	Any benzene and PAHs migrating vertically will first encounter the aquifer in the superficial deposits and are likely to mix and dissolve in the shallower unit. Coal measures normally contain significant mudstone bands, likely to behave as aquicludes. No further assessment proposed
Ridings Brook 200m to south-east (inferred down- hydraulic gradient on basis of topography). Fish within the brook (assumed to be subject to fishing rights)	Leachable metals (slightly) and PAHs (more significantly) in excess of Tier 1 values	Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)	Medium	Low	Low / Moderate	The 200m flowpath to the receptor allows significant opportunity for dilution and attenuation of contaminants, such that concentrations reaching brook are probably acceptable. Further DQRA would allow further confidence in this conclusion, but it is considered appropriate to cease the assessment at this point, particularly in light of the new draft statutory guidance

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix F for further details

5 SUMMARY AND CONCLUSION

- Part 2A of the Environmental Protection Act 1990 requires local authorities to inspect land which, due to an industrial legacy, may meet the definition of Contaminated Land due to possible health risks or potential environmental pollution.
- A review of historical mapping and EA records provided to Cannock District Council, plus anecdotal evidence obtained during public consultation, identified that a parcel of land south-east of Hunter Road, Cannock was infilled with unknown waste material in the 1940s/1950s. The material potentially posed a risk to the health of residents now living at the site, and a risk to the quality of controlled waters.
- An exploratory investigation identified ground conditions comprising a typical thickness of 1.3m of Made Ground (3.2m of made ground in one location), which included ash, clinker, brick, ceramics, slate, metal fragments and concrete, plus possible asbestos tile in one location. The underlying strata generally comprised sand and gravel, although clay was encountered in one location. This observation was consistent with geological mapping.
- Moderately elevated polyaromatic hydrocarbon (PAH) concentrations were found in the Made Ground. The recorded concentrations could possibly be consistent with "normal" or "background" concentrations as discussed in draft statutory guidance and imminent BGS research paper. This should be reviewed prior to progressing to any further assessment. If the recorded concentrations are higher than what can be considered "normal" or "background", further sampling in residential gardens is recommended to improve confidence that the results to date are representative of the made ground at the site. Assuming higher concentrations are not identified, it is likely that further qualitative risk assessment would allow the concentrations identified to date to be viewed as posing an acceptable level of risk to residents. This is not a zero risk level or a "as low as reasonably possible" concentration.
- Asbestos containing material (ACM) has been found in one sample, although "free" asbestos fibres were not found in the surrounding soil. Further sampling around this location is recommended to improve confidence that there is not a (relatively localised) asbestos-affected area at the site.
- Leaching tests identified moderate concentrations of leachable metals and hydrocarbons, but the lower sensitivity of the groundwater, from which there are no nearby potable abstractions, and the distance to the nearest surface watercourse, some 200m away, indicate that the leachable concentrations identified are tolerable. The Council should confirm that there are no private water abstractions on record in vicinity of the site.
- Gas monitoring within six wells has identified that the concentrations and flow rates of hazardous gases beneath the site are unlikely to pose a human health or explosion risk to the housing at the site.
- The concentrations of contaminants within drinking water in six samples tested are compliant with UK drinking water standards.

On the basis of the information obtained to date and the limitations listed in Appendix B, it is possible that the site could meet the definition of contaminated land under Part 2A of the Environmental Protection Act 1990. Further work is recommended in order to sufficiently improve confidence that the site is unlikely to meet the definition of contaminated land, as follows:



24

- Confirm that there are no nearby private abstractions for potable supply
- Examine the imminent BGS paper and draft statuatroy guidance, in regard to "normal" and "background" concentrations, and confirm concentrations recorded at the site are in excess of such concentrations.
- If the recorded concentrations at the site are in excess of what could be considered "normal" or "background", obtain further shallow soil samples for PAH analysis. Assuming concentrations recorded are similar to those obtained to date, undertake further qualitative risk assessment to examine whether the risk posed to PAHs to human health can be considered as acceptable. Previous studies by the Institute of Occupational Medicine (IOM) suggest that the level of risk at the Hunter Road site is probably tolerable; IOM risk assessors should be consulted as part of the further qualitative risk assessment.
- Advance five further hand dug pits to a target of 0.7m bgl within the open space / possible play area where the sample containing ACM was identified. Submit samples for asbestos analysis, to confirm absence / low abundance of asbestos fibres within soil matrix. Re-examine likely risk to residents, including children at play, accordingly.

DRAWINGS

C:\Documents and Settings\P502114\My Documents_CAD Drawings\Hunter Road - 106270-600 A.dw

APPENDIX A

Cannock Chase District Council

Environmental Protection Act 1990, Part 2A: Initial Exploratory Site Investigation

Landfill Site off Hunter Road, North of Bridgtown, Cannock, Staffordshire

May 2011

Prepared for:

Cannock Chase Council PO Box 28 Beecroft Road Cannock Staffordshire WS11 1BG

Prepared by:

Grontmij Limited 3rd Floor, Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

T 0121 7116600 F 0121 7116749 E gareth.taylor@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
R652/106270/V1 /2011	26/05/11	First Issue	Name	Christopher James	Gareth Taylor	Lewis Barlow
			Position	Principal Environmental Consultant	Principal Environmental Consultant	Technical Manager

© Grontmij 2011 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTRODUCTION1
1.1	Terms of Reference1
2	BACKGROUND INFORMATION2
2.1	Site Setting2
2.2	Previous Reports3
3	INITIAL EXPLORATORY SITE INVESTIGATION7
3.1	Scope and Methodology7
3.2	Results7
3.2.1	Ground Conditions7
3.2.2	Adequacy of Investigation Depth and Extent7
3.2.3	Field Evidence of Potential Contamination8
3.2.4	Soil Analysis Results8
3.2.5	Safety of Water Supply Pipes10
4	UPDATED CONCEPTUAL SITE MODEL12
4.1	Introduction12
4.2	Contaminants12
4.3	Receptors12
4.4	Pathways12
5	SUMMARY AND CONCLUSION17
6	RECOMMENDATIONS FOR FURTHER WORK18

FIGURES

Figure 21 -	Site Location	3
1 iyule 2.1 -	Sile Location	

TABLES

Table 2.1 - Site Setting	2
Table 2.2 - Potential Pollutant Linkages	
Table 3.1 - Field Evidence of Potential Contamination	
Table 3.2 – Soil Analysis Results Summary	9
Table 3.3 - WRAS Threshold Screen	
Table 4.1 – Pollutant Linkages, Post-Site Investigation	13

DRAWINGS

Drawing 1: Exploratory Hole Location Plan

APPENDICES

Appendix A	Initial Desktop Study and Site Walkover Report, August 2010
Appendix B	Limitations Statement
Appendix C	Exploratory Hole Logs
Appendix D	Chemical Analysis Results
Appendix E	Severity and Probability of Risk (after CIRIA 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Part 2A Contaminated Land inspection strategy. Part 2A of the Environmental Protection Act 1990 (Part 2A) requires each local authority to inspect areas of land which it believes may constitute Part 2A Contaminated Land.

Contaminated Land is defined in Section 78(2) of Part 2A of the Environmental Protection Act 1990 as:

"any land which appears to the local authority in whose area the land is situated to be in such a condition, by reason of substances in, on or under the land, that

- significant harm is being caused or there is a significant possibility of such harm being caused; or
- pollution of controlled waters is being, or is likely to be, caused.

Further information is provided in the Act and associated statutory guidance (DEFRA Circular 01/2006 – EPA 1990, Part 2A: Contaminated Land).

Grontmij has assisted the Council to prioritise a list of sites which could constitute Part 2A contaminated land for inspection, on the basis of the Council's Part 2A Inspection Strategy. The site subject to this report, at Hunter Road, Cannock, is considered to be sensitive as 35 residential properties with gardens and 12 blocks of two/three storey maisonettes with communal gardens overlie a former landfill site. The site is also underlain by two secondary aquifers, which leachate from the infill could be adversely affecting.

The site occupies an area of approximately 3 ha.

Following the completion of a desktop study (see Appendix A), Grontmij subsequently implemented a limited initial exploratory site investigation, comprising five hand-dug pits and limited chemical testing, in December 2010. The purpose of the investigation was to examine shallow soil conditions and evaluate the requirement for a detailed assessment of the site.

This report presents the findings of the exploratory investigation, assesses the significance of the contaminant concentrations detected, and makes recommendations for further work.

This report is subject to the limitations presented in Appendix B.

2 BACKGROUND INFORMATION

2.1 Site Setting

The site's setting and location are summarised in Table 2.1 and Figure 2.1. The site setting is also shown on Drawing 1.

Data	Information
Address	Hunter Road, North of Bridgtown, Cannock, Staffordshire Nearest postcode: WS11 0YT
Current site use	Residential houses and gardens; architectural style indicates that the buildings date from the 1960s or 70s
Grid Reference	Centre of site is located at approximately NGR 398250, 309650
Site Area	The site occupies approximately 3 ha
Topography	Moderate downwards gradient towards south east (residential area lies on multiple levels as a result of cut and fill earthworks)
Surrounding land use	The site is located within a wider residential area. The A34 lies adjacent to the eastern edge of the site. St Marys Primary School is located 50m to the north west of the site
Mapped Geology	British Geological Survey (BGS) mapping indicates the site is underlain by superficial glaciofluvial deposits (sand and gravel). The superficial deposits are underlain by bedrock of mudstone, siltstone and sandstone of the Pennine Middle Coal Measures Formation
Hydrogeology	The Environment Agency website indicates both the bedrock and superficial deposits to be Secondary A aquifers. Secondary A aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers
Source Protection Zones (SPZs)	The Environment Agency website indicates that the site does not lie within a SPZ
Surface Waters	Ridings Brook is located 200m south east (inferred downgradient) of the site
Historical Land Use	Environment Agency data provided to the council and the Environment Agency "What's In Your Back Yard" website indicate that the site comprises a former landfill site, operational between 1945 and 1955. The type of waste received by the site is unknown. The operational period pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal licence
Ecologically designated sites ¹	MAGIC search indicates none exist within 500m of site boundary
Scheduled Monuments	Pastscape website indicates no monuments on site or in close proximity

Table 2.1 - Site Setting

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

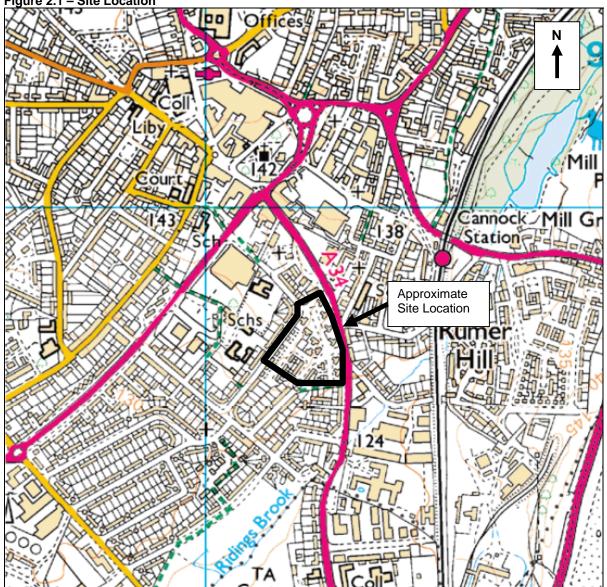


Figure 2.1 – Site Location

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright. Plan is not to scale.

Previous Reports 2.2

Grontmij has previously completed a desktop assessment of the site, as presented as Appendix A. The assessment included the review of on-line data resources, in-house mapping and records provided by the council, and a site walkover. The desk study report included an initial Conceptual Site Model (CSM) of potential pollutant linkages, developed in accordance with the model procedures² and statutory guidance³. The CSM is re-presented as Table 2.2 overleaf.

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land:, September 2006.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

Table 2.2 - Potential Pollutant Linkages

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs, SVOCs and asbestos within landfill material	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home- grown vegetables	Medium	Likely	Moderate	Risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to refine conclusion on risk
Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
Property (structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Secondary A aquifer (superficial deposits; fluvioglacial sand and gravels) beneath site	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Leaching of soil contaminants to aquifer (no aquiclude is indicated on BGS mapping)	Mild	Likely	Low / Moderate	Risk will depend upon depth and concentration of contaminants, and leaching potential of contaminants. Initial leachability testing (soils) and dissolved phase analysis (groundwater) required to improve understanding of site
Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site	Dissolved dense contaminants or DNAPL (e.g. solvents) which have leached to the overlying fluvioglacial sand and gravel aquifer (assuming both strata are in hydraulic connectivity)	Vertical migration of dense contaminants	Mild	Low to Likely	Low / Moderate	Risk will depend upon concentration/mobility of contaminants and presence/thickness and hydraulic connectivity of overlying fluvioglacial deposits. Initial leachability testing (soils) and dissolved phase analysis (groundwater in fluvioglacial sand and gravel) required to improve understanding of site

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Ridings Brook 200m to the south east (inferred down-hydraulic gradient on basis of topography). Fish within the brook (assumed to be subject to fishing rights)	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)	Medium	Low	Low / Moderate	Risk will depend upon concentration and mobility of contaminants. Although the brook is inferred to be hydraulically downgradient of the site, there is significant opportunity for dilution and attenuation of contaminants along the 200m flowpath to the Brook. Initial dissolved phase analysis (groundwater within fluvioglacial deposit) required to improve understanding of site

¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix B.

3 INITIAL EXPLORATORY SITE INVESTIGATION

In order to further examine the potential pollutant linkages identified in Table 2.2, an initial exploratory site investigation was designed with referce to BS10175:2001 and undertaken on the 10th December 2010. This section describes the site investigation undertaken and results obtained.

3.1 Scope and Methodology

The intrusive site investigation included the following:

- A consultation exercise with residents living at the site, including a mailshot and a public open evening;
- Obtaining plans of underground services and CAT-scanning proposed drilling locations, using a Radiodetection CAT1 and signal generator;
- Advancing five hand dug pits (TP1-TP5) to a maximum depth of 1m, to examine shallow soil conditions;
- Logging soil arisings in accordance with (BS5930:1999), and additionally noting any visual or olfactory evidence of potential contamination;
- Retaining representative soil samples of the strata encountered, which were selected on the basis of field observations of potential contamination and achieving good spatial and depth coverage of the site;
- Submitting retained samples to Alcontrol Geochem in cooled coolboxes and under full chain of custody documentation, and instructing the analysis of samples.

3.2 Results

3.2.1 Ground Conditions

Made ground

Made ground was encountered from ground level / below a turf surface cover to the base of all hand pits, which were excavated to a maximum depth of 1m below ground level (bgl). The Made Ground was predominantly granular in nature, comprising brown clayey sand and gravels (gravels comprising fine to coarse quartz, with some ash, metal, slag, clinker, brick, concrete and coal fragments).

Superficial soils were not encountered.

Groundwater

Groundwater was not encountered during the investigation.

The above findings are discussed further in Section 4 (updated CSM). Hand pit logs are included within Appendix C.

3.2.2 Adequacy of Investigation Depth and Extent

The advanced hand dug pits provided adequate spatial coverage of the site for an initial exploratory site investigation, but further spatial coverage is required to improve the understanding of the site (see Sections 4 to 6). The base of the Made Ground was not proven during the investigation, meaning that the full profile of infill/waste and associated contaminants

and gas generating potential remains unknown (and requiring of further investigation). Additionally, the hand pits were advanced in lower-risk areas of the site (i.e. open space), so it is desirable to obtain analyses from higher-risk areas (i.e. residential gardens) where such areas exist.

3.2.3 Field Evidence of Potential Contamination

The hand pit arisings were inspected for visual and olfactory evidence of potential contamination. A summary of field observations recorded is presented in Table 3.1 below:

Exploratory Hole	Visual and Olfactory Evidence of Contamination
TP1	0-0.8m bgl: made ground contains brick, ash, burnt shale, clinker, metal and slag fragments
TP2	0 – 0.8m bgl: made ground contains brick, ash, clinker and coal fragments
TP3	0 – 1m bgl: made ground contains brick, ash and plastic fragments
TP4	0 – 0.7m bgl: made ground contains brick and ash fragments
TP5	0 – 0.7m bgl: made ground contains brick and ash fragments

Table 3.1 - Field Evidence of Potential Contamination

3.2.4 Soil Analysis Results

Five samples were submitted for laboratory analysis, under full chain of custody documentation and within chilled coolboxes, to ALcontrol Geochem of Deeside. ALcontrol is UKAS accredited and holds MCERTS accreditation for most analyses performed. The samples were selected for analysis on the basis of the observations of potential contamination made in the field, and to achieve adequate spatial coverage of the site.

Table 3.2 presents a summary of the analysis results. The results have been compared to screening values protective of human health, assuming the receptor is a residential property where plant uptake of contaminants occurs, and the plants are subsequently ingested by humans. The screening values used, in order of preference, comprise:

- 2009 Soil Guideline Values (SGVs) published by the Environment Agency / DEFRA, generated using the latest Contaminated Land Exposure Assessment (CLEA) model, version 1.06;
- Generic Assessment Criteria (GAC) published by Land Quality Management Limited (LQM) or the Environmental Industries Commission (EIC), or calculated by Grontmij, all using CLEA 1.06;
- SGVs published by the Environment Agency / DEFRA between 2002 and 2007, calculated using prior versions of the CLEA model;

Full analytical testing results are included as Appendix D.

Determinand	No. of Samples Tested	Minimum Value	Maximum Value	SGV / GAC ¹	Locations where SGV or GAC are exceeded
Arsenic	5	6.4	11	32	-
Barium	5	130	150	1,300	-
Beryllium	5	0.90	1.1	51	-
Boron (water-soluble)	5	<1	180	291	-
Cadmium	5	0.48	1.2	10	-
Chromium, hexavalent	5	<0.60	<1.2	4.3	-
Chromium, total	5	9.9	37	3,000	-
Copper	5	27	40	2,330	-
Lead ²	5	56	120	450	-
Mercury ³	5	<0.14	<0.14	170	-
Nickel	5	14	25	130	-
Selenium	5	<1.0	<1.0	350	-
Vanadium	5	16	46	75	-
Zinc	5	100	230	3,750	-
Asbestos screen	3		estos containin uding fibres) d		-
Polycyclic Aromatic Hydrocarbons (PAHs)	5		entrations belo compounds, v of results belo	vith exception	-
Benzo(a)pyrene	5	0.73	15	0.94	TP1 at 0.1m bgl, TP2 at 0.3m bgl, TP4 at 0.3m bgl and TP5 at 0.1m bgl
Benzo(b)fluoranthene	5	0.75	18	6.5	
Chrysene	5	0.54	16	8	
Dibenz(ah)anthracene	5	0.12	2.0	0.86	TP5 at 0.1m bgl
Indeno(1,2,3,cd)pyrene	5	0.47	6.8	3.9	

Table 3.2 – Soil Ana	ysis Results	Summary
----------------------	--------------	---------

Values presented in mg/kg, correct to two significant figures (screening values presented without any rounding). **Bold values** indicate locations where observed concentrations exceed the screening value.

¹ Eleven samples were tested for Soil Organic Matter (%SOM) content. A minimum value of 0.9% and a maximum of 3.4% were recorded, with a mean of 2.3% and median of 2.4%. It is therefore justified, where SGVs or GAC are influenced by SOM, to use the SGVs and GAC generated using a 2.5% SOM value in CLEA in an initial screen. *Italics values* indicate where no 2.5% value available for metals 6.0% SOM Values were used as an initial screen.

² SGV quoted was generated by DEFRA using earlier version of CLEA. A value using the latest version of CLEA is awaited.

³ Testing results presented represent total mercury, whereas SGV presented is for inorganic mercury. Although the most stringent of the SGVs is for elemental mercury, the Environment Agency SGV for mercury in soil science report SC050021/Mercury SGV indicate that in cases where preliminary risk assessment has not identified a mercury issue at the site or conditions such as peaty or flooded soils then '*For general surface contamination and to simplify the assessment, the SGVs for inorganic mercury can normally be compared with chemical analysis for total mercury content because the equilibrium concentrations of elemental and methyl mercury compounds are likely to be very low*'.

3.2.5 Safety of Water Supply Pipes

Two publications have been reviewed in regard to potential risks to water supply pipes posed by contaminants in the ground:

- "Guidance for the Protection of Water Supply Pipes to be Used in Brownfield Sites" (UK Water Industry Research {UKWIR}, ref 10/WM/03/21, 2010 (re-issued version));
- The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land (Water Regulations Advisory Scheme {WRAS}, ref 9-04-03, October 2002).

Both reports present methodologies for the assessment of soil conditions and the specification of appropriate pipework materials for new pipes to mitigate the presence of contaminants. <u>As such, the screening values presented in such reports are particularly conservative.</u>

WRAS Screen

A comparison between the chemical analysis results obtained from samples taken at 0.3 - 0.6m bgl and the older WRAS screening values is presented in Table 3.4. The deepest three soil samples were selected for comparison as 1.2m is the typical maximum depth at which water pipes are laid within the highway, with local service connections to properties typically much shallower (note, the table below does not constitute a full screen against all WRAS parameters; e.g. sulphate, cyanide and coal tar have not been tested for).

Table 3.3 - WRAS Threshold Screen

Analyte	Maximum Analysis Result (mg/kg)	WRAS Threshold Value (mg/kg)
рН	7.84 – 8.41	<5 or >8
Arsenic	9.3	10
Cadmium	1.2	3
Chromium (hexavalent)	<1.2	25
Chromium (total)	33	600
Lead	120	500
Mercury	<0.14	1
Selenium	<1.0	3
Polyaromatic Hydrocarbons	12	50

Bold values indicate exceedance of WRAS threshold value

The maximum pH value recorded exceeds the WRAS threshold value.

UKWIR Screen

The UKWIR approach is the most recent and reflects further studies undertaken since the WRAS document was published in 2002. Key features of the UKWIR report include:

- A pipework material-specific assessment procedure (Table 3.1 of the report). This allows chemical analysis results to be compared to various threshold criteria associated with six possible pipework material types;
- The discounting of metallic pipework (other than copper or steel/ductile iron with protective wrapping) as a modern pipework material;
- The specification of a different chemical testing suite to that recommended in the earlier WRAS document, including the use of physio-chemical parameters and exclusion of analysis for metals (given the above discounting of metallic pipework).

However as the chemical analysis for the site was scheduled prior to the publication of the reissued UKWIR report (despite a re-issue data of 2010, the report was not available until January 2011), no relevant parameters (apart from pH) required for a UKWIR screen (as summarised in Appendix G) have not been analysed for and hence further assessment is not possible.

Screening Summary

Based on the existing investigation data it is possible that the concentrations of contaminants at the site could adversely effect drinking water quality, depending on the materials used for water distribution (South Staffordshire Water pipes) and local connections to the South Staffordshire network (probably installed by the house builder).

The results of the intrusive investigation are discussed in more detail within the following section.

4 UPDATED CONCEPTUAL SITE MODEL

4.1 Introduction

The CSM presented in the earlier Grontmij desk study report (Appendix A) was updated, using the findings of the site investigation, as presented in the following sections.

4.2 Contaminants

The "contaminants" term in the conceptual model has been evaluated by comparing the chemical analysis results obtained during the site investigation with published generic screening values (Tables 3.1, 3.2 and 3.4).

• Concentrations of benzo(a)pyrene in four soil samples and benzo(b)fluoranthene, chrysene, dibenz(ah)anthracene and indeno(1,2,3,cd)pyrene in one soil sample were detected at concentrations in excess of the screening values relevant for a residential site with plant uptake.

Soil pH was detected in soil at values which exceed UKWIR and WRAS guidelines, protective of water distribution pipework.

Gas concentrations within the infill/waste material beneath the site, and leachable contaminant concentrations within the infill/waste, have not been determined to date.

4.3 Receptors

Table 4.1 indicates the receptors considered to be present at the site. The critical human receptor is the on-site resident; while off-site residents and commercial workers are also present, the concentrations of contaminants and, in the case of commercial workers, their exposure frequency and duration, is likely to be less than on-site residents, and are not considered further.

See Appendix A (desk study report) for a detailed discussion of the receptors included in the conceptual model.

4.4 Pathways

Pathways (pollutant linkages) are also examined as part of Table 4.1, overleaf.

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Residents of properties above infilled ground (including children playing in gardens)	Elevated concentrations of benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenz(ah)anthracene and indeno(1,2,3,cd)pyrene in shallow soils (up to 0.3m bgl)	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home- grown vegetables	Medium	Likely	Moderate	Insufficient data available to draw firm conclusion (only a basic suite of testing was undertaken, only five samples have been obtained, limited depth-specific analysis can be undertaken) – infill has been identified across the site and higher contaminant concentrations may be present. Further assessment is required in order to increase the sample population and determine the significance of the detected concentrations (see section 6). This should include further analysis of shallow (c. 0.1m) samples where exposure is potentially greatest.
Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	As monitoring of landfill gases were not undertaken during the limited investigation (as not considered appropriate within shallow hand pits which did not prove the base of the infill/waste) gas risk is unknown. Further assessment is therefore required (see section 6) to include wells drilled to the base of the infill/waste material and measurement of ground gas concentrations & flow rates

Table 4.1 – Pollutant Linkages, Post-Site Investigation

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Subsurface services serving the buildings (principally water supply)	pH values in shallow soils exceed UKWIR and WRAS guideline screening criteria	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low / Moderate	Limited investigation data is available (note no relevant parameters for UKWIR guidelines were analysed). Materials used for connection of each house to the South Staffordshire Water main are unknown, and assumed to be potentially susceptible to attack. Hence further assessment is required. Prior experience dictates that concentrations of contaminants in most Made Ground soils tend to exceed UKWIR guidelines, which are normally used to specify materials for new pipework and are deliberately conservative. Tap water testing is recommended to assess current risk to residents (see section 6)
Property (structures) – sub- surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low / Moderate	Based on limited investigation data (sulphate analysis was not undertaken) further assessment is required (see section 6)

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Property (structures) – residential buildings on site	Decomposable or compressible elements of infill	Differential settlement of infill, causing structural failure of buildings	Medium	Unlikely	Low	Although a detailed inspection of buildings has not been undertaken, no obvious evidence of structural failure was noted in the field and all properties at the site appear to be currently occupied. As buildings appear to be fit for occupancy, it is unlikely that significant harm to the building has been caused or is being caused (ref: DEFRA Circular 01/2006 p86 – this is statutory guidance accompanying the Environmental Protection Act 1990)
Secondary A aquifer (superficial deposits; fluvioglacial sand and gravels) beneath site	Potential contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Leaching of soil contaminants to aquifer (no aquiclude is indicated on BGS mapping)	Mild	Likely	Low / Moderate	Due to limited depth of initial investigation holes, which did not prove the base of the infill/waste material, and lack of soil leachate analysis, limited further assessment is required (see section 6)
Secondary A aquifer (solid geology; Pennine Middle Coal Measures) beneath site	Dissolved dense contaminants or DNAPL (e.g. solvents) which have leached to the overlying fluvioglacial sand and gravel aquifer (assuming both strata are in hydraulic connectivity)	Vertical migration of dense contaminants	Mild	Low	Low	Contaminant migrating vertically will first encounter the aquifer in the superficial deposits; most contaminants (except any DNAPL) are likely to mix and dissolve in the shallower unit. Coal measures normally contain significant mudstone bands, likely to behave as aquicludes. No further assessment proposed

Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
Ridings Brook 200m to south-east (inferred down- hydraulic gradient on basis of topography). Fish within the brook (assumed to be subject to fishing rights)	Contaminants including (but not limited to) metals, hydrocarbons; including PAHs, VOCs and SVOCs within landfill material	Migration of dissolved phase contaminants within fluvioglacial sand and gravel deposits (assuming hydraulic connectivity)	Medium	Low	Low / Moderate	Although distance of receptor from site mitigates risk to an extent (due to attenuation along the 200m "flowpath") the lack of current information makes further assessment necessary to improve understanding of site CSM and provide clarity on potential risk (see section 6)

1 Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See Appendix F for further details

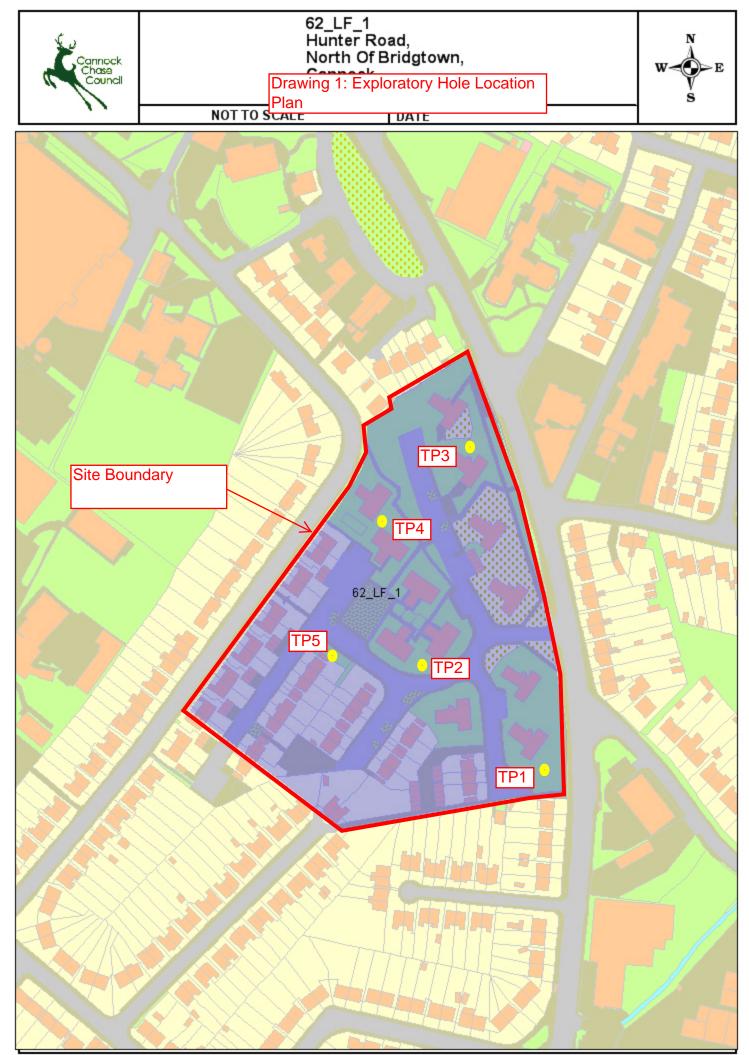
5 SUMMARY AND CONCLUSION

- Environment Agency data provided to the council and the Environment Agency "What's In Your Back Yard" website indicates that the site comprises a former landfill site, operational between 1945 and 1955, although the type of waste received is unknown. The operational period pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal licence. The waste material potentially poses a risk to human health, water supply pipes and controlled waters;
- An initial exploratory site investigation encountered 1m of infill material, which was noted to contain ash and brick fragments within all hand pits, and clinker, metal, coal, slag and plastic fragments were also noted in some pits. The base of infill material was not proven;
- Chemical analysis identified that the concentration of benzo(a)pyrene in four soil samples and benzo(b)fluoranthene, chrysene, dibenz(ah)anthracene and indeno(1,2,3,cd)pyrene in one soil sample (of five analysed) exceeds the generic screening value applicable to the generic residential housing scenario, where plants are grown for human consumption. Given the clear presence of infill at the site, limited further shallow investigation is recommended to enhance the dataset and enable confidence in conclusions in regard to risk posed to human health;
- Gas monitoring has not been undertaken, hence the potential for infill material to generate significant quantities of ground gases cannot be currently assessed;
- The potential for contamination within the infill material to leach to controlled waters (i.e. groundwater within the fluvioglacial sand and gravel deposits) is not currently known.

On the basis of the preceding assessment, limitations listed in Appendix B, and initial soil sample analysis at the site we consider that the site has the potential to meet the definition of contaminated land under Part 2A of the Environmental Protection Act 1990. However as this assessment is based on limited information, further investigation is required as detailed within the following section.

6 **RECOMMENDATIONS FOR FURTHER WORK**

The initial exploratory site investigation has established that the concentration of PAHs in soil exceed the SGV/GAC applicable to the generic residential housing scenario. The base of the landfill has not been proven, and the potential of the site to generate ground gases or leachate is unknown. Shallow soil contamination may pose a risk to drinking water supply pipes.


Based on these risks, it is recommended that a second phase of intrusive investigation is undertaken at the site. This investigation will comprise fifteen hand dug trial pits to 1.0m bgl to provide greater spatial coverage (in particular within garden areas, not targeted during the initial exploratory site investigation) and six drilled boreholes to approximately 6m bgl to prove the base of / examination the composition of the entire depth of landfill, enable well installation for gas monitoring, and determine whether the landfill is a potential source of vertical contaminant leaching to groundwater beneath the site. The soil sampling will include collection and analysis of shallow (c. 0.1m) soil samples, where potential exposure to soils is greatest.

As there are a number of open space areas at the site which can be accessed by a smaller drilling rig, tracked window sampler holes are recommended for the borehole investigation.

Four initial rounds of gas monitoring are proposed, to be extended to six visits (in accordance with guidance in CIRIA report C665) if the initial monitoring dictates the need.

DRAWINGS (of 2011 report)

Crown Copyright. All rights reserved. Cannock Chase District Council. Licence No. 100019754 (2010)

APPENDIX A (of 2011 report)

Cannock Chase District Council

Environmental Protection Act 1990, Part IIa: Desktop Study and Walkover

Landfill Site off Hunter Road, North of Bridgtown, Cannock, Staffordshire

August 2010

Prepared for:

Cannock Chase Council PO Box 28 **Beecroft Road** Cannock Staffordshire WS11 1BG

Prepared by: Grontmij Limited 3rd Floor, Radcliffe House **Blenheim Court** Lode Lane Solihull B91 2AA

T 0121 7116600 F 0121 7116749 E gareth.taylor@grontmij.co.uk

Document Control

Report Reference	Issue Date	Reason for Issue		Prepared by	Checked by	Approved by
R469/103912/V1/2010	03/08/10	First Issue	Signature			
			Name	Richard Swayne	Gareth Taylor	Gareth Taylor
			Position	Senior Consultant	Principal Consultant	Principal Consultant

© Grontmij 2010 This document is a Grontmij confidential document; it may not be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise disclosed in whole or in part to any third party without our express prior written consent. It should be used by you and the permitted discloses for the purpose for which it has been submitted and for no other.

CONTENTS

1	INTRODUCTION	1
1.1	Terms of Reference	1
1.2	Site Setting	1
1.3	Summary of available site investigation information	3
1.4	Walkover	3
2	PRELIMINARY CONCEPTUAL MODEL	4
2.1	Introduction	4
2.1.1	Sources of Contaminants	4
2.1.2	Receptors	5
2.1.3	Pathways	6
2.1.4	Potential Pollutant Linkages	6
3	CLOSING REMARKS	9

FIGURES

Figure 1.1 -	Site Location	.3
i igaio i i i		

TABLES

Table 1.1 – Site Setting	2
Table 2.1 - Potential Receptors	
Table 2.2 - Potential Pollutant Linkages	

DRAWINGS

Drawing 1 – Site Location

APPENDICES

Appendix A	Limitations Statement
Appendix B	Severity and Probability of Risk (after CIRIA report 552)

1 INTRODUCTION

1.1 Terms of Reference

In January 2010, Grontmij Limited (Grontmij) was appointed by Cannock Chase District Council (the Council) to assist in the implementation of the Council's Contaminated Land Inspection Strategy. Part IIa of the Environmental Protection Act 1990 (Part IIa) requires each local authority to inspect areas of land which it believes may comprise Part IIa Contaminated Land.

The scope of work agreed between Grontmij and the Council included:

- Prioritisation of an initial list of potentially contaminated sites for intrusive investigation work, based upon the sensitivity of each site, using existing limited desktop study data provided by the Council; and,
- Undertaking desktop reviews and walkovers, culminating in the production of reports for each priority site to improve the understanding of the sites and inform the planning of intrusive site investigations.

The prioritisation exercise identified an initial 12 sites requiring detailed desktop study and walkovers, including the Landfill Site off Hunter Road, which is discussed within this report. The site consists of 35 residential properties with gardens and 12 blocks of two/three storey maisonettes with communal gardens, occupying an area of approximately 3 ha. The site is considered to be sensitive as the residential properties have been developed over a former landfill. The site is also underlain by a Secondary A and B aquifer.

This report is subject to the limitations presented in Appendix A.

1.2 Site Setting

The setting of the site is summarised in Table 1.1. The location of the site is shown on Figure 1.1, and surrounding land-use on Drawing 1.



Table 1.1 – Site Setting

Data	Information
Address	Hunter Road, North of Bridgtown, Cannock, Staffordshire
	Nearest postcode: WS11 0YT
Current site use:	Residential houses and gardens; architectural style indicates that the buildings
	date form the 1960s or 70s
Grid Reference:	Centre of site is located at approximate NGR 398250,309650
Site Area:	The site occupies approximately 3 ha
Topography:	Moderate grade down towards south-east - the residential area is on multiple levels as a result of cut and fill earthworks
Surrounding land use	The site is located within a wider residential area. The A34 is adjacent to the eastern edge of the site. St Marys Primary School is located 50m to the north-west of the site.
Mapped Geology	British Geological Survey (BGS) mapping indicates the site is underlain by superficial glaciofluvial deposits (sand and gravel). The superficial deposits are underlain by bedrock of mudstone, siltstone and sandstone of the Pennine Middle Coal Measures Formation.
Hydrogeology	The Environment Agency website indicates both the bedrock and superficial deposits to be Secondary A aquifers. Secondary A aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.
Source Protection Zones (SPZs)	The Environment Agency website indicates that the sites do not lie within a SPZ.
Surface Waters	Ridings Brook is located 200 m south east (inferred downgradient) of the site.
Historical Land Use	"What's In Your Back Yard" website indicate that the site comprises a former landfill site, operational between 1945 and 1955. The type of waste received by the site is unknown. The site pre-dates the Control of Pollution Act 1974 and thus is unlikely to have operated under a formal license.
Ecologically designated sites ¹	MAGIC search indicates none within 1km of site boundary

¹ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Reproduced from Ordnance Survey Map under licence AL549878 with permission from the Controller of HMSO, © Crown Copyright Plan is not to scale.

1.3 Summary of available site investigation information

The council is not aware of any previous investigation data.

1.4 Walkover

The site has been subject of a walkover, carried out from the public highway. . No obvious evidence of contamination was identified during the inspection, but such evidence is unlikely to be uncovered by a visual inspection of land occupied by residential properties.

2 PRELIMINARY CONCEPTUAL MODEL

2.1 Introduction

This section of the report presents a preliminary contaminated land assessment, on the basis of the available desktop data and information gathered during the walkover. The assessment presents an evaluation of the potential risks posed, should contaminants be present in the soil or groundwater beneath the site.

In the context of the Environmental Protection Act 1990 (EPA90), the Water Act 2003 and associated guidance^{2,3}, a preliminary (contaminated land) risk assessment should focus on whether the land at a subject site meets the statutory definition of Contaminated Land. Part IIA of the EPA90, as amended by the Water Act 2003, defines Contaminated Land as:

"any land which appears to the local authority in whose area it is situated to be in such condition by reason of substances in, on or under the land, that:

- significant harm is being caused or there is a significant possibility of significant harm being caused; or
- significant pollution of controlled waters is being caused or there is significant possibility of such pollution being caused".

The procedure for assessing contaminated land involves the development of a Conceptual Site Model (CSM) comprising the assessment of potential contaminants, pathways and receptors.

2.1.1 Sources of Contaminants

The "contaminants" term in the conceptual model has been evaluated by inspection of existing desktop study data provided by the Council, and a site walkover. The following potential sources of contaminants have been identified:

- Infilled land which could contain contaminants including (but not limited to) metals, hydrocarbons, polyaromatic hydrocarbons (PAHs), volatile and semi-volatile organic compounds (VOCs and SVOCs);and,
- Methane and carbon dioxide gas, from the decomposition of any biodegradable material within the infill

³ DEFRA Circular 02/2006, Environmental Protection Act 1990: Part IIA Contaminated Land: September 2006.

² CLR11 Model Procedures for the Management of Land Contamination (EA & DEFRA September 2004)

2.1.2 Receptors

DEFRA Circular 02/2006 defines a Receptor as:

"either (a) a living organism, a group of organisms, an ecological system or a piece of property which (i) is in a category listed in Table A as a type of receptor, and (ii) is being, or could be, harmed, by a contaminant; or (b) controlled waters which are being, or could be, polluted by a contaminant".

Table 2.1 lists all of the receptors to be considered by a Part IIA or PPS23⁴ assessment, and assesses whether the receptors are likely to be present at the site.

Receptor Type	Receptors	Present (√ /×)	Notes		
Humans	On-site residents	✓	Residential properties (houses and gardens) above indicative extent of landfill. Gardens assumed to be used for growing food crops.		
	Construction staff and site investigation personnel.	X	No known redevelopment proposed.		
	Future occupants of the site	•	Level of risk same as current residents so not considered further.		
	Off site commercial workers or residents	✓	Possibly exposed to gases migrating off-site through permeable strata. Level of risk likely to be same, or lower, than on-site residents, and is not considered further		
Ecosystems	Any designated ecological system ⁵ , or living organism forming part of such a system	X	Inspection of MAGIC website has identified that the site does not lie within 1km of an ecologically designated site.		
Property (Flora	Crops, including timber	Х	Not present.		
and Fauna)	Produce grown domestically, or on allotments for consumption	V	Gardens assumed to be used for growing food crops. Risk posed is considered to be covered by human health (residential with gardens) pathway and is not considered further.		
	Livestock	Х	Not present.		
	Other owned or domesticated animals	✓	Pets in residential properties. Risk posed is considered to be similar to that posed to on- site residents, and is not examined further		
	Wild animals which are the subject of shooting or fishing rights	X	Fish in Ridings Brook, located 200m south- east of the site.		
Property (Buildings & Structures)	A 'building' means any structure, including any part below ground level, but does not include plant or machinery within a building	•	Residential houses (and in particular, water service pipes and foundations) above indicative extent of landfill.		

Table 2.1 - Potential Receptors

⁴ Planning Policy Statement (PPS) 23: Planning and Pollution Control, Annex 2: Development on Land Affected by Contamination ⁵ Includes sites designated as Site of Special Scientific Interest (SSSI), National Nature Reserve (NNR), Special Area of Conservation (SAC, including candidate sites), Special Protection Area (SPA including potential sites), listed Wetlands of International Importance (Ramsar site) and Local Nature Reserves (LNR).

Receptor Type	Receptors	Present (√ /×)	Notes
Controlled	Territorial waters	×	None feasibly close enough to be affected.
Waters ⁶	Coastal waters	×	None feasibly close enough to be affected.
	Inland Freshwaters	✓	Ridings Brook is located 200 m south-east of the site.
	Groundwater	✓	2 no secondary A aquifers beneath site.

2.1.3 Pathways

DEFRA Circular 02/2006 defines a pathway as:

"one or more routes or means by, or through, which a receptor: (a) is being exposed to, or affected by, a contaminant; or (b) could be exposed or affected"

Pathways are examined as part of Table 2.2.

2.1.4 Potential Pollutant Linkages

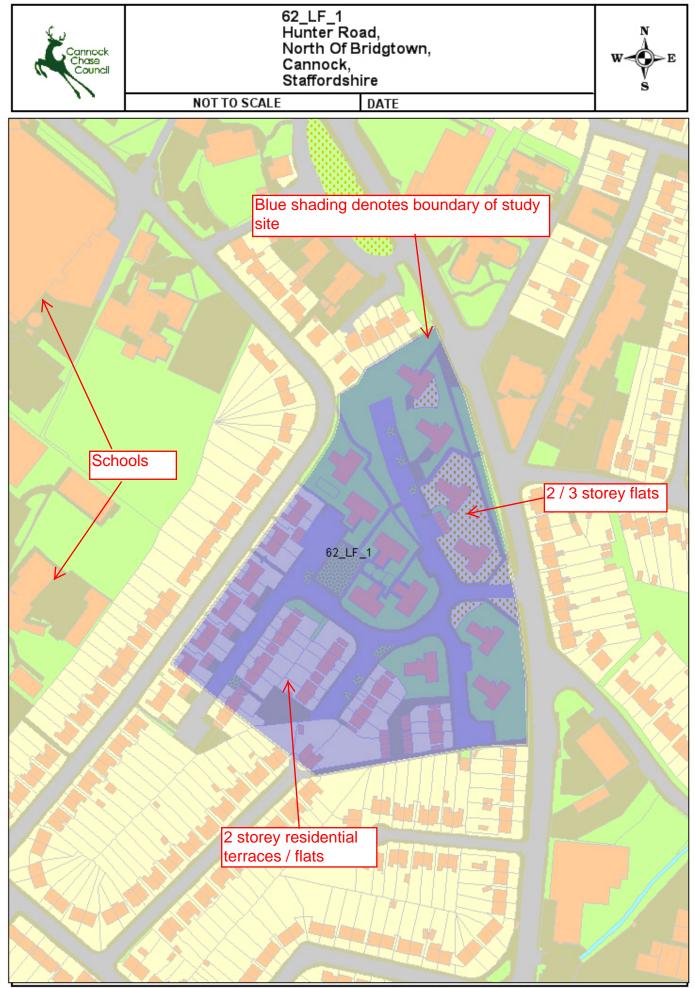
The pollutant linkages identified are presented in Table 2.2.

⁶ As defined in the Water Resources Act 1991 (Part III, Section 104). Generally includes most surface water bodies excluding drains which discharge into sewers.

Table 2.2 - Potential Pollutant Linkages

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
1	Residents of properties above infilled ground (including children playing in gardens)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) and asbestos within landfill material	Dermal contact and direct ingestion, inhalation of dust/vapours, consumption of home-grown vegetables	Medium	Likely	Moderate	Grass and/or topsoil coverage likely to mitigate risk to an extent – risk is greatest where possibly impacted soils are exposed or could be encountered, for example, when digging a vegetable patch or when children play outdoors. Properties are constructed directly above a potentially significant contamination source. Sample collection and analysis required to refine conclusion on risk
2	Residents of properties above infilled ground	Methane and carbon dioxide from decomposition of deleterious elements of landfill material	Movement into buildings, subsequent asphyxiation and explosion risk	Medium	Likely	Moderate	Installation and monitoring of wells for gases and flow rates is required to refine conclusion on risk
3	Subsurface services serving the buildings (principally water supply)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs) within landfill material.	Chemical attack and tainting of water supply could occur at high contaminant concentrations / severe pH levels	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM
4	Property (Structures) – sub-surface concrete	Sulphate and pH	Contact between contaminants and concrete	Mild	Likely	Low to moderate	Further investigation data needed to refine assessment/CSM

No.	Receptor	Contaminant(s)	Pathway(s)	Potential Severity of Linkage ¹	Probability Of Linkage Occuring ¹	Overall Risk ¹	Comments
5	Secondary aquifer (fluvioglacial sand and gravel,) beneath site	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material.	Leaching of soil contaminants to aquifer – no aquiclude is indicated on BGS mapping	Mild	Likely	Low / Moderate	Risk will depend upon depth and concentration of contaminants, and leaching potential of contaminants. Initial leachability testing (soils) and dissolved analysis (groundwater) required to improve understanding of site
6	Secondary aquifer (Pennine Middle Coal Measures) beneath site	Dissolved dense contaminants or DNAPL (e.g., solvents) which have leached to the overlying fluvioglacial sand and gravel aquifer	Downwards gravitational movement of dense contaminants	Mild	Low to Likely	Low / Moderate	Risk will depend upon concentration and mobility of contaminants. Initial leachability testing (soils) and dissolved analysis (groundwater in fluvioglacial sand and gravel) required to improve understanding of site
7	Ridings Brook 200m to south- east (inferred down-hydraulic gradient on basis of topography). Fish within the brook (assumed to be subject to fishing rights)	Contaminants including (but not limited to) metals, hydrocarbons, (including PAHs), VOCs and SVOCs within landfill material.	Leaching to fluvioglacial sand and gravel, migration as dissolved phase (or LNAPL) to downgradient brook. {plus uptake by fish}	Medium	Low	Low / Moderate	Risk will depend upon concentration and mobility of contaminants. Although the brook is inferred to be hydraulically downgradient of the site, there is significant opportunity for dilution and attenuation of contaminants along the 200m flowpath to the brook. Initial leachability testing (soils) and dissolved analysis (groundwater in fluvioglacial sand and gravel) required to improve understanding of site


¹ Taken from Table 6.3, CIRIA report 552 (Contaminated Land Risk Assessment – A Guide to Good Practice. Severity classified as minor, mild, medium or severe. Probability classified as unlikely, low, likely or high. Overall risk considers both the severity and probability of the linkage (very low, low, moderate, high or very high). See extract in Appendix B

3 CLOSING REMARKS

Potential pollutant linkages affecting the health of residents, controlled waters and property have been identified, and therefore an initial intrusive investigation should be undertaken to examine the likelihood of pollutant linkages existing at the site.

Crown Copyright. All rights reserved. Cannock Chase District Council. Licence No. 100019754 (2010)

Appendix A (of desk study): Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other schemes on or adjacent to the site without further reference to Grontmij Limited.
- 3. Observations were made of the site and of structures on the site as indicated within the report.
- 4. Grontmij has relied upon the existing data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC, the Environment Agency and British Geological Survey websites) assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: '...the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The scope of this study, as agreed with Cannock Chase Council, comprised a review of available information, and data was not purchased from a proprietary database.

Appendix B (of desk study): Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Situation		Description	Examples
ACUTE PROBLEM	Category Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
SIGNIFICANT HARM TO SENSITIVE RECEPTOR	Medium	Regulations 2006) Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a
SIGNIFICANT HARM TO LESS SENSITIVE RECEPTOR	Mild	structures Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless	nature reserve Pollution to (former) non- aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or
NON- SIGNIFICANT HARM	Minor	result in "significant harm" Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily-repairable damage to structures or services	structural damage) Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

to structures or services

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or
-	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Unlikely

Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

		Severity								
Probability	Severe	Medium	Mild	Minor						
High	Very high	High	Moderate	Low/moderate						
Likely	High	Moderate	Low/moderate	Low						
Low	Moderate	Low/moderate	Low	Very low						
Unlikely	Low/moderate	Low	Very low	Very low						

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe.

APPENDIX B (of 2011 report)

Appendix B: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council to be accurate, and has not taken steps to independently check the accuracy of the data provided.
- 5. Our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report. Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data

become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.

APPENDIX C (of 2011 report)

🦨 Gr	ontr	nij		Т	R	IA	l pi	T LOG		TRIAL PIT	
Project							Client			Logged By	
	Hunter Road						Cannock Ch			MJH	
Job No Date 10-12-10 G 106270 10-12-10						Ground	Level (m)	Co-ordinates		Checked By GVT	
SAMPLE	ES & TE	ESTS			I			STRATA			
Depth	Туре	Test Result	Water	Reduced	Legend	Depth	9)	DESCRIP			Backfill
0.10	No ES ES ES	Result	>	Level		(0.80)	MADE GRO grained SAN to rounded b and slag. Co	UND: Grass over brow ID with occasional cob rick, quartz, ash, burnt bbles are angular bric	n clayey very gravell bles. Gravel is fine to shale, clinker and o	coarse angular	
								Pit at 0.8m bgl.			
Shoring					S	tability					
Strike Depth: (m) R	Gro tising to: (m)	undwatei Groundwa	ter Ren	narks		neral Rer ation: Public o	marks open space. No groundwa	ter encountered		Final	Depth
Ν	one Enc	ountered								0.8n	ı bgl
Contractor S	Sherwoo	od Drilli	ng			lethod/ lant Usec	t ha	nd dug trial pit	All dime	nsions in metres Scale 1:50	

GRONTMU TP LOG BASIC HUNTER RD TP.GPJ AGS3_ALL.GDT 12/21/10

🧲 Gr	ontn	nij		TF	RIAI	L PI	T LOG	TR	IAL PIT No TP2
Project						Client		Logged	Ву
Hunter Ro	ad					Cannock Ch	ase DC		MJH
Job No Date 10-12-10 Ground				Ground I	Level (m)	Co-ordinates	Checke	d By	
106	270			0-12-10					GVT
SAMPLE	S & TE	ESTS	L.				STRATA		
Depth	Type No	Test Result	Water	ReducedLeg Level	Jend Depth)	DESCRIPTIO	N	Backfill
0.10 0.30 0.60	ES ES ES				(0.80)	grained SAN coal and clin	D & GRAVEL. Gravel is fi	y and brown clayey coars ne to coarse angular ash,	e brick,
Shoring					Stability				
Strike Depth: (m) R	Grou ising to: (m)	undwate Groundwa	r iter Rei	narks	General Ren Location: Public op	narks en space. No groundwat	er encountered		Final Depth
Ν	one Enco	ountered							0.8m bgl
Contractor S	Sherwoo	od Drilli	ng		Method/ Plant Used	hor	nd dug trial pit	All dimensions in met	res Scale 1:50

Gre Gre	ontn	nij		TF	ειδι	PI	T LOO	2	TR	IAL PIT N	lo
		-								TP3	
Project						Client			Logged		
Hunter Roa	ad					Cannock C				MJH	
Job No		Dat	1	0-12-10	Ground I	Level (m)	Co-ordinates		Checke	GVT	
1062			1	0-12-10						_	
SAMPLE			er		Denth	1	STRATA				
Depth	Type No	Test Result	Water	ReducedLeg Level	end Depth (Thickness)		DESCRI				Backfill
0.10 0.30 0.60	ES ES ES				(1.00)	with many of concrete, b	DUND: Grass over ligh obbles. Gravel is fine ick, quartz and occas crete and brick	to coarse angul	ar to sub round	ded [?]	
- - - - - -					<u> </u>	End of Trial	Pit at 1m bgl.				<u></u>
Shoring					Stability						
Strike Depth: (m) Ri	Gro	undwater	r		General Rem					Final Dep	oth
		Groundwa		marks	Location: Public op	en space. No groundw	ater encountered			1m bg	
Contractor S	herwoo	od Drilli	ng		Method/ Plant Used	ha	and dug trial pit		All dimensions in met	res Scale 1:50 Sheet 1	

Project Hunter Road Job No 106270 SAMPLES & TESTS		ΙΡΓ	T LOG	TRIAL P	
Hunter Road Job No Date 106270 10-12-1 SAMPLES & TESTS Depth Type Test No Result 0.10 ES 0.30 ES		Client		Logged By	4
Job No Date 10-12-1 106270 10-12-1 10-12-1 SAMPLES & TESTS brown of the second s		Cannock Cl	nase DC	MJF	4
106270 10-12-1 SAMPLES & TESTS begin{tabular}{lllllllllllllllllllllllllllllllllll	Ground	Level (m)	Co-ordinates	Checked By	·
SAMPLES & TESTSDepthType NoTest Resultand be be0.10ES0.30ES	10	20101()		GV	Т
DepthType NoTest Result⊕ €Reduc Leve0.10ES0.30ES	<u> </u>		STRATA		
0.10 ES 0.30 ES	edLegend Depth		SINAIA		Backfill
0.30 ES	(Thicknes	is)	DESCRIPTIO	ON own very clayey very gravelly	Backini
	(0.70)	coarse grain	ed SAND. Gravel is fine t	to coarse angular to rounded	\$
- ES	0.7	-	concrete and brick		
Shoring Groundwater Strike Depth: (m) Rising to: (m) Groundwater Remarks	Stability General Re		iter encountered] Fina	al Depth
None Encountered	Location: Public c	open space. No groundwa	ter encountered	0.7	m bgl

GRONTMU TP LOG BASIC HUNTER RD TP.GPJ AGS3 ALL.GDT 12/21/10

🖌 Gr	ontm	nij		TF	RIA	L PI	T LOG		L PIT № Г Р5
Project						Client		Logged By	/
, Hunter Ro	ad					Cannock C	hase DC		ЛJН
Job No		Date	e 1()-12-10	Ground	Level (m)	Co-ordinates	Checked E	
106	270			0-12-10					GVT
SAMPLE	S & TE	STS	L				STRATA		
Depth	Type No	Test Result	Water	ReducedLeg Level	Jend Depth (Thickness	s)	DESCRIPTIC)N	Backfill
0.10 0.30 0.60	ES ES ES	rtcourt			(0.70)	MADE GRO & GRAVEL brick and or	UND: Grass over brown v	rery clayey coarse grained S/ ngular to sub rounded quartz	AND
-						End of Trial	Pit at 0.7m bgl.		
Shoring Strike Depth: (m) R N Contractor S	ising to: (m) one Enco	untered	er Ren	narks	Stability General Rel Location: Public o	marks pen space. No groundw	ater encountered		Final Depth).7m bgl

APPENDIX D (of 2011 report)

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode lane Solihull West Midlands B912AA

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 11 January 2011 H_GRONTMIJ_SOL 101214-11

Hinter Road 110394

We received 15 samples on Tuesday December 14, 2010 and 5 of these samples were scheduled for analysis which was completed on Tuesday January 11, 2011. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Asbestos testing - we are not accredited for screening soil samples for asbestos fibres. We are only accredited to identify asbestos fibres in bulk material (ACM).

Approved By:

Sonia McWhan Laboratory Manager

CERTIFICATE OF ANALYSIS

Validated

SDG:	101214-11	Location:	Hinter Road	Order Number:	
Job:	H_GRONTMIJ_SOL-44	Customer:	Grontmij	Report Number:	110394
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
2575492	TP1		0.10	10/12/2010
2575501	TP1		0.30	10/12/2010
2575542	TP1		0.60	10/12/2010
2575338	TP2		0.10	10/12/2010
2575356	TP2		0.30	10/12/2010
2575349	TP2		0.60	10/12/2010
2575517	TP3		0.10	10/12/2010
2575530	TP3		0.30	10/12/2010
2575526	TP3		0.60	10/12/2010
2575444	TP4		0.10	10/12/2010
2575361	TP4		0.30	10/12/2010
2575448	TP4		0.60	10/12/2010
2575438	TP5		0.10	10/12/2010
2575369	TP5		0.30	10/12/2010
2575372	TP5		0.60	10/12/2010

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	101214-11	Location:		inter f			F ANALYSIS Order Number:	
Job: Client Reference:	H_GRONTMIJ_SOL-44	Customer: Attention:		rontm areth		or	Report Number: Superseded Report:	110394
			Т	es	t S	scł	edule	
SOLID			NN	ы N	N	N		
Results Legend	Lab Sampl	e No(s)	2575492	2575526	2575361	2575438		
X Test			NO	ົ້		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
No Determin Possible								
	Custor Sample Re		TP1	TP3	TP4	TP5		
	AGS Refe	rence						
	Depth	(m)	0.30	0.60	0.30	0.10		
			N	22	22	22		
	Contai	nor	400g 50a An	400g 50g An	400g 50g An	400g 50g An		
	Contai		400g Tub 400g Tub 250g Amber Jar	Tub Iber Jar	Tub Iber Jar	Tub Iber Jar		
sbestos Containing Ma	terial All	NDPs: 0 Tests: 3						
oron Water Soluble	All	NDPs: 0		(X		X		
lexavalent Chromium (s	s) All	NDPs: 0	x)	(X	X	X		
Metals by iCap-OES (So	pil) Arsenic	Tests: 5 NDPs: 0	X)	(X	X	X		
	Barium	NDPs: 0	x)	<mark>(X</mark>	X	X		
	Beryllium	NDPs: 0	<mark>x </mark>	<mark>(X</mark>	x	x		
	Cadmium	Tests: 5 NDPs: 0	x)	<mark>(X</mark>	x	x		
	Chromium		x)	<mark>(X</mark>	x	x		
	Copper		x x	<mark>(x</mark>	x	x		
	Lead	Tests: 5	x x	<mark>(x</mark>	x	x		
			x)	<mark>(x</mark>	x	x		
	Mercury		x >	<mark>(x</mark>	x	x		
	Nickel		x >	<mark>< x</mark>	x	x		
	Selenium		x >	<mark>(x</mark>	x	x		
	Vanadium	NDPs: 0		<mark>(x</mark>	x	x		
	Zinc	NDPs: 0		< X	x	x		
PAH by GCMS	All	NDPs: 0		< X	x	x		
рН	All	NDPs: 0 Tests: 5	× ×					
Sample description	All	NDPs: 0						
Total Organic Carbon	All	NDPs: 0	x >	(X	X	X		

CERTIFICATE OF ANALYSIS

Validated

SDG: 101214-11 Location: Hinter Road Job: H_GRONTMIJ_SOL-44 Customer: Grontmij Client Reference: Attention: Gareth Taylor	Order Number: Report Number: 110394 Superseded Report:
---	--

Sample Descriptions

rain Sizes							
very fine <0.0	063mm fine 0.0	63mm - 0.1mm m	edium 0.1mm	- 2mm coar	rse 2mm - 1	0mm very coa	arse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
2575492	TP1	0.10	Dark Brown	Sand	0.1 - 2 mm	Stones	Vegetation
2575356	TP2	0.30	Dark Brown	Sandy Loam	0.1 - 2 mm	Stones	None
2575526	TP3	0.60	Dark Brown	Sand	0.1 - 2 mm	Stones	Vegetation
2575361	TP4	0.30	Dark Brown	Sand	0.1 - 2 mm	Stones	Vegetation
2575438	TP5	0.10	Dark Brown	Sand	0.1 - 2 mm	Stones	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

SDG: 1012			Location:	Hir	nter Road	~			Order Number:	440004	
Job: H_GF Client Reference:	RONTMIJ_SC	JL-44	Customer: Attention:		ontmij ıreth Taylor				Report Number: Superseded Repo	110394 ort:	
Results Legend # ISO17025 accredited.	Cu	stomer Sample R	TP1		TP2		TP3		TP4	TP5	
M mCERTS accredited. § Non-conforming work. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample. * subcontracted test. ** % recovery of the surrogate standi		Depth (m) Sample Type Date Sampled Date Received SDG Ref	0.10 Soil/Solid 10/12/2010 14/12/2010 101214-11		0.30 Soil/Solid 10/12/2010 14/12/2010 101214-11		0.60 Soil/Solid 10/12/2010 14/12/2010 101214-11		0.30 Soii/Solid 10/12/2010 14/12/2010 101214-11	0.10 Soil/Solid 10/12/2010 14/12/2010 101214-11	
check the efficiency of the method results of the individual compound within the samples are not correct this recovery.	ls Li ed for	ab Sample No.(s) AGS Reference	2575492		2575356		2575526		2575361	2575438	
Component Asbestos Containing	LOD/Units	Method TM001			No ACM Detect	ted	No ACM Detec	ted		No ACM Detecte	ed l
Material Screen Soil Organic Matter (SOM)	<0.35 %	TM132	4.76		3.98		2.93		3.05	2.98	
pH	1 pH	TM133	8.17	#	7.84	#	8.27	#	# 8.41	8.39	#
Chromium, Hexavalent	Units <0.6	TM151	<0.6	Μ	<1.2	М	<0.6	М	<0.6		м
Arsenic	<0.0 mg/kg <0.6	TM181	10.8	#	9.34	#	7.77	#	6.41	7.05	#
	mg/kg	TM181	125	Μ	147	м	144	М	127		м
Barium	<0.6 mg/kg			#		#		#	#		#
Beryllium	<0.01 mg/kg	TM181	1.11	М	0.965	м	1.02	м	0.989 M		м
Cadmium	<0.02 mg/kg	TM181	1.12	М	0.832	м	1.24	м	0.481 M		м
Chromium	<0.9 mg/kg	TM181	9.92	М	11.9	м	25.9	м	32.6 M		м
Copper	<1.4 mg/kg	TM181	34.1	М	37.4	м	32.5	м	26.7 M		м
Lead	<0.7 mg/kg	TM181	67.7	М	77	м	121	м	55.8 M		м
Mercury	<0.14 mg/kg	TM181	<0.14	М	<0.14	м	<0.14	м	<0.14 M		м
Nickel	<0.2 mg/kg	TM181	14.3	М	16.6	м	25.1	м	13.8 M	20	м
Selenium	<1 mg/kg	TM181	<1	#	<1	#	<1	#	<1 #	<1	#
Vanadium	<0.2 mg/kg	TM181	15.5	#	18.5	#	45.9	#	25.5 #	24.1	#
Zinc	<1.9 mg/kg	TM181	176	М	225	м	168	м	102 M	127	м
Boron, water soluble	<1 mg/kg	TM222	<1	М	<1	м	182	м	<1 M	<1	м
						_		_			
								_			
						_		_			
						_		_			

			UEr				NALYSIS						
Job:	101214-11 H_GRONTMIJ_	_SOL-44	Location: Customer:	Hinter Grontn	nij				Order Numbe Report Numb	er:	110394		
Client Reference:			Attention:	Garetr	n Taylor				Superseded F	keport:			
PAH by GCMS Results Legend		Customer Sample R	TP1		TP2		TP3		TP4		TP5		
ISO17025 accredited. M mCERTS accredited. Mon-conforming work. aq Aqueous / settled sample. dissfit Dissolved / filtered sample. tot.unfit Total / unfiltered sample. * subcontracted test. * grecovery of the surroga check the efficiency of the results of the individual co within the samples are not this recovery.	e. Ite standard to e method. The ompounds	Depth (m) Sample Type Date Sampled Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.10 Soii/Solid 10/12/2010 14/12/2010 101214-11 2575492		0.30 Soil/Solid 10/12/2010 14/12/2010 101214-11 2575356		0.60 Soil/Solid 10/12/2010 14/12/2010 101214-11 2575526		0.30 Soil/Solid 10/12/2010 14/12/2010 101214-11 2575361		0.10 Soil/Solid 10/12/2010 14/12/2010 101214-11 2575438		
Component	LOD/Un								105	_		_	
Naphthalene-d8 % recovery** Acenaphthene-d10 %	%	TM218 TM218	98.7		104		97.6		105		95.3 93.5		
recovery** Phenanthrene-d10 %	%	TM218	97.5		102		97.7		100		97.6	_	
recovery** Chrysene-d12 %	%	TM218	98.3		99.5		95.5		100		95.6	\rightarrow	
recovery** Perylene-d12 % recover	ry** %	TM218	100		102		101		102	_	91.5	+	
Naphthalene	<9 µg/	kg TM218	198		283		45.3		81.1		142		
Acenaphthylene	<12		1130	M	209	M	40.9	M	63.2	M	165	M	
Acenaphthene	μg/kg <8 μg/		249	M	52.5	M M	31.5	M M	26.5	M	9770	M	
Fluorene	<10 µg/kg	TM218	1220	M	159	M	33.8	M	24.7	M	8140	M	
Phenanthrene	<pre></pre>	TM218	14700	M	1790	м	649	M	394	M	51500	M	
Anthracene	<pre><pre>>></pre><pre></pre><pre></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>></pre><pre>>><pre>>></pre><pre>>><pre>>></pre><pre>>></pre><pre>>><!--</td--><td>TM218</td><td>3420</td><td>м</td><td>193</td><td>м</td><td>140</td><td>М</td><td>141</td><td>м</td><td>15900</td><td>м</td><td></td></pre></pre></pre></pre>	TM218	3420	м	193	м	140	М	141	м	15900	м	
Fluoranthene	<17 µg/kg	TM218	16600	м	2150	м	1450	М	1740	м	65100	м	
Pyrene	<15 µg/kg	TM218	12300	м	1630	м	1210	М	1550	м	44200	м	
Benz(a)anthracene	<14 µg/kg	TM218	6400	м	827	м	614	М	959	м	20500	м	
Chrysene	<10 µg/kg	TM218	5250	м	903	м	539	М	876	м	16100	м	
Benzo(b)fluoranthene	<15 µg/kg		5670	м	1170	м	752	М	1200	м	17700	м	
Benzo(k)fluoranthene	<14 µg/kg		2560	м	459	м	334	М	481	м	8560	м	
Benzo(a)pyrene	<15 µg/kg		5220	м	973	м	729	М	1190	м	14800	м	
Indeno(1,2,3-cd)pyrene	<18 µg/kg		2910	м	612	м	465	М	706	м	6760	м	
Dibenzo(a,h)anthracene	µg/kg		768	м	160	м	124	М	173	м	1990	м	
Benzo(g,h,i)perylene	<24 µg/kg		3160	м	750	м	602	М	886	м	7090	м	
Polyaromatic hydrocarbons, Total	<118 µg/kg		81700	м	12300	м	7760	м	10500	м	288000	м	
										_			
												+	

CERTIFICATE	OF ANALYSIS

Validated

SDG: Job: Client Reference:	101214-11 H_GRONTMIJ_SOL-44	Location: Customer: Attention:	Hinter Road Grontmij Gareth Tavlor	Order Number: Report Number: Superseded Report:	110394
		Automation	Carolin rayion	espereese report	

Table of Results - Appendix

REPO	RT KEY						R	Results expressed as (e.	g.) 1.03E-07 is equivale	nt to 1.03x10-7	
NDP	No Determinatio	ation Possible #		Possible # ISO 17025 Accredited		* Subcontracted Test		м	MCERTS Accred	MCERTS Accredited	
NFD	No Fibres Detec	ted	PFD	Possible Fibres Detected		»	Result previously reported (Incremental reports only)	EC	Equivalent Carbon (Aromatics C8-C35)		
Note: Meth	od detection limits	are not always achievable	due to vario	us circumstances beyond our c	ontrol					a (
N	lethod No		Refe	ence			Description		Wet/Dry Sample ¹	Surrogate Corrected	
	PM001				Preparati	on of Sar	ples for Metals Analysis		Gampio	Concolou	
	PM024	Modified BS 1377			Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material						
	TM001	In - house Method			Determination of asbestos containing material by screening on solids						
	TM132	In - house Method			ELTRA CS800 Operators Guide						
	TM133	BS 1377: Part 3 19	990;BS 6	068-2.5	Determina Meter	ation of p	H in Soil and Water using the	GLpH pH			
	TM151	Method 3500D, AV	VWA/API	HA, 20th Ed., 1999	Determina	ation of H	exavalent Chromium using K	one analyser			
	TM181	US EPA Method 60	010B		Determina ICP-OES		outine Metals in Soil by iCap	6500 Duo			
	TM218	Microwave extracti	on – EPA	method 3546	Microwav	e extracti	on - EPA method 3546				
	TM222	In-House Method					lot Water Soluble Boron in So Emission Spectrometer	oils (10:1			

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

 101214-11
 Location:
 Hinter Road

 H_GRONTMIJ_SOL-44
 Customer:
 Grontmij

 Attention:
 Gareth Taylor

Order Number: Report Number: 110394 Superseded Report:

Test Completion Dates

Lab Sample No(s)	2575492	2575356	2575526	2575361	2575438
Customer Sample Ref.	TP1	TP2	TP3	TP4	TP5
AGS Ref.					
Depth	0.10	0.30	0.60	0.30	0.10
Туре	SOLID	SOLID	SOLID	SOLID	SOLID
Asbestos Containing Material Screen		06-Jan-2011	06-Jan-2011		06-Jan-2011
Boron Water Soluble	06-Jan-2011	07-Jan-2011	07-Jan-2011	06-Jan-2011	07-Jan-2011
Hexavalent Chromium (s)	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011	07-Jan-2011
Metals by iCap-OES (Soil)	06-Jan-2011	07-Jan-2011	07-Jan-2011	06-Jan-2011	07-Jan-2011
PAH by GCMS	11-Jan-2011	11-Jan-2011	10-Jan-2011	11-Jan-2011	10-Jan-2011
pH	07-Jan-2011	07-Jan-2011	07-Jan-2011	06-Jan-2011	07-Jan-2011
Sample description	05-Jan-2011	06-Jan-2011	06-Jan-2011	05-Jan-2011	06-Jan-2011
Total Organic Carbon	06-Jan-2011	07-Jan-2011	07-Jan-2011	06-Jan-2011	07-Jan-2011

CERTIFICATE OF ANALYSIS

SDG:	101214-11	Location:	Hinter Road
Job:	H_GRONTMIJ_SOL-44	Customer:	Grontmij
Client Reference:		Attention:	Gareth Taylor

Appendix

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA Leach tests, flash point, ammonium as NH4 by the BRE method, VOC TICS, SVOC TICS, TOF-MS SCAN/SEARCH and TOF-MS TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for both soil jars, tubs and volatile jars. All waters and vials will be discarded 10 days after the analysis is completed (e-mailed). All material removed during an asbestos containing material screen and analysed for the presence of asbestos will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be screened in house for the presence of large asbestos containing material fragments/pieces. If no asbestos containing material is found this will be reported as 'no asbestos containing material detected'. If asbestos containing material is detected it will be removed and analysed by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If asbestos containing material is present no further analysis will be undertaken. At no point is the fibre content of the soil sample determined.

7. If no separate volatile sample is supplied by the client, the integrity of the data may be compromised if the laboratory is required to create a sub-sample from the bulk sample -similarly, if a headspace or sediment is present in the volatile sample. This will be flagged up as an invalid VOC on the test schedule or recorded on the log sheet.

8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.

11. A table containing the date of analysis for each parameter is not routinely included with the report, but is available upon request.

12. Results relate only to the items tested

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 14).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

 Our MCERTS accreditation for PAHs by GCMS applies to all product types apart from Kerosene, where naphthalene only is not accredited.

19. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

20. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

23. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials -whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute themajor part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

24. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C4 -C10 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Order Number: Report Number: 110394 Superseded Report:

SOLID MATRICES EXTRACTION SUMMARY

ANALYSIS	D/C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSS
SOLVENT EXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC
CYCLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC
THIN LAYER CHROMATOGRAPHY	D&C	DCM	SOXTHERM	IATROSCAN
ELEMENTALSULPHUR	D&C	DOM	SOXTHERM	HPLC
PHENOLSBYGOMS	WET	DOM	SOXTHERM	GCMS
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GCMS
EPH (DRO)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (MINOL)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH (CLEANED UP)	D&C	HEXANEACETONE	END OVEREND	GCFD
EPH ONG BYGC	D&C	HEXANEACETONE	END OVEREND	GCFID
POB TOT / POB CON	D&C	HEXANEACETONE	ENDOWEREND	GCMS
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MCROWAVE TM218.	GCMS
08-040(06-040)EZ FLASH	WET	HEXANEACETONE	SHAVER	GCEZ
POLVAROMATIC HYDROCARBONS RAPID GC	WET	HEXANEACETONE	SHAVER	900 EZ
SEM VOLATILEORGANIC COMFOUNDS	WET	DOMAGETONE	SONICATE	GCMS

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
BH	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
EPHCWG	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
MINERALOIL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCFID
PCB 7 CONGENERS	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
PCB TOTAL	HEXANE	STIRREDEXTRACTION(STIR-BAR)	GCMS
SVOC	DOM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DOM	SOLID PHASE EXTRACTION	HPLC
PEST COP/OPP	DOM	LIQUID/LIQUID SHAKE	GCMS
TRIAZINE HERBS	DOM	LIQUID/LIQUID SHAKE	GCMS
PHENOLSMS	DOM	SOLID PHASE EXTRACTION	GCMS
TIH by INFRARED (IR)	TCE	LIQUID/LIQUID SHAKE	HPLC
MINERAL OIL by IR	TCE	LIQUID/LIQUID SHAKE	HPLC
GLYCOLS	NONE	DIRECT INJECTION	GCMS

Identification of Asbestos in Bulk Materials

The results for asbestos identification for soil samples are obtained from possible Asbestos Containing Material, removed during the 'Screening of soils for Asbestos Containing Materials', which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	WhiteAsbestos
Amosite	BrownAsbestos
Croddite	Blue Asbestos
Fibrous Adindite	-
Florous Anthophylite	-
Fibrous Trendite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: -Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in MDHS 100.

The identification of asbestos containing materials falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

APPENDIX E (of 2011 report)

Appendix E: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Severity Category	Description	Examples
Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non-aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily-repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or,
-	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

		Severity								
Probability	Severe	Medium	Mild	Minor						
High	Very high	High	Moderate	Low/moderate						
Likely	High	Moderate	Low/moderate	Low						
Low	Moderate	Low/moderate	Low	Very low						
Unlikely	Low/moderate	Low	Very low	Very low						

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- $\circ\,$ Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- $\circ\;$ Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

APPENDIX B

Appendix B: Limitations Statement

- 1. This report has been prepared for the exclusive use of Cannock Chase District Council and copyright subsists with Grontmij Limited. Prior written permission must be obtained to reproduce all or part of the report.
- 2. This report and/or opinions have been prepared for the specific purpose stated in the document. The recommendations should not be used for other purposes or adjacent sites without further reference to Grontmij Limited.
- 3. Observations were made of the site and soil arisings as indicated within the report. Where access to portions of the site was unavailable or limited, Grontmij Limited renders no opinion as to the environmental status of such parts of the site.
- 4. Grontmij has relied upon the existing desktop study data provided by Cannock Chase District Council and other information supplied by third parties, such and laboratory test data, to be accurate, and has not taken steps to independently check the accuracy of the data provided. We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 5. Similarly, our interpretation of any regulatory database information (including the MAGIC and British Geological Survey websites) within an earlier report, and relied upon in this report, assumes that the data provided is accurate. A disclaimer provided by database search companies is as follows: ' the data is derived from historical sources or information available in public records or from third parties and is supplied to us without warranty by data suppliers and we cannot warrant the accuracy or completeness of the data or the reports.' We cannot therefore accept any responsibility for the accuracy of the data used in this study, only that its interpretation has been carried out with due skill, care and diligence.
- 6. The conclusions and recommendations submitted in this report are based in part upon the data obtained from soil samples from exploratory holes. The nature and extent of variations between the exploratory holes is inferred in the report and could only be confirmed by further investigation. If variations or other latent conditions become evident, it will be necessary to re-evaluate the recommendations of this report.
- 7. The generalised soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealised and have been developed in interpretations of widely spaced explorations and samples; actual soil transitions may be more gradual. For specific information, refer to the exploration logs.
- 8. Water levels and/or gas readings have been taken in the borings and/or observation wells at times and under conditions stated on the exploration logs. These data have been reviewed and interpretations have been made in the text of this report. However, it must be noted that fluctuations in the level of the groundwater or gas may occur due to variations in rainfall, atmospheric pressure and other factors different from those prevailing at the time the measurements were made.
- 9. The conclusions and recommendations of this report are based in part upon various types of chemical analysis of soil, water or gases, and are contingent upon their validity. These data have been reviewed and interpretations made in the report.

Variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors. Should additional analytical or monitoring data become available in the future, these data should be reviewed and conclusions and recommendations presented herein modified accordingly.

10. Chemical analyses have been performed for specific parameters during the course of this study, as detailed in the text. It must be noted that additional constituents not searched for during the current study may be present in soil, groundwater and soil voids at the site.

www.grontmij.co.uk

APPENDIX C

	Grontmi	j
--	---------	---

						,					
Project	_						Client		Log	ged By	
Hunter Ro	ad						Cannock Ch	-		GVT	
Job No 106	270	Dat		6-11-11 6-11-11		Ground L	evel (m)	Co-ordinates		ecked By GVT	
SAMPLE	ES &	TESTS	P					STRATA		nent	ţ
Depth	Туре	Test Result	Water	Reduced Level	Legend	Depth (Thickness)		DESCRIPTION	N	Instrur	Backfill
0.20	ES					× (0.80) - 0.80	abundant su of brick and	UND: Grass over brown m brounded to subangular m concrete	edium to coarse san edium to coarse grav	d with	
2.10	ES					(2.20)	Light brown	coarse SAND with some m gravel, including of quartzit mes less abundant beyond	edium to coarse sub e, and occasional po I 1.5m depth	rounded to ckets of clay.	
- - - [· · · · · · · · · · · · · · · · · · ·	- 					
-					a .	3.00	End of Hole	at 3m hal			S.K.
Strike Depth: (m) F	Rising to:	Groundwate	r ter Rer	narks		neral Rem		ed for gas monitoring purposes.		Final Depth	1
		ncountered								3m bgl	
Contractor §	Sherv	vood Drilli	ng		M P	lethod/ lant Used	Geo	tool w/sampler	All dimensions	in metres Scale 1:50 Sheet 1 of	1

	Grontmi	ij
--	---------	----

Project							Client			Logged By	
Hunter Ro	ad						Cannock Ch	1		GVT	
Job No 106	270	Dat		6-11-11 6-11-11		Ground L	.evel (m)	Co-ordinates		Checked By GVT	
SAMPLE	ES &	TESTS	er.					STRATA			ient fill
Depth	Туре	Test Result	Water	Reduced Level	Legenc	Depth		DESCRIPTIC	N		Instrument Backfill
0.20	ES	result	-			× × × (1.00)	abundant an clinker, abun	JND: Grass over brown r gular medium to coarse g dant rounded gravel and asbestos board 5cm x 1cr	ravel of brick and some cobbles of b	(occasional) prick. Possible	
0.70	ES					× × × 1.00				-	
1.70	ES					- 	gravel of gua	oarse SAND with occasio rtzite. Occasional clayey 2.6m to 2.7m bgl. Sand is	pockets present.	and lens of clay	
-					o	3.00	End of Hole				
strike Depth: (m) F											
Strike Depth: (m) F	Groundwater Depth: (m) Rising to: (m) Groundwater Remarks						arks countered. Well installe	d for gas monitoring purposes.		Final D 3m I	
N	None Encountered										
Contractor S	Snerv	1000 Drilli	ng		P	lethod/ lant Used	Geo	tool w/sampler	All dimen	sions in metres Scale 1:50 She	et 1 of 1

Hunter Road Cannock Chase DC GVT Job No Date 16-11-11 Ground Level (m) Co-ordinates Checked By GVT SAMPLES & TESTS Doph Tree Tree Tree Tree Tree Tree GVT SAMPLES & TESTS Doph Tree Tree Tree Tree Tree Tree GVT 0.40 ES Tree	🦨 Gr	ont	mij		W	/IN	DO		MPLE L	OG	OOW SAMPLE
Jack No Date 16-11-11 Ground Level (m) Co-ordinates Oneoled By GVT SAMPLES & TESTS Depth Implement Legend Implement Legend Depth DESCRIPTION Implement Legend Depth Depth DESCRIPTION 0.40 ES Implement Legend Depth Implement Legend Depth DESCRIPTION DESCRIPTION 0.40 ES Implement Legend Depth Implement Legend Depth DESCRIPTION 0.40 ES Implement Legend Depth Implement Legend Depth Description Description Mediate a poperation to involve the set of carporating a poperation to involve the set of carporat	Project	ار م							ase DC	Logge	
SAMPLES & TESTS Between the second Legend Depth STRATA 0.40 ES Image: Strate in the second means the location of the second means the		ad	Da	te			Ground		1	Check	
SAMPLES & TESTS Dopth Tipe Total Recut Set (1990) Recut Set (19		270			6-11-11 6-11-11		Ground				
MADE GROUND: Medium sand, some obbies of oursels and price with some occasional fine to medium sand, some obbies of concrete and a paper is to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of the fill. Hole aborted.			TESTS						STRATA	I	ent.
MADE GROUND: Medium sand, some obbies of oursels and price with some occasional fine to medium sand, some obbies of concrete and a paper is to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of clinker. Material appears to have occasional fine to medium grave of the fill. Hole aborted.			Test	Nate		Legend	Depth			ON	Instrument
Itrike Depth: (m) Groundwater Remarks No groundwater encountered. Not possible to safely reposition due to services and CAT signals. O.5m b	0.40	ES					(0.50)	brown slightly occasional fin been placed beyond 0.5m	r clayey medium sand, s ne to medium gravel of c to reinforce local area fo due to denseness of the	ome cobbles of concrete clinker. Material appears to or car parking. Unable to l	th some
None Encountered 0.5m by	Strike Donth: (m)	<u> </u>		r I	narke						Final Depth
	trike Depth: (m) Rising to: (m) Groundwater Remarks No						groundwater er	countered. Not possible	to safely reposition due to services ar	nd CAT signals.	0.5m bg
Plant Used Geotool w/sampler All dimensions in metres Scale 1:50										All dimensions in	atras Scalo 1:50

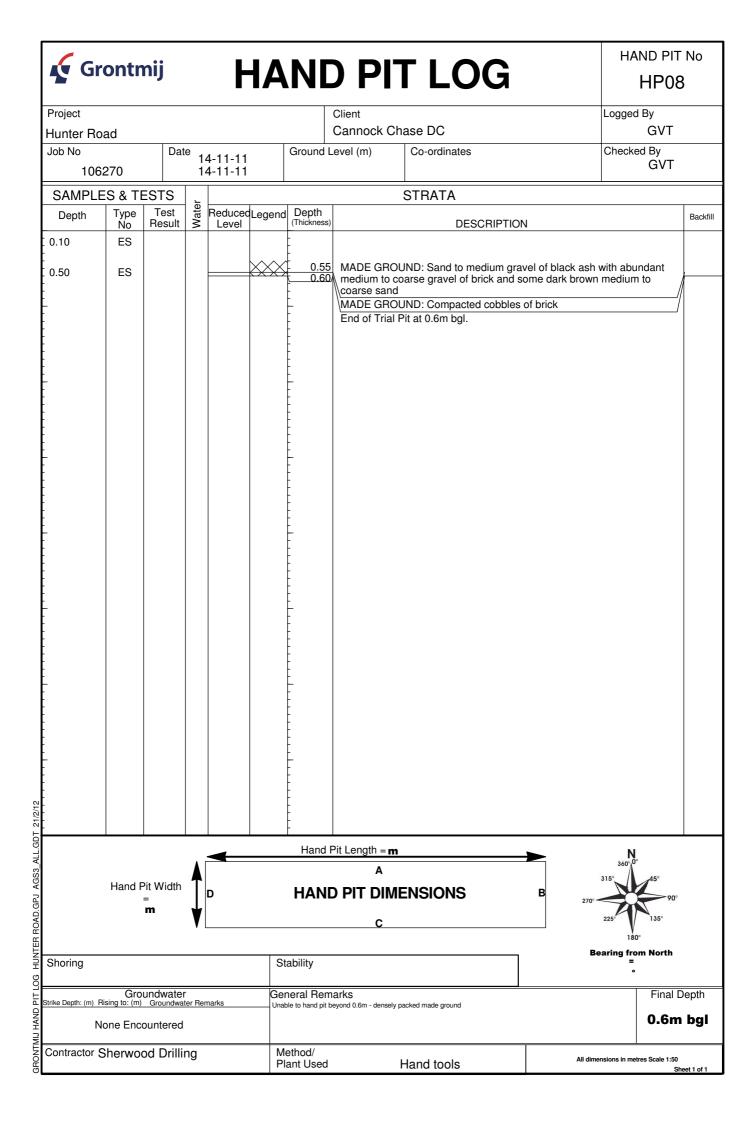
	Grontmij
--	----------

Project							Client			Logged By	
Hunter Ro	20						Client Cannock C	Chase DC		GVT	
Job No	au	Dat	to			Ground L		Co-ordinates		Checked By	
	270	Da	- 10	6-11-11 6-11-11		Ground L		Co-ordinates		GVT	
SAMPLE	ES &	TESTS	er					STRATA			nent
Depth	Туре	Test Result	Water	Reduced Level	Legend	Depth (Thickness)		DESCRIPT	ION		Instrument
0.10 0.50 0.65	ES ES ES	result				(0.60) 0.60	abundant a flint-like ma	DUND: Grass over dark b ngular medium to coarse terial. Sand becomes lig DUND: Dark brown-grey s	gravel , including o ht brown beyond 0.3	f brick and 35m.	
						(0.65) 1.25	abundant fi	ne to medium gravel, incl	luðing brick and (oc	casional) clinker	
1.40	ES					(0.75) 2.00	some subro towards ligh moist.	wn, becoming fawn at 1.4 bunded medium to coarse nt brown predominantly c	e gravel of guartzite.	Trending	
	G	iroundwate (m) Groundwa	r ter Rer	narks				lled for gas monitoring purposes.		Final De	epth
	ke Depth: (m) Rising to: (m) Groundwater Remarks None Encountered					ounowater end	ountered. well insta	neo for gas monitoring purposes.		2m b	gl
Contractor (M	ethod/			۸۱۱ منابع	sions in metres Scale 1:50	
			-		Pl	ant Used	Ge	otool w/sampler	All dimen		et 1 of

Project							Client	50	Log	ged By	
Hunter Roa	ad						Cannock Ch	1		GVT	
Job No 1062	270	Dat		7-11-11 7-11-11		Ground I	_evel (m)	Co-ordinates	Ch	ecked By GVT	
SAMPLE	S &	TESTS	sr.					STRATA			ient fill
Depth	Туре	Test Result	Water	Reduced Level	Legenc	Depth		DESCRIPTIO	N		Instrument Backfill
0.10	ES					× × × × × (0.90)	and occasion	JND: Dark brown coarse s parse gravel and abundan nal cobbles of brick. Also, ravel of coal-like material	t angular coarse grav	/el of brick	
1.60	ES					× 0.90	Red-brown c gravel. Occa	oarse SAND with some ro asional mottling noted arou ation smearing and no od	und the black gravel (
-					o	2.00	End of Hole				
	G	roundwate			Ge	neral Rem	narks			Final De	pth
Strike Depth: (m) Ri	sing to: ((m) Groundwa	ter Rer	narks				d for gas monitoring purposes.			
	None Encountered								1	2m b	gl
Contractor S	herw	ood Drilli	ng		M P	lethod/ lant Used	Geo	tool w/sampler	All dimensions	in metres Scale 1:50 Sheet	1 of 1

Grontr	ni	j
--------	----	---

Project Hunter Ro	204						Client Cannock C	hase DC		Logged By GVT	
Job No	6270	Da		7-11-11 7-11-11		Ground L		Co-ordinates		Checked By GVT	
				/- -							t
SAMPL Depth	ES & Type	Test	Water	Reduced	Legend	Depth		STRATA DESCRIP	TION		Instrument Backfill
0.30	ES	Result	>	Level		(Thickness)	abundant ar concrete, ar	UND: Grass over dark ngular medium to coars Id occasional gravel of	e gravel and cobbles	arse sand with of brick and	
 - -					×××× ο α	(0.40) (1.40)	Light brown	fine to medium SAND, medium gravel	clayey in pockets, wit	th abundant	
1.50	ES					(0.60) 2.00	Firm to stiff subangular siltstone	red-brown CLAY with s to subrounded fine to n	andy bands and with nedium gravel, includ	some ing of grey	
Strike Depth: (m)							End of Hole				
	<u> </u>	Groundwate	 r		Ge	- neral Rem	arks			Final D	epth
	e Depth: (m) Rising to: (m) Groundwater Remarks None Encountered							ed for gas monitoring purposes.		2m I	
Contractor	Sherv	vood Drilli	ng		M	ethod/ ant Used	Geo	otool w/sampler	All dimen	sions in metres Scale 1:50	eet 1 of 1


Grontmij	
----------	--

						,				
Project							Client		Logged B	-
Hunter Ro	ad						Cannock Ch	nase DC		GVT
Job No		Dat	te 1	7 1 1 1 1		Ground I	_evel (m)	Co-ordinates	Checked	
106	270			7-11-11 7-11-11						GVT
SAMPLE								STRATA		t
Depth	Type	Test	Water	Reduced	Legend	Depth		DESCRIPTIO	N	Instrument
Dopin	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Result	Š	Level	Logona	(Thickness)				Inst
						(0.50) 0.50	subrounded		wn medium sand with abun with abundant cobbles c	
0.70	ES					(0.40) 0.90			l with abundant rounded me m gravel, including occasio	edium Inal
						(0.60) (1.50	rounded med	UND: Red-brown medium dium to coarse gravel and	to coarse sand with abunda occasional angular gravel o	ant of brick
1.80	ES					< < < -	MADE GRO brick and clir window sam	nker and occasional shard ole through this stratum th	l gravel of ash with some g s of glass. Was notably ea an other made ground at th	sier to
2.15	ES					(1.70)	At 2.1 to 2.2 discolouratio	n bgl, approx 40% of the r	natrix has a slight green-blu	e e
						€ € €				
						< <u>3.20</u>		oarse SAND with occasion	nal medium to coarse round	ded
3.40	ES					(0.80)	gravel.			
-					· · · · · ·	4.00				E
						-	End of Hole	al 4m byl.		
						-				
						-				
						-				
						-				
						_				
						-				
						-				
						-				
						-				
						-				
						_				
						-				
						-				
						-				
						-				
						2				
						_				
						-				
						-				
						Ł				
						-				
						È.				
						_				
						-				
						Ę				
						-				
						-				
						E.				
						L				
						F				
						-				
						-				
	G	iroundwate	r		Ger	L neral Rem	l narks			Final Depth
rike Depth: (m) R	lising to:	(m) Groundwa	ter Rer	narks				d for gas monitoring purposes.		
		ncountered				ath c at (4m bgl
Contractor S	sherw	ood Drilli	ng			ethod/ ant Used	Geo	tool w/sampler	All dimensions in metres	
										Sheet 1 of 1

Inter Road Cannock Chase DC GVT ob No Date 17-11-11 Ground Level (m) Co ordinates Checked By SAMPLES & TESTS Betweet level (m) Co ordinates Checked By GVT SAMPLES & TESTS Betweet level (m) Co ordinates DESCRIPTION Result Job No Tots Status Co ordinates STRATA Depth Type Tots Status Co ordinates DESCRIPTION Result Jack ES Co ordinates STRATA Result Result Result Jack ES Co ordinates STRATA Result		HA	Client	G HAND PIT No HP A
Dob No Date 17-11-11 Ground Level (m) Co-ordinates Checked By GVT SAMPLES & TESTS Depth 30 Peduced Legend Depth Type Test Two Test 30 225 ES ES 0.00 MADE OVIDUE Using two medium sand wareel, including shards of glass. End of Trial Pft at 0.3m bgl. a Hand Pft Width m Amediate Pft Length - m Hand Pft Length - m Hand Pft Undth Made Pft Width Correct Nemarks C Bablity				
SAMPLES & TESTS Doph Two Feat # Preduced Lagend Dapth Preduced Dapth Preduced Lagend Dapth Preduced Lagend Dapth Preduced Dapth Preduce		1/-11-11	Ground Level (m) Co-ordinates	
Depth Type Test B Peducation Depth Description a 2.25 ES ES 20,000 0.20,000 DOPSOIL: Brown medium sand DESCRIPTION a 2.25 ES ES 20,000 0.20,000 DOPSOIL: Brown medium sand with occasional fine 2.26 ES ES 20,000 DOPSOIL: Brown medium sand with occasional fine 2.26 ES ES ES ES ES Hand Pit Width End of Trial Pit at 0.3m bgl. End of Trial Pit at 0.3m bgl.				
2.25 ES Country of the second	Depth Type Test	S E ReducedLeger	d Depth	Bac
Hand Pit Width A m HAND PIT DIMENSIONS m C Shoring Stability Groundwater General Remarks Hand dug with trowel only Final Dep 0 3 m b 0 3 m b	0.25 ES		0.30 MADE GROUND: Light brown r gravel, including shards of glass	nedium sand with occasional fine
	= m Shoring Groundwa	ater Remarks Ha	A HAND PIT DIMENSIONS C Stability	B B B B B B B B B B B B B B
contractor Sherwood Drilling Method/ Plant Used Hand tools All dimensions in metres Scale 1:50 Sheet 1	Contractor Sherwood Dr	rilling I	//ethod/	

Gr Gr	ontr	nij		ЪЧ	ΔΝΓ	רוס (۲ LOG			
		-							HP06	
Project					Client				ogged By	
Hunter Ro Job No	ad	Dat	ρ		Ground Level (m) Co-ordinates				GVT	
106	270		14	4-11-11 4-11-11			UU UIUII ales		GVT	
SAMPLE		ESTS			I		STRATA			
Depth	Type No	Test Result	Water	ReducedLeg Level	Jend Depth (Thickness)		DESCRIPTIO	N		Backfill
0.10	ES	rissuit	>		0.30	MADE GROU	ND: Grass over dark bro to coarse subrounded to	wn medium to coar		
- - - -						brick and porc cobbles of brid End of Trial P		ate and coal), and o	occasional	
- - - -					- - - - - -					
- - - -					- - - - -					
- - - - -										
- - - -					- - - - -					
- - - - -					- - - - -					
-					- - - - -					
-										
-										
-					- - -					
					Hand F	Pit Length = m			N 360°4 ^{0°}	
		Pit Width		D	HAN	A D PIT DIME	INSIONS	315 B 270°		
		m				С		22 Bear	135° 180° ring from North	
Shoring	Gro	undwater			Stability General Rem	arks			Final D	epth
Strike Depth: (m) R	ising to: (m)	Groundwat	er Ren	narks	Residents commented children had become ill for a couple of days after playing at base of garden (i.e. this hand pit location)					
Shoring Strike Depth: (m) R Ni Contractor S			ng		Method/ Plant Used Hand tools All dimensions in metres Scale 1:50 Sheet 1 of 1					

Gr	ontr	nij		HAND PIT LOG				HAND PIT	
Project						Client		Logged By	
Hunter Ro	ad					Cannock Ch	1	GVT	
	Job No Date 14-11-11 106270 14-11-11					Level (m)	Co-ordinates	Checked By GVT	
SAMPLE		ESTS					STRATA		
Depth	Type No	Test Result	Water	ReducedLege Level	nd Depth	3)	DESCRIPTIC	NN .	Backfil
0.20	ES	nesuit	>		(0.80)	MADE GROU some medium brick and pol occasional c metal at 0.7r	UND: Grass over dark bro m to coarse subrounded t rcelain (and occasional sl obbles of brick. Some clir	own medium to coarse sand with to subangular gravel, including	
			▲ 「		Hand	Pit Length = m		→ N 360°\ ^{0°}	
Charing		Pit Width = m		D		A D PIT DIM C	ENSIONS	B 270° 225° 135° 180° Bearing from North	
Shoring					Stability			•	
Strike Depth: (m) F			ter Rem	narks	eneral Rer	marks		Final I	
N	lone Enco	ountered						0.8m	ı bgi
Contractor §	Sherwoo	od Drilli	ng		Method/ Plant Used Hand tools				heet 1 of 1

							HAND PIT	No
Gr Gr	ontn	nij		H	ΔΝΓ) PIT LOG		
_								2
Project						^{Client} Cannock Chase DC	Logged By GVT	
Hunter Ro Job No	ad	Dat	e		Ground L		Checked By	
106	270		14	4-11-11 4-11-11	GV			
SAMPLE		ESTS				STRATA	I	
Depth	Туре	Test Result	Water	ReducedLeg	end Depth	DESCRIP		Backfill
	No ES	nesuit	>		(0.40)	MADE GROUND: Dark brown med	dium to coarse loose sand with some	
-					<pre></pre>	Light brown medium to coarse loos medium to coarse gravel - probabl	se SAND with abundant rounded le natural strata	1
					-	End of Trial Pit at 0.8m bgl.		
-					-			
-					-			
- - 					-			
-					-			
-								
-					-			
-					-			
-					-			
-								
-					-			
- -								
Ē					-			
					-			
Ē					-			
Ē					-			
Ē.					-			
					-			
-					-			
- -								
-					-			
			A r		Hand F	Pit Length = m	N 360°,0°	
	Hand ^E	Pit Width			• •	Α	315° 45°	
Hand Pit Width					HAND) PIT DIMENSIONS	B 270° 90°	
						С	225° 135°	
							Bearing from North	
Shoring					Stability			
Strike Depth: (m) R	Gro ising to: (m)	undwater Groundwat	er Rer	narks	General Rem	arks	Final [
N	one Enco	ountered					0.8m	bgl
Shoring Strike Depth: (m) R N Contractor S	Sherwoo	od Drillii	ng		Method/ Plant Used	Hand tools	All dimensions in metres Scale 1:50	
5							Sh	neet 1 of 1

		••						HAND	PIT No
🖌 Gr	ontr	nıj		H	ANI	DPI	T LOG	HP	10
Project					Client			Logged By	
Hunter Roa	ad				Cannock Chase DC			GV	Т
Job No 1062	270	Dat	14	4-11-11 4-11-11	Ground	Ground Level (m) Co-ordinates Check			
SAMPLE				+-11-11			STRATA		
Depth	Type	Test	Water	ReducedLeg	end Depth				Backfill
0.30	No ES	Result	Ň	Level	(Thicknes) (0.60) (0.60)	MADE GRO subrounded with occasio	DESCRIPTIC UND: Dark brown slightly to subangular medium to nal platy gravel of slate, c	DN clayey sand with abundant coarse gravel, including of brick cobbles of brick and fine gravel of	κ,
						End of Trial	Pit at 0.6m bgl.		
			A I		Hand	I Pit Length = m		► N 360°,0°	
	Hand F	Pit Width		_				315° 45°	
		= m		D	HAN	id pit dim	ENJION2	B 270°	-90°
			V			С		225° V 135°	
Shoring					Stability			Bearing from Nor = °	th
Strike Depth: (m) Ri	Gro	undwater Groundwa	f ter Ren	narks	General Re		<u> </u>	al Depth	
No		ountered		iuno	Unable to hand pi	t beyond 0.6m - densely	Packed DICK	0.0	Sm bgl
Shoring Strike Depth: (m) Ri No Contractor S	Sherwo	od Drilli	ng		Method/ Plant Used	ł	Hand tools	All dimensions in metres Scale	1:50 Sheet 1 of 1

Gr Gr	ontr	nij		ΗΛ	AND PIT LOG			H/	AND PIT No	
						J F I			HP11	
Project					Client			Logge		
Hunter Ro	ad				Cannock Chase DC				GVT	
Job No 106	270	Dat	- 14	4-11-11 4-11-11	Ground Level (m) Co-ordinates Checked				GVT	
SAMPLE				+-11-11			STRATA			
Depth	Type	Test	Water	ReducedLeger	d Depth		SIRATA		Backfill	
	No	Result	Š	Level	(Thickness	·	DESCRIPTIC JND: Grass over loose br			
0.10	ES ES				(0.70)	abundant rou coarse angul Very occasio	Inded medium to coarse of ar gravel of brick and corn nal fragments of fine wire wards and some cobbles	gravel and some medium acrete. Abundant roots 0	n to to 0.2m.	
-					0.80	Light brown t	o orange medium to coar			
-					-	to coarse rou End of Trial F	Pit at 0.8m bgl.		/	
-					-					
-					-					
-					-					
-					-					
					-					
					-					
					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
					-					
					-					
-					-					
F					-					
-					-					
/12					-					
71 21/2					-					
TL-GD					Hand	Pit Length = m				
3S3_A						Α		360°, 315°,	0° ⊿45°	
PJ A	Hand Pit Width =					d Pit Dimi	ENSIONS	B 270°	90°	
OAD.G		m	¥			с		225°	135°	
ER R			• •					18	80°	
k P Shoring ອ					Stability =					
Strike Depth: (m) R	Gro ising to: (m)	undwater Groundwa	ter Rer	narks	eneral Ren	<u> </u>	Final Depth			
		ountered							0.8m bgl	
GRONTIMU HAND PIT LOG HUNTER ROAD.GPU AGS3 ALL.GDT 21/2/12 Strike Depth: (m) B Strike Depth: (m) B Vi Contractor S	Sherwo	od Drilli	ng		Method/ Plant Used Hand tools All dimensions in metres Scale 1				etres Scale 1:50 Sheet 1 of 1	

🧲 Gr	ontr	nij		H	4N[T LOG	HAND I HP	-		
Project						Client	Logged By				
Hunter Ro	ad				Cannock Chase DC			GV	' 		
Job No 106	270	Dat		4-11-11 4-11-11	Ground Level (m) Co-ordinates			Checked By GV	Τ		
SAMPLE	ES & TI	ESTS					STRATA	I			
Depth	Туре	Test	ater	ater	Water	ReducedLege	end Depth				Backfill
0.10	No ES ES	Result	3	Level	(1hickness) (0.68)	MADE GROU medium subr concrete. Cr	DESCRIPTION DE GROUND: Dark brown loose medium sand with some fine to ium subrounded to subangular gravel, including of brick and rete. Crumpled shards of metal (20cm x 10cm) at 0.5m.				
						End of Trial F	Pit at 0.68m bgl.				
					Hand	Pit Length = m					
Shoring	Hand F	Pit Width = m	↓	D	HAN	A D PIT DIMI c	ENSIONS	B B 270° 225° 180° Bearing from Nor = •	-90° th		
Strike Depth: (m) F	Gro	undwate	r		General Ren	narks		<u> </u> Fin	al Depth		
		ountered		narks					8m bgl		
Contractor §	Sherwo	od Drilli	ng		Method/ Plant Used Hand tools All dimensions in metres Scale 1:50 She						

🦨 Gi	rontr	nij		HA	١N) Pl	T LOG	HAND PI	
Project					Client			Logged By	
Hunter Ro	bad				Cannock Chase DC		GVT		
Job No	6270	Da	I •	4-11-11 4-11-11	Ground I	_evei (m)	Co-ordinates	Checked By GVT	
				4-11-11					
SAMPL Depth	ES & II Type	Test	Water	ReducedLeger	nd Depth		STRATA		Dealefill
-	No	Result	Š	Level	(Thickness)		DESCRIPTIC	DN nedium sand with some fine to	Backfill
0.10	ES ES				(0.55)	medium subr	rounded to subangular gr	ravel, including of brick, porcelain of brick from 0.5m onwards	
- 0.40					0.55		Pit at 0.55m bgl.		
- 									
- -					-				
- - -					-				
					-				
-					-				
-					-				
- -					-				
					-				
					-				
					-				
- - -					-				
-					-				
					-				
- 					-				
-					-				
- -					-				
-					-				
-					-				
-					-				
- - r					-				
-					-				
-					-				
-					-				
					Hand	Pit Length = m		→ N 360°♪ ^{0°}	
	Hand F	Pit Width		D	ΗΔΝΙ	D PIT DIMI	ENSIONS	B 315° 45°	
		= m	¥			c		270° 225° 135°	
			V			U U		V 180°	
Shoring					Stability			Bearing from North = •	
Strike Depth: (m)	Gro Risina to: (m)		r iter Rei		ieneral Rem		ked brick and cabbles	J Final	Depth
	None Enc			<u></u> U	nable to hand pit t	beyond 0.6m - solid pac	NEU DITOK ATU CODDIES	0.55	m bgl
Contractor	Sherwo	od Drilli	ng		Method/ Plant Used		Hand tools	All dimensions in metres Scale 1:50	
l					i iuni Useu				Sheet 1 of 1

Gr	ontr	nij		ΗА	N	d Pl	T LOG	HAN F	ID PIT No 1 P14
Project						Client		Logged E	
Hunter Ro	ad					Cannock Cl			GVT
Job No 106	270	Dat	14	4-11-11 4-11-11	Ground	Level (m)	Co-ordinates	Checked	^{By} GVT
SAMPLE	ES & TE	ESTS	L		·		STRATA		
Depth	Type No	Test Result	Water	ReducedLegen Level	d Depth (Thickness	s)	DESCRIP	TION	Bacl
0.50	ES		-		(0.80)	medium sub and concrete from 0.2m o	UND: Dark brown loos prounded to subangulate, some fragments of g	e medium sand with some fine r gravel, including of brick, porc lass, and with some cobbles o	elain
					0.9	Light brown	medium to coarse SAN	ND with abundant medium to co	parse
· · · · · · · · · · · · · · · · · · ·									
					-				
					T Hand	Pit Length = m		N NI	
		Pit Width = m		D	HAN	A D PIT DIM c		B B 270' 225' 180' Bearing from	90° 135° North
Shoring				S	stability			•	
trike Depth: (m) F	Gro Rising to: (m)		er Rer	narks Ge	eneral Rei	marks			Final Depth 0.9m bg
Contractor (ng	N	/lethod/ Plant Used		Hand tools	All dimensions in metres	Scale 1:50

Project Lident Logget By GVT Job No Date 5-11-11 Ground Level (m) Co-ordinates Checked By GVT SAMPLES & TESTS Depth Petioded level (m) Checked By GVT Checked By GVT 0.20 ES Petioded level (m) Checked By Rowell (m) Destination (m) </th <th>Gr</th> <th>rontr</th> <th>nij</th> <th></th> <th>H</th> <th></th> <th></th> <th>T LOG</th> <th>HAND F</th> <th></th>	Gr	rontr	nij		H			T LOG	HAND F				
Job No Date 15-11-11 Ground Level (m) Co-ordinates Checked By GVT SAMPLES & TESTS PeducedLegend PeducedLegend (notesta) (not										г			
GVT SAMPLES & TESTS Deph Type Test 0.20 ES Instructed Logend Deph 0.20 ES Instructed Logend Deph 0.60 ES Instructed Logend Deph Instructed Logend Instructed Logend Deph 0.60 ES Instructed Logend Deph Instructed Logend Instructed Logend Instructed Logend Instructed Logend Instructed Logend Instructed Logend Instructed Logend Instructed Logend Instructed Logend <		bad	Da	te ,						1			
Depth Type Test Beducad gend Detsk 0.20 ES Image: Solution of the coarse or coarse locates and the coarse locates and the coarse locates and the coarse or coarse or coarse locates and the coarse or coarse or coarse locates and the coarse or coarse		6270		13			()			Т			
0.20 ES MADE GROUND: Grass over dark brown medium to coarse loose sand brok, porcelian and occasional clinker. Some cobbles of brick from 0.5m onwards. 0.60 ES 0.75 Manual Social pockets of day from 0.5m onwards. 0.70 0.77 0.77 End of Trial Pit at 0.75m bgl. 0.71 End of Trial Pit at 0.75m bgl. End of Trial Pit at 0.75m bgl. 0.72 Hand Pit Width End of Trial Pit at 0.75m bgl. 0.73 Hand Pit Llength = m C 0.74 A C 1.75 Bability End of Trial Pit at 0.75m bgl.	SAMPLE	ES & TI	ESTS			I		STRATA					
0.20 ES MADE GROUND: Grass over dark brown medium to coarse loose sand brok, porcelian and occasional clinker. Some cobbles of brick from 0.5m onwards. 0.60 ES 0.75 Manual Social pockets of day from 0.5m onwards. 0.70 0.77 0.77 End of Trial Pit at 0.75m bgl. 0.71 End of Trial Pit at 0.75m bgl. End of Trial Pit at 0.75m bgl. 0.72 Hand Pit Width End of Trial Pit at 0.75m bgl. 0.73 Hand Pit Llength = m C 0.74 A C 1.75 Bability End of Trial Pit at 0.75m bgl.	Depth	Туре		Nate	ReducedLeg	end Depth	nd Depth (Thickness) DESCRIPTION						
		ES					MADE GROUND: Grass over dark brown medium to coarse loose sand with some fine to coarse rounded to subangular gravel, including of brick, porcelain and occasional clinker. Some cobbles of brick from 0.4m onwards. Occasional pockets of clay from 0.6m onwards						
Hand Pit Width m M M M M M M M M M M M M M	-												
Hand Pit Width m HAND PIT DIMENSIONS B C Shoring Stability Stability Bearing from North					◄	Hand			360°,0°				
Shoring Stability =		Hand F	=	Ţ	D	HANI	d Pit Dim	ENSIONS	B 270' 225' 135'	90°			
Orreurs durater Develop	Shoring					Stability			=	h			
Groundwater General Remarks Final Details for the Depth: (m) Bising to: (m) Groundwater Remarks	triko Donthe (m)	Gro	undwate	r	marke	General Rem	narks		Fina	al Depth			
strike Depth: (m) Groundwater Remarks None Encountered 0.75m					narks								
Contractor Sherwood Drilling Method/ Plant Used Hand tools	Contractor (Sherwo	od Drilli	ng		Method/ Plant Used Hand tools All dimensions in metres Scale 1:50 Sheet 1							

Project Clark Clar	🦨 Gr	ontr	nii			ΛΝΓ		HAND PIT No			
Hunter Road Cannock Chase DC GVT GVT Date 15-11-11 Ground Level (m) Co-ordinates Checked By GVT GVT SAMPLES & TESTS Depth Type Test B Policocl_speed Depth Coss Coss Coss Coss Coss Coss Coss Cos			,					HP16			
Date No Date Date 15-11-11 Ground Level (m) Co-ordinates Checked By SAMPLES & TESTS Bedron Level (m) Co-ordinates Checked By GVT SAMPLES & TESTS Bedron Level (m) Co-ordinates Checked By 0.30 ES Bedron Level (m) Co-ordinates DECRIPTION 0.30 ES Bedron Level (m) Co-ordinates DECRIPTION 0.30 ES Bedron Level (m) Co-ordinates DECRIPTION 0.30 ES Bedron Level (m) DECRIPTION Mate CROUND: Crass over brown medium to coarse brows and oncrete 0.30 ES Bedron Level (m) Depth Trial Pit at 0.7m bgt.	Project										
GVT SAMPLES & TESTS Depth Yoo Feasilt STRATA 0.30 ES Image: Colspan="2">Exception medium to coarse toose sand with medium too coarse SAND with medium to coarse toose sand with medium too coarse SAND with medium too coarse toose sa		ad	Dat	0							
Depth Type Test Presult Presult <th< td=""><td></td><td>270</td><td>Dai</td><td></td><td>5-11-11 5-11-11</td><td>Ground L</td><td></td><td>GVT</td></th<>		270	Dai		5-11-11 5-11-11	Ground L		GVT			
Depth Type Test Presult Presult <th< td=""><td></td><td></td><td>ESTS</td><td></td><td>_</td><td></td><td>STRATA</td><td></td></th<>			ESTS		_		STRATA				
0.30 ES 0.30 ES 0.30 ES 0.30 HADE GROUND: Grass over horsem medium to coarse losse and with 0.50 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with medium rounded 0.30 Light orange to brown medium to coarse SAND with mediu		Туре	Test	Vater	ReducedLeg	end Depth		Bac			
Light orange to brown medium to coarse SAND with medium rounded End of Trial Pit at 0.7m bgl. End of Trial Pit at 0.7m bgl. Hand Pit Width → Hand Pit Width → Hand Pit Length = m → Hand Pit Using → → → → → → → → → → → → →	0.30		Tesuit	>		(0.55)	MADE GROUND: Grass over brown m medium to coarse rounded gravel to co	edium to coarse loose sand with			
End of Trial Pit at 0.7m bgt. End of Trial Pit at 0.7m bgt. Hand Pit Width Hand Pit Width Hand Pit Width Besites from North Shoring Stability Energies (00, 000 Missier Pennis) Shoring Stability Final Depth						<u>X - 0.55</u> - 0.70	Light orange to brown medium to coars	se SAND with medium rounded			
Hand Pit Width m Hand Pit Width m HAND PIT DIMENSIONS C Shoring Shoring Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks Trike Depth: (m) Rising to: (m) Groundwater Remarks C Shoring C C Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks C Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks C Stability Stab	· · · · · · · · · · · · · · · · · · ·						End of Trial Pit at 0.7m bgl.				
Hand Pit Width m Hand Pit Width m HAND PIT DIMENSIONS C Shoring Shoring Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks Trike Depth: (m) Rising to: (m) Groundwater Remarks C Shoring C C Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks C Stability Trike Depth: (m) Rising to: (m) Groundwater Remarks C Stability Stab							 Pit Length = m	N			
C 225 ⁻ 135 ⁻ Shoring Stability Bearing from North Stability = Groundwater General Remarks trike Depth: (m) Rising to: (m) Groundwater Remarks Final Depth 0 7 m bra			=		D		Α	315° 45°			
Shoring Stability Groundwater General Remarks trike Depth: (m) Rising to: (m) Groundwater Remarks Final Depth 0 7m bra			m	V			C	V			
trike Depth: (m) Rising to: (m) Groundwater Remarks	Shoring					Stability		=			
0.7m ha	Strike Depth: (m) F	Gro tising to: (m)	undwate Groundwa	r ter Rer	narks	General Rem	arks	Final Depth			
								0.7m bg			
Contractor Sherwood Drilling Method/ Plant Used Hand tools Sheet 1 of Sheet 1 of	Contractor S	Sherwoo	od Drilli	ng		Plant Used Hand tools All dimensions in metres Scale 1:50					

										HAND PIT	No
	Grontr	nij		Η	A	NE) PI1	LOG		HP17	
Projec	t						Client		1	ogged By	
	er Road						Cannock Ch	ase DC		GVT	
Job No		Dat	^{ie} 1	5-11-11		Ground L	evel (m)	Co-ordinates	C	Checked By	
	106270		1	5-11-11						GVT	
-	IPLES & T	-	er					STRATA			
Dep	th Type No	Test Result	Water	ReducedLe Level	gend	Depth (Thickness)		DESCRIPTIC			Backfill
0.15	ES			ļ X	\bigotimes	0.30	medium to co	IND? - Dark brown medin arse gravel, sand becom	um to coarse sand v nes light brown at 0.	vith some 2m	
						-	End of Trial P	it at 0.3m bgl.			
-											
-						-					
						-					
						-					
-						-					
-						-					
-						-					
-						-					
-											
-						-					
						-					
E E											
ł						-					
-						-					
-											
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
- - -						-					
<u></u>						F					
			≜ ⊺			Hand F	Pit Length = m			N 360°4 ^{0°}	
	Hand	Pit Width							31:		
, ,	nand	= m	Ţ	D		HAND	D PIT DIME	NSIONS	B 270° -	90°	
			V				С		22	135°	
									Bear	۱ẳ٥° ing from North	
Shorin	g				St	ability				- •	
Strike Depth	Gro h: (m) Rising to: (m)	oundwater	r ter Rer	narks		neral Rem		nnas steanly)	1	Final D	epth
None Encountered					Hand	a aug with trowel	el only in front garden (slo	opes steepiy)		0.3m	bgl
Shorin						othed/					
Contractor Sherwood Drilling						ethod/ ant Used	ł	land tools	All dimension	ons in metres Scale 1:50 She	et 1 of 1

Gr	ontr	nij		H	ANE	D PIT LOG	HAND PIT N HP18			
Project						Client	Logged By			
lunter Ro	ad					Cannock Chase DC	GVT			
ob No		Da	1:	5-11-11	Ground I	_evel (m) Co-ordinates	Checked By GVT			
	270		1:	5-11-11						
SAMPLE		ESTS Test	ter	Deduced	I Dooth	STRATA				
Depth	Type No	Result	Water	ReducedLege Level	end Depth (Thickness)	BEGOTATINA		B		
40	50				(0.50)	MADE GROUND: Brown medium to o medium to coarse subrounded gravel angular gravel of clinker				
.40	ES			0 .	0.30		ith abundant medium to coarse			
					-	subrounded gravel End of Trial Pit at 0.7m bgl.		$\left[\right]$		
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					-					
					Hand	Pit Length = m				
						Α	360°,0° 315°, 45°			
		Pit Width =		D	HAN	D PIT DIMENSIONS	B 270° 90°			
		m	¥			<u>^</u>	225° 135°			
			▼ [C	V 180°			
noring					Stability		Bearing from North =			
					Stability		•			
e Depth: (m) F	Gro Rising to: (m)	undwate Groundwa	r iter Rer	marks	General Rem	Final	Dep			
None Encountered							0.7m	n b		
ontractor Sherwood Drilling					Method/					
untractor S	Snerwoo	oa Drilli	na		Method/ Plant Used Hand tools All dimensions in metres Scale 1:50 Sh					

٢								HAND PIT N			
	Gr	ontn	nij		ΗΔ	NΓ) PIT LOG	HAND THIN	NU		
	Project	l					^{Client} Cannock Chase DC	Logged By GVT			
	Hunter Roa Job No	ao	Dat	e,		Ground L		Checked By			
	1062	270		- 13	5-11-11 5-11-11			GVT			
F	SAMPLE	S & TE	ESTS				STRATA				
	Depth	Type No	Test Result	Water	ReducedLegen Level	d Depth (Thickness)	DESCRIPTIO	N	Backfill		
F	0.20	ES		-		0.30	MADE GROUND? - Dark brown mediu	im to coarse sand with some			
-	0.20					-	$\$ was taken from the lighter brown soil.				
Ē						-	End of Trial Pit at 0.3m bgl.				
F						-					
Ē						-					
F						-					
E						-					
ŀ						-					
F						-					
Ē						-					
F						-					
ŧ						-					
ŧ						-					
ŀ						-					
F						-					
F						-					
F						-					
F						-					
Ē						-					
F						-					
F						-					
ŧ						-					
Ē						-					
E						-					
ŧ						-					
-						-					
21/2/1						-					
			1			Hand F	Pit Length = m	- N			
S3_ALI							A	360°0°			
J AG			Pit Width =	T	D	HAND) PIT DIMENSIONS	B			
AD.G			m	¥			С	270° 70			
ERRC				¥ [V	V 180°			
INUH	Shoring				5	Stability		Bearing from North = °			
		Gro	undwater	[eneral Rem		Final De	pth		
GRONTMIJ HAND PIT LOG HUNTER ROAD.GPJ AGS3_ALL.GDT 21/2/12	trike Depth: (m) Ri	sing to: (m)	Groundwa	ter Rer	narks Ha	Hand dug with trowel only in front garden (slopes steeply)					
	Contractor S			na		/lethod/					
GRO					F	Plant Used	Hand tools	All dimensions in metres Scale 1:50 Sheet	1 of 1		

Cannock Chase DC GV Job No 15-11-11 Coordinates Checked By 106270 Checked By GV SAMPLES & TESTS STRATA Depth Type Test Made Beduced Legend Depth Cleared Legend Depth CESCRIPTION MADE GROUND: Grass over dark brown medium sand with abundan 0.40 ES End of Trial Pit at 0.6m bgl.	- Ba
106270 15-11-11 15-11-11 GV SAMPLES & TESTS Image: Constraint of the second se	Ba
Depth Type No Test Result Test E Reduced Legend Level Depth (Thickness) DESCRIPTION 0.40 ES - - 0.30 gravel to cobbles of clinker and brick	
0.40 ES MADE GROUND: Grass over dark brown medium sand with abundan gravel to cobbles of clinker and brick	
0.40 ES Constraints of the second sec	
Hand Pit Length = m	
Hand Pit Width = m C A D HAND PIT DIMENSIONS B C C	0°
Shoring Stability =	I
Groundwater General Remarks Fin. trike Depth: (m) Rising to: (m) Groundwater Remarks Refusal on dense brick Fin.	l Dept
	m bç
Contractor Sherwood Drilling Method/ Plant Used Hand tools All dimensions in metres Scale	50

										HAND PIT	No
Gr	ontr	nij		Н	Δ	ΝΓ) PIT	LOG		HAND PI	
_											
Project							^{Client} Cannock Chase			Logged By GVT	
Hunter Ro Job No	ad	Dat	e			Ground L		o-ordinates		Checked By	
106	270	Dat	1:	5-11-11 5-11-11				ordinates		GVT	
SAMPLE	S & TI	ESTS					ST	RATA			
Depth	Type No	Test Result	Water	ReducedLe Level	gend	(Thickness)		DESCRIPTIC	NN .		Backfill
0.10	ES	nesuit	>		\otimes	-	MADE GROUND	? - Dark brown medi	um to coarse sand	with some	
0.20	ES				XX	^ <u>0.30</u>	End of Trial Pit at	e gravel, sand becom 0.2m bgl.	ies light brown at u).2m	
						-		-			
-						-					
-						-					
						-					
						-					
E											
						-					
-						-					
-						-					
						-					
						-					
						-					
						-					
-						-					
						-					
-						-					
						-					
						-					
						-					
-											
						-					
-						-					
						-					
						-					
- N						-					
						-					
Shoring Shoring Shoring Strike Depth: (m) R Nu Contractor S	1	I	1			Hand P	Pit Length = m		_	N	I
33_ALI			\ [-			A		▶	360°,0°	
AG:		Pit Width	T	D		ΗΔΝΓ) PIT DIMEN	SIONS	в	45°	
10.GP		= m		-					270° 🥌	90°	
NUA POP			V				С			225° 135° 180°	
2 Charles						ability -			Bea	aring from North	
문 Shoring 위					S	tability				•	
Strike Depth: (m) R	Gro ising to: (m)	undwate Groundwa	r ter Rer	narks_		neral Rem	arks I only in front garden (slopes s	teeply)	L	Final D	epth
None Encountered						a aag with trowe	y in noni garaen (siopes s			0.2m	bgl
						Method/					
Contractor Sherwood Drilling						Plant Lised Hand tools All dimensions in metres Scale 1:50					eet 1 of 1

🧲 Gr	ontr	nij		HA		D PIT LOG	HAND PIT HP22		
Project						Client	Logged By		
Hunter Ro	ad					Cannock Chase DC	GVT		
Job No		Dat	1	5-11-11	Ground	Level (m) Co-ordinates	Checked By GVT		
	270		1	5-11-11					
SAMPLI Depth	=S & H ∏Type	ESTS Test	Water	ReducedLegen	d Depth	STRATA		Destabil	
	No	Result	Ň	Level	(Thickness	DESCRIPTION MADE GROUND: Grass over dark brow		Backfill	
0.25	ES				(0.50) 0.50	medium (occasionally coarse) subround	ded gravel, including brick and		
-					<u>x 0.50</u>	End of Trial Pit at 0.5m bgl.			
					-				
					-				
					-				
					-				
-					-				
					-				
					-				
					-				
_					-				
					-				
					-				
					-				
_					-				
					-				
					-				
					-				
-					-				
					-				
					-				
					-				
_					-				
					-				
					-				
- - 					-				
					-				
					-				
					-				
					t llend	 Bit ongth			
				◀	Hand	Pit Length = m	► N 360°∫0°		
	Hand F	Pit Width		D		D PIT DIMENSIONS	315° 45°		
		= m		U	ITAN		B 270° 90°		
						С	225° 135°		
							۱۶۵۰ Bearing from North		
Shoring				S	Stability		Bearing from North = •		
	Gro	undwate	r	G	eneral Ren	narks	Final D	Depth	
Strike Depth: (m)	Rising to: (m)	Groundwa	ter Rer	marks Re	efusal on dense b	rick. Pit dug adjacent to back fence - garden is on split level with - soil closest to fence is most likely to be representative of the ea	material closest to house possibly a		
Ν	lone Enc	ountered							
Hand Pit Length = m Hand Pit Width = m Hand Pit Width = m Hand Pit Width = m Hand Pit Width = m Ka HAND PIT DIMENSIONS C Bearing Shoring Shoring Stability Bearing C C Bearing C C Bearing C C C C C C C C C C C C C							All dimensions in metres Scale 1:50		
				ŀ	Plant Used	Hand tools		eet 1 of 1	

							HAND PIT No			
Gre Gre	ontr	nij		H	ΔΝΓ) PIT LOG				
							HP23			
Project						Client	Logged By			
Hunter Roa	ad					Cannock Chase DC	GVT			
Job No 1062	270	Dat	- 13	5-11-11 5-11-11	Ground L	evel (m) Co-ordinates	Checked By GVT			
SAMPLE		ESTS				STRATA				
Depth	Туре	Test	Water	ReducedLeg	gend Depth		. Backfill			
0.15	No ES	Result	>	Level	(Thickness)	DESCRIPTION MADE GROUND: Grass over dark brow	wn medium sand with abundant			
0.15	ES					coarse angular gravel of brick and some MADE GROUND: Angular gravel of bri				
0.40	20					\medium sand MADE GROUND: Grass over dark brow	wn medium sand with abundant			
					-	coarse angular gravel of brick, some pla occasional gravel of clinker and fragme	aty gravel of slate, and			
-					-	End of Trial Pit at 0.5m bgl.				
-					-					
-										
-										
-										
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-										
-					-					
-					-					
-										
-					<u> </u>	No. 1. and a state				
			, ∎		Hand F	hit Length = m	► N 360°,0°			
	Hand F	Pit Width		D	ПУИС	PIT DIMENSIONS	315° 45°			
		= m			TIANL		270°			
			V			C	225° V 135°			
Charles					Oto 1:11		Bearing from North			
Shoring					Stability		•			
Strike Depth: (m)_Ris	Groundwater trike Depth: (m) Rising to: (m) Groundwater Remarks					arks *	Final Depth			
None Encountered					Refusal on dense bri		0.5m bgl			
Contractor Sherwood Drilling					Method/					
Shoring Strike Depth: (m) Rit No Contractor S			y		Plant Used Hand tools All dimensions in metres Scale 1:50 Sheet 1 of 1					

								NL		
Gr Gr	ontr	nij		ы	ΛΝΓ) PIT LOG	HAND PIT			
		•					HP24			
Project						Client	Logged By			
Hunter Ro	ad					Cannock Chase DC	GVT			
Job No 106	270	Dat	- 13	5-11-11 5-11-11	Ground L	evel (m) Co-ordinates	Checked By GVT			
SAMPLE						STRATA				
Depth	Type	Test	Water	ReducedLeg	end Depth			Backfill		
	Ňo	Result	Š	Level	(Thickness)	DESCRIPT MADE GROUND: Patchy grass cov		Dackin		
0.20	ES				(0.50)	MADE GROUND: Patchy grass cov sand with some fine to medium sub occasional angular gravel of brick.	From 0.4m onwards, some cobbles			
0.60	ES			× ×	× × 0.30 0.70	of brick come of which exhibit iron.	oxide-like discolouration on surface 📝	·		
-					-	\coarse rounded gravel				
-					-	End of Trial Pit at 0.7m bgl.				
- - -					-					
-										
-					-					
-					-					
-					-					
- - 					-					
-					-					
-					-					
-					-					
-					-					
-					-					
-					-					
- - 					-					
- - F					-					
-					-					
-					-					
- [-					
-					-					
-					-					
-					-					
-					-					
					-					
					-					
	I	1	I		Hand F	Pit Length = m	N			
						A	360°0° 315° -45°			
	Hand F	Pit Width =	T	D	HAND	PIT DIMENSIONS	В			
		m	¥				270° 90			
			V L			C	V			
Shoring					Stability		Bearing from North =			
5							•			
Strike Depth: (m) R	Gro ising to: (m)	Groundwater	ter Rer	narks	General Rem	arks	Final D			
None Encountered					0.7m					
Contractor Sherwood Drilling					Method/ Diant Logid to allo All dimensions in metres Scale 1:50					
Shoring Strike Depth: (m) R No Contractor S			-		Plant Used Hand tools All dimensions in metres Scale 1:50 Sheet					

APPENDIX D

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 259230-1

Date of Report: 15-Dec-2011

Customer: Grontmij 3rd Floor Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

Customer Contact: Mr Gareth Taylor

Customer Job Reference: Customer Site Reference: Hunter Rd Date Job Received at SAL: 17-Nov-2011 Date Analysis Started: 02-Dec-2011 Date Analysis Completed: 15-Dec-2011

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by : Mr Ross Walker Customer Services Manager (Land)

Analysed as Soil

Analysed as Soil

Soil

MCERTS Preparation

			SA	L Reference	259230 001	259230 003	259230 005	259230 007	259230 008	259230 009	259230 011	259230 013	259230 014
		Custon	ner Sampl	e Reference	HP06 0.1	HP07 0.7	HP08 0.5	HP010 0.3	HP 11 0.1	HP11 0.45	HP12 0.5	HP13 0.4	HP14 0.5
				Depth	0.1	0.7	0.5	0.3	0.1	0.45	0.5	0.4	0.5
			Da	ate Sampled	Deviating								
	Тур						Sand						
Determinand	Method	Test Sample	LOD	Units									
Moisture	T277	AR	0.1	%	13	7.4	12	12	9.5	9.0	11	7.1	8.2
Moisture @ 105 C	T162	AR	0.1	%	15	9.9	13	14	11	9.5	12	8.0	9.7

SAL Reference: 259230

Project Site: Hunter Rd

Customer Reference:

Soil

MCERTS Preparation

			SA	L Reference	259230 017	259230 018	259230 019	259230 020	259230 021	259230 022	259230 023	259230 024	259230 026
		Custon	ner Sampl	e Reference	HP16 0.3	HP17 0.15	HP18 0.4	HP19 0.2	HP20 0.4	HP21 0.1	HP21 0.2	HP22 0.25	HP23 0.45
				Depth	0.3	0.15	0.4	0.2	0.4	0.1	0.2	0.25	0.45
			Da	ate Sampled	Deviating								
				Туре	Sand								
Determinand	Method	Test Sample	LOD	Units									
Moisture	T277	AR	0.1	%	7.9	7.9	7.6	9.4	11	11	7.8	10	14
Moisture @ 105 C	T162	AR	0.1	%	9.8	6.9	4.3	9.6	13	13	9.8	12	16

SAL Reference: 259230

Project Site: Hunter Rd

Customer Reference:

Soil Analysed as Soil

MCERTS Preparation

			SA	L Reference	259230 028	259230 029	259230 033	259230 035	259230 036	259230 039	259230 040	259230 042	259230 044
		Custon	ner Sampl	e Reference	HP24 0.6	WS1 0.2	WS2 0.2(SOIL)	WS2 1.7	WS3 0.4	WS4 0.65	WS4 1.4	WS5 0.7	WS6 0.3
				Depth	0.6	0.2	0.2	1.7	0.4	0.65	1.4	0.7	0.3
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units									
Moisture	T277	AR	0.1	%	15	11	12	5.5	9.0	12	8.1	5.9	14
Moisture @ 105 C	T162	AR	0.1	%	18	14	11	5.7	13	14	5.4	7.2	15

SAL R	eference:	259230				111-		Sec. 1	
Pro	ject Site:	Hunter Ro	ł						
Customer Re	eference:								
Soil		Analysed	as Soil						
MCERTS Preparation									
			SA	L Reference	259230 045	259230 046	259230 047	259230 048	259230 050
		Custor	ner Sampl	e Reference	WS6 1.5	WS7 0.7	WS7 1.8	WS7 2.15	HP A 0.25
				Depth	1.5	0.7	1.8	2.15	0.25
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					
Moisture	T277	AR	0.1	%	9.7	4.3	-	25	16
Moisture @ 105 C	T162	AR	0.1	%	12	4.0	26	29	23

SAL Reference: 259230

Project Site: Hunter Rd Customer Reference:

Soil

Analysed as Soil

	N
OLLA	

CLEA Metals														I
			SA	L Reference	e 259230 001	259230 003	259230 005	259230 007	259230 008	259230 009	259230 011	259230 014	259230 017	259230 018
		Custor	ner Sampl	le Reference	HP06 0.1	HP07 0.7	HP08 0.5	HP010 0.3	HP 11 0.1	HP11 0.45	HP12 0.5	HP14 0.5	HP16 0.3	HP17 0.15
				Depth	n 0.1	0.7	0.5	0.3	0.1	0.45	0.5	0.5	0.3	0.15
			Dr	ate Sampled	I Deviating	Deviating								
				Туре	e Sand	Sand								
Determinand	Method	Test Sample	LOD	Units										
Arsenic	Т6	M40	2	mg/kg	12	14	15	10	8	8	12	17	6	5
Barium	T6	M40	1	mg/kg	220	340	260	160	88	81	130	140	63	57
Beryllium	Т6	M40	2	mg/kg	2	2	3	<2	<2	<2	<2	4	<2	<2
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	Т6	M40	1	mg/kg	17	22	17	14	13	13	15	18	11	8
Chromium VI	Т6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper	Т6	M40	1	mg/kg	60	95	70	44	28	27	50	51	25	15
Lead	Т6	M40	1	mg/kg	170	370	240	120	65	63	140	120	55	30
Mercury	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	Т6	M40	1	mg/kg	23	25	38	17	17	15	21	33	12	8
Selenium	Т6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Vanadium	Т6	M40	1	mg/kg	22	28	37	19	19	19	20	35	15	11
Zinc	Т6	M40	1 1	mg/kg	380	380	190	230	140	130	280	350	120	61

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Analysed as Soil

CLEA Metals

Soil

			SA	L Reference	259230 019	259230 020	259230 021	259230 022	259230 023	259230 024	259230 026	259230 028	259230 029	259230 033
		Custon	ner Sampl	e Reference	HP18 0.4	HP19 0.2	HP20 0.4	HP21 0.1	HP21 0.2	HP22 0.25	HP23 0.45	HP24 0.6	WS1 0.2	WS2 0.2(SOIL)
			Depth			0.2	0.4	0.1	0.2	0.25	0.45	0.6	0.2	0.2
	Date Sample				Deviating									
				Туре	Sand									
Determinand	Method	Test Sample	LOD	Units						5A. (-
Arsenic	Т6	M40	2	mg/kg	8	6	21	5	6	9	10	8	6	9
Barium	Т6	M40	1	mg/kg	84	59	250	61	56	110	170	84	56	130
Beryllium	T6	M40	2	mg/kg	<2	<2	3	<2	<2	<2	<2	<2	<2	<2
Boron (water-soluble)	Т6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	Т6	M40	1	mg/kg	12	9	20	7	8	14	13	10	11	14
Chromium VI	Т6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Copper	Т6	M40	1	mg/kg	24	17	86	17	16	36	23	20	24	35
Lead	Т6	M40	1	mg/kg	55	30	220	35	34	89	100	70	56	140
Mercury	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	13	9	34	13	10	16	15	11	11	17
Selenium	Т6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Vanadium	Т6	M40	1	mg/kg	16	14	34	11	12	18	26	16	15	20
Zinc	T6	M40	1	mg/kg	110	69	630	95	140	190	150	74	110	200

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Soil

Analysed as Soil CLEA Metals SAL Reference 259230 036 259230 039 259230 042 259230 044 259230 046 259230 047 259230 048 259230 050 HP A 0.25 WS5 0.7 WS7 0.7 WS7 1.8 **Customer Sample Reference** WS3 0.4 WS4 0.65 WS6 0.3 WS7 2.15 Depth 0.4 0.65 0.7 0.3 0.7 1.8 2.15 0.25 Date Sampled Deviating Deviating Deviating Deviating Deviating Deviating Deviating Deviating Sand Sand Sand Sand Sand Sand Sand Туре Sand Test Determinand Method LOD Units Sample Т6 M40 2 11 9 11 11 9 71 140 13 Arsenic mg/kg Barium Τ6 150 150 82 120 91 910 540 140 M40 1 mg/kg Т6 M40 2 <2 <2 20 25 <2 Beryllium mg/kg <2 <2 <2 Boron (water-soluble) Т6 AR 1 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 Cadmium Т6 M40 1 4 7 <1 <1 <1 mg/kg <1 <1 <1 Chromium Т6 M40 1 mg/kg 17 16 12 17 13 23 38 17 Chromium VI Τ6 AR 1 mg/kg <1 <1 <1 <1 <1 <1 <1 <1 Copper Т6 M40 1 mg/kg 100 36 22 46 36 170 22000 620 M40 1 Т6 Lead 74 100 55 140 78 310 450 120 mg/kg Т6 M40 Mercury 1 <1 <1 <1 <1 <1 mg/kg <1 <1 <1 Nickel Т6 M40 1 mg/kg 22 19 16 22 17 180 240 23 Selenium Т6 M40 3 <3 <3 <3 <3 <3 <3 <3 <3 mg/kg Vanadium Т6 M40 1 mg/kg 31 25 21 25 21 90 110 21 Τ6 1 7800 Zinc M40 150 310 200 230 170 1900 350 mg/kg

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Analysed as Soil

Miscellaneous

Soil

	SAL Reference							259230 008	259230 011	259230 014	259230 019	259230 020	259230 021
		Custon	ner Samp	e Reference	HP06 0.1	HP07 0.7	HP08 0.5	HP 11 0.1	HP12 0.5	HP14 0.5	HP18 0.4	HP19 0.2	HP20 0.
				Depth	0.1	0.7	0.5	0.1	0.5	0.5	0.4	0.2	0.4
		- 82	D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
		- 63		Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					100 C				
pН	T7	AR			-	7.9	8.1	- C_	-	-	-	-	7.8
Soil Organic Matter	T287	M40	0.1	%	6.1	11	-	2.3	6.4	4.1	2.7	0.7	7.7
SO4(Total)	Т6	M40	0.01	%	-	0.15	0.15	-	-		-	-	0.28

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Analysed as Soil

Soil Miscellaneous

	259230 022	259230 023	259230 024	259230 026	259230 033	259230 035	259230 036	259230 039	259230 040				
	HP21 0.1	HP21 0.2	HP22 0.25	HP23 0.45	WS2 0.2(SOIL)	WS2 1.7	WS3 0.4	WS4 0.65	WS4 1.4				
				Depth	0.1	0.2	0.25	0.45	0.2	1.7	0.4	0.65	1.4
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units									
рН	T7	AR			-	-	-	-	-	7.4	-	7.5	7.4
Soil Organic Matter	T287	M40	0.1	%	1.8	0.9	3.9	2.4	5.5	-	1.9	4.2	-
SO4(Total)	4(Total) T6 M40 0.01 %					-	-	-	-	0.11	-	0.12	0.01

SAL Reference: 2	259230										
Project Site: ⊢	lunter Rd										
Customer Reference:											
Soil A	Analysed as	Soil									
Miscellaneous											
				SA	L Reference	259230 042	259230 045	259230 046	259230 047	259230 048	259230 050
			Custon	ner Sampl	e Reference	WS5 0.7	WS6 1.5	WS7 0.7	WS7 1.8	WS7 2.15	HP A 0.25
					Depth	0.7	1.5	0.7	1.8	2.15	0.25
				Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
					Туре	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Ν	lethod	Test Sample	LOD	Units						
Ammonia expressed as NH3		T22	AR	5	mg/kg	-	-	-	-	<5	-
Cyanide(Complex)		T85	AR	1	mg/kg	-	-	-	-	<1	-
Cyanide(Total)		T546	AR	1	mg/kg	-	-	-	-	<1	-
Cyanide(free)		T546	AR	1	mg/kg	-	-	-	-	<1	-
рН		T7	AR			-	7.4	-	7.6	-	-
Soil Organic Matter		T287	M40	0.1	%	1.2		1.5	(IS) _	23	8.6
SO4(Total)		T6	M40	0.01	%	-	0.03		0.50	-	-
(Water Soluble) SO4(2:1) expressed as	s SO4	T242	AR	10	mg/l	-			-	1400	-
Sulphur (elemental)		T17	M40	20	mg/kg			_	-	90	-

SAL Reference:	259230
Project Site:	Hunter Rd
Customer Reference:	

Analysed as Soil

Analysed as Soil

Soil

Asbestos									
			SA	L Reference	259230 005	259230 011	259230 021	259230 024	259230 026
		Custon	ner Sample	e Reference	HP08 0.5	HP12 0.5	HP20 0.4	HP22 0.25	HP23 0.45
		25.0	3499	Depth	0.5	0.5	0.4	0.25	0.45
		- 25	Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
			22	Туре	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units		200		c	
Asbestos ID	T27	AR			N.D.	N.D.	N.D.	N.D.	N.D.

SAL Reference:	259230
Project Site:	Hunter Rd

Customer Reference:

Soil

Asbestos

			SA	L Reference	259230 032	259230 033	259230 036	259230 039	259230 047
		Custon	ner Sampl	e Reference	WS2 0.2(PACM)	WS2 0.2(SOIL)	WS3 0.4	WS4 0.65	WS7 1.8
				Depth	0.2	0.2	0.4	0.65	1.8
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре		Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					
Asbestos ID					Amosite Detected - Chrysotile Detected	N.D.	N.D.	N.D.	N.D.
					-				

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Analysed as Soil

PAH US EPA 16 (B and K split)

Soil

			SA	L Reference	259230 001	259230 003	259230 005	259230 007	259230 009	259230 011	259230 013	259230 014	259230 018	259230 019
		Custon	ner Sampl	e Reference	HP06 0.1	HP07 0.7	HP08 0.5	HP010 0.3	HP11 0.45	HP12 0.5	HP13 0.4	HP14 0.5	HP17 0.15	HP18 0.4
				Depth	0.1	0.7	0.5	0.3	0.45	0.5	0.4	0.5	0.15	0.4
			Da	ate Sampled	Deviating									
				Туре	Sand									
Determinand	Method	Test Sample	LOD	Units										
Naphthalene	T207	M105	0.1	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	0.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	0.4	3.0	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	0.2	2.2	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	0.7	5.0	39	4.1	0.2	0.5	0.4	0.5	0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	0.2	1.4	6.3	0.9	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	3.0	18	46	6.2	0.6	2.0	1.1	0.8	0.4	0.2
Pyrene	T207	M105	0.1	mg/kg	2.9	16	35	5.4	0.5	1.9	1.0	0.7	0.3	0.2
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	1.1	8.3	15	1.3	0.3	1.0	0.4	0.4	0.2	<0.1
Chrysene	T207	M105	0.1	mg/kg	1.8	10	16	1.9	0.4	1.4	0.7	0.4	0.2	0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	2.2	15	15	1.8	0.5	1.2	0.7	0.5	0.2	0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	0.7	4.9	5.0	0.6	0.2	0.4	0.2	0.2	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	1.7	11	11	1.4	0.3	0.9	0.5	0.3	0.2	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	1.0	8.5	7.6	0.9	0.2	0.8	0.4	0.2	0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	0.5	2.9	3.4	0.3	<0.1	0.3	0.2	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	1.3	9.8	7.4	1.0	0.2	0.9	0.6	0.2	0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	-	110	-	27	3.4	-	6.2	4.2	-	0.6
PAH(total)	T16	M105	0.1	mg/kg	17		210	1.1.1	-	12	-	-	1.8	-

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Soil

Analysed as Soil PAH US EPA 16 (B and K split)

			SA	L Reference	259230 021	259230 022	259230 023	259230 024	259230 026	259230 033	259230 036	259230 039	259230 042	259230 046
		Custon	ner Sampl	e Reference	HP20 0.4	HP21 0.1	HP21 0.2	HP22 0.25	HP23 0.45	WS2 0.2(SOIL)	WS3 0.4	WS4 0.65	WS5 0.7	WS7 0.7
				Depth	0.4	0.1	0.2	0.25	0.45	0.2	0.4	0.65	0.7	0.7
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units										
Naphthalene	T207	M105	0.1	mg/kg	0.4	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.7	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	0.7	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	2.6	1.9	0.3	0.7	0.1	11	<0.1	0.3	0.2	0.6
Anthracene	T207	M105	0.1	mg/kg	0.7	0.5	<0.1	0.2	<0.1	3.5	<0.1	<0.1	<0.1	0.1
Fluoranthene	T207	M105	0.1	mg/kg	13	5.2	1.0	3.0	0.2	18	<0.1	0.7	0.8	1.0
Pyrene	T207	M105	0.1	mg/kg	13	4.5	0.9	2.9	0.2	14	<0.1	0.6	0.9	0.8
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	5.8	1.5	0.4	1.2	<0.1	7.5	<0.1	0.3	0.4	0.5
Chrysene	T207	M105	0.1	mg/kg	6.8	2.1	0.5	1.8	0.1	8.6	<0.1	0.3	0.5	0.6
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	7.8	2.1	0.7	2.0	0.1	8.4	<0.1	0.4	0.7	0.7
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	2.6	0.7	0.2	0.7	<0.1	2.8	<0.1	0.1	0.3	0.2
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	6.2	1.5	0.5	1.7	<0.1	6.1	<0.1	0.2	0.6	0.6
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	3.8	0.9	0.3	1.1	<0.1	4.0	<0.1	0.2	0.4	0.4
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	1.7	0.4	0.1	0.4	<0.1	1.5	<0.1	<0.1	0.2	0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	4.0	1.0	0.3	1.3	<0.1	4.1	<0.1	0.2	0.4	0.4
PAH(total)	T207	M105	0.1	mg/kg	-	23	5.2	17	0.7	-	<0.1	-	5.4	6.0
PAH(total)	T16	M105	0.1	mg/kg	69	-	-	-	-	91	-	3.3	-	-

Soil

Analysed as Soil

PAH US EPA 16 (B and I	K split)					
			SA	L Reference	259230 047	259230 048
		Custor	ner Sampl	e Reference	WS7 1.8	WS7 2.15
				Depth	1.8	2.15
			D	ate Sampled	Deviating	Deviating
				Туре	Sand	Sand
Determinand	Method	Test Sample	LOD	Units		
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	0.2
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	0.1	0.3
Pyrene	T207	M105	0.1	mg/kg	0.1	0.2
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.2	<0.1
Chrysene	T207	M105	0.1	mg/kg	0.2	0.2
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	0.2	0.2
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	0.2	<0.1
PAH(total)	T16	M105	0.1	mg/kg	1.2	1.1

SAL Reference: 259230 Project Site: Hunter Rd

Customer Reference:

Analysed as Soil

Soil

			SA	L Reference	259230 001	259230 021	259230 039	259230 048
		Custon	ner Sampl	e Reference	HP06 0.1	HP20 0.4	WS4 0.65	WS7 2.15
				Depth	0.1	0.4	0.65	2.15
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units		6		
Benzene	T209	M105	10	µg/kg	<10	<10	<10	⁽²⁾ <20
Toluene	T209	M105	10	µg/kg	<10	<10	<10	⁽²⁾ <20
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	⁽²⁾ <20
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	(2) <20
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	⁽²⁾ <20
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<20
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C6-C8 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C8-C10 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	⁽⁹⁾ <10	⁽⁹⁾ <10	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	⁽⁹⁾ <10	⁽⁹⁾ <10	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	⁽⁹⁾ <10	12	1	1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	⁽⁹⁾ <10	52	<4	7
TPH (C6-C7 aromatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C7-C8 aromatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C8-C10 aromatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	⁽²⁾ <0.200
TPH (C10-C12 aromatic)	Т8	M105	1	mg/kg	⁽⁹⁾ <10	⁽⁹⁾ <10	<1	<1
TPH (C12-C16 aromatic)	T8	M105	1	mg/kg	⁽⁹⁾ <10	⁽⁹⁾ <10	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	18	40	4	2
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	50	150	10	7

Soil

Analysed as Soil

Semi-Volatile Organic Compounds (USEPA 625)

			SA	L Reference	259230 001	259230 005	259230 011	259230 018	259230 021	259230 033	259230 039	259230 047	259230 048
		Custor	ner Sampl	e Reference	HP06 0.1	HP08 0.5	HP12 0.5	HP17 0.15	HP20 0.4	WS2 0.2(SOIL)	WS4 0.65	WS7 1.8	WS7 2.15
				Depth	0.1	0.5	0.5	0.15	0.4	0.2(3012)	0.65	1.8	2.15
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test	LOD	Units									
		Sample	-										
1,2,4-Trichlorobenzene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichlorobenzene 1,3-Dichlorobenzene	T207 T207	M105 M105	0.1	mg/kg	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
1,4-Dichlorobenzene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	T207	M105	0.1	mg/kg mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,6-Trichlorophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dichlorophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dimethylphenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dinitrophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dinitrotoluene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2,6-Dinitrotoluene	T207	M105	0.1	mg/kg	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chloronaphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chlorophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methyl phenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1	<0.1	<0.1
2-Nitroaniline	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Nitrophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3-Nitroaniline	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
3/4-Methylphenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Bromophenyl phenylether	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Chloro-3-methylphenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Chloroaniline	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Chlorophenyl phenylether	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Nitroaniline	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
4-Nitrophenol	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	3.0	<0.1	<0.1	0.1	0.7	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	0.2	<0.1	<0.1	0.2	0.2	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	0.2	6.3	0.1	<0.1	0.7	3.5	<0.1	<0.1	<0.1
Azobenzene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	1.1	15	1.0	0.2	5.8	7.5	0.3	0.2	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	1.7	11	0.9	0.2	6.2	6.1	0.2	0.1	<0.1
Benzo(b/k)Fluoranthene	T207	M105	0.1	mg/kg	3.0	20	1.6	0.3	10	11	0.5	0.3	0.2
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	1.3	7.4	0.9	0.1	4.0	4.1	0.2	0.2	<0.1
Bis (2-chloroethoxy) methane	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis (2-chloroethyl) ether	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis (2-chloroisopropyl) ether	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bis (2-ethylhexyl)phthalate	T207	M105	0.1	mg/kg	0.2	<0.1	0.2	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Butyl benzylphthalate	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carbazole	T207	M105	0.1	mg/kg	<0.1	3.1	<0.1	<0.1	0.2	1.9	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	1.8	16	1.4	0.2	6.8	8.6	0.3	0.2	0.2
Di-n-butylphthalate	T207 T207	M105 M105	0.1	mg/kg	0.2 <0.1	<0.1 <0.1	0.1 <0.1	<0.1 <0.1	0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Di-n-octylphthalate	T207	M105 M105	0.1	mg/kg	<0.1 0.5	<0.1 3.4	<0.1 0.3	<0.1	<0.1 1.7	<0.1 1.5	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene Dibenzofuran	T207	M105 M105	0.1	mg/kg	<0.1	3.4 1.5	<0.1	<0.1	1.7 0.2	0.6	<0.1	<0.1	<0.1
Diethyl phthalate	T207	M105 M105	0.1	mg/kg mg/kg	<0.1	1.5 <0.1	<0.1	<0.1	<0.2 <0.1	<0.1	<0.1	<0.1	<0.1
Dimethyl phthalate	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	3.0	<0.1 46	2.0	0.1	13	18	0.1	0.1	0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	2.2	<0.1	<0.1	<0.1	0.7	<0.1	<0.1	<0.1
Hexachlorobenzene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorocyclopentadiene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachloroethane	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	1.0	7.6	0.8	0.1	3.8	4.0	0.2	0.1	<0.1
Isophorone	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	0.1	<0.1	0.4	0.1	<0.1	<0.1	<0.1
Nitrobenzene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	1	M105	0.1	~ ~	<0.1		1	1				1	

Soil Analysed as Soil

Semi-Volatile Organic Compounds (USEPA 625)

			SA	L Reference	259230 001	259230 005	259230 011	259230 018	259230 021	259230 033	259230 039	259230 047	259230 048
		Custon	ner Sampl	e Reference	HP06 0.1	HP08 0.5	HP12 0.5	HP17 0.15	HP20 0.4	WS2 0.2(SOIL)	WS4 0.65	WS7 1.8	WS7 2.15
				Depth	0.1	0.5	0.5	0.15	0.4	0.2	0.65	1.8	2.15
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units									
Phenanthrene	T207	M105	0.1	mg/kg	0.7	39	0.5	0.1	2.6	11	0.3	<0.1	0.2
Phenol	ol T207 M105 0.1 mg/k						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	ne T207 M105 0.1 mg/kg					35	1.9	0.3	13	14	0.6	0.1	0.2

Soil

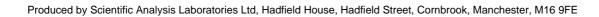
Analysed as Soil Volatile Organic Compounds (USEPA 624) (MCERTS)

			SA	L Reference	259230 001	259230 005	259230 021	259230 039	259230 048
		Custon	ner Sampl	e Reference	HP06 0.1	HP08 0.5	HP20 0.4	WS4 0.65	WS7 2.15
				Depth	0.1	0.5	0.4	0.65	2.15
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					
1,1,1,2-Tetrachloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1,1-Trichloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1,2,2-Tetrachloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1,2-Trichloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1-Dichloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1-Dichloroethylene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,1-Dichloropropene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2,3-Trichloropropane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2,4-Trimethylbenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2-dibromoethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2-Dichlorobenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2-Dichloroethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,2-Dichloropropane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,3,5-Trimethylbenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,3-Dichlorobenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,3-Dichloropropane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
1,4-Dichlorobenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
2,2-Dichloropropane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
2-Chlorotoluene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
4-Chlorotoluene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Benzene	T209	M105	10	µg/kg	<10	<10	<10	<10	⁽²⁾ <20
Bromobenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Bromochloromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Bromodichloromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Bromoform	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Bromomethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Carbon tetrachloride	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Chlorobenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100 ⁽²⁾ <100
Chlorodibromomethane	T209 T209	M105 M105	50 50	µg/kg	<50 <50	<50 <50	<50 <50	<50 <50	⁽²⁾ <100
Chloroethane Chloroform	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Chloromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Cis-1,2-Dichloroethylene	T209	M105	50	μg/kg μg/kg	<50	<50	<50	<50	⁽²⁾ <100
Cis-1,3-Dichloropropene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Dibromomethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Dichlorodifluoromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Dichloromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	⁽²⁾ <20
Isopropyl benzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	⁽²⁾ <20
n-Propylbenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	(2) <20
p-Isopropyltoluene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
S-Butylbenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Styrene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
T-Butylbenzene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Tetrachloroethene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	⁽²⁾ <20
Trans-1,2-Dichloroethene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Trans-1,3-Dichloropropene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Trichloroethene	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Trichlorofluoromethane	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100
Vinyl chloride	T209	M105	50	µg/kg	<50	<50	<50	<50	⁽²⁾ <100

Leachate to BS EN 12457-1 (2:1) Analysed as Water CLEA Metals

				L Reference		259230 011	259230 021	259230 028		259230 04
		Custon	ner Sampl	e Reference	HP08 0.5	HP12 0.5	HP20 0.4	HP24 0.6	WS4 0.65	WS7 1.8
				Depth	0.5	0.5	0.4	0.6	0.65	1.8
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units						
As (Dissolved)	T281	2:1	0.2	µg/l	6.2	5.6	7.2	2.2	4.3	5.7
Ba (Dissolved)	T281	2:1	1	µg/l	22	61	89	20	30	68
Be (Dissolved)	T281	2:1	0.05	µg/l	0.09	0.08	0.08	0.07	0.11	0.10
Boron	Т6	2:1	0.01	mg/l	0.01	0.05	0.13	0.02	0.32	0.33
Cd (Dissolved)	T281	2:1	0.02	µg/l	0.09	0.16	0.23	0.11	0.25	0.22
Cr (Dissolved)	T281	2:1	1	µg/l	25	6	8	5	6	10
Chromium VI	T4	2:1	50	µg/l	<50	<50	<50	<50	<50	<50
Cu (Dissolved)	T281	2:1	0.5	µg/l	5.9	8.8	6.5	5.3	12	3.5
Pb (Dissolved)	T281	2:1	0.3	µg/l	5.9	2.5	2.3	2.5	2.0	2.4
Hg (Dissolved)	T281	2:1	0.05	µg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ni (Dissolved)	T281	2:1	1	µg/l	3	6	11	2	5	6
Se (Dissolved)	T281	2:1	0.5	µg/l	0.8	1.3	2.4	0.8	2.0	7.1
V (Dissolved)	T281	2:1	2	µg/l	4	3	10	<2	6	11
Zn (Dissolved)	T281	2:1	2	µg/l	5	20	33	4	11	130

SAL Reference: 259230 Project Site: Hunter Rd Customer Reference:


Leachate to BS EN 12457-1 (2:1) Analysed as Water TPH

			SA	L Reference	259230 005	259230 011	259230 021	259230 039	259230 047
		Custon	ner Sampl	le Reference	HP08 0.5	HP12 0.5	HP20 0.4	WS4 0.65	WS7 1.8
		1		Depth	0.5	0.5	0.4	0.65	1.8
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					
TPH (C5-C10)	T54	2:1	10	µg/l	<10	<10	<10	<10	<10

Leachate to BS EN 12457-1 (2:1) Analysed as Water PAH US EPA 16 (B and K split)

			SA	L Reference	259230 005	259230 011	259230 021	259230 039	259230 047
		Custon	ner Sampl	e Reference	HP08 0.5	HP12 0.5	HP20 0.4	WS4 0.65	WS7 1.8
				Depth	0.5	0.5	0.4	0.65	1.8
			Da	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Туре	Sand	Sand	Sand	Sand	Sand
Determinand	Method	Test Sample	LOD	Units					
Naphthalene	T149	2:1	0.01	µg/l	⁽¹⁰⁰⁾ <0.02	(100) <0.02	(100) <0.02	(100) <0.02	(100) <0.05
Acenaphthylene	T149	2:1	0.01	µg/l	0.06	(100) < 0.02	(100) <0.02	(100) <0.02	(100) <0.05
Acenaphthene	T149	2:1	0.01	µg/l	0.05	⁽¹⁰⁰⁾ <0.02	0.03	⁽¹⁰⁰⁾ <0.02	(100) <0.05
Fluorene	T149	2:1	0.01	µg/l	0.03	⁽¹⁰⁰⁾ <0.02	⁽¹⁰⁰⁾ <0.02	⁽¹⁰⁰⁾ <0.02	(100) <0.05
Phenanthrene	T149	2:1	0.01	µg/l	0.44	⁽¹⁰⁰⁾ <0.02	(100) <0.02	0.07	(100) <0.05
Anthracene	T149	2:1	0.01	µg/l	0.14	⁽¹⁰⁰⁾ <0.02	(100) <0.02	(100) <0.02	(100) <0.05
Fluoranthene	T149	2:1	0.01	µg/l	2.1	0.06	0.04	0.10	(100) <0.05
Pyrene	T149	2:1	0.01	µg/l	2.1	0.07	0.03	0.12	(100) < 0.05
Benzo(a)Anthracene	T149	2:1	0.01	µg/l	1.3	0.04	(100) <0.02	0.07	⁽¹⁰⁰⁾ <0.05
Chrysene	T149	2:1	0.01	µg/l	1.8	0.07	(100) < 0.02	0.08	(100) < 0.05
Benzo(b)fluoranthene	T149	2:1	0.01	µg/l	1.6	0.07	(100) <0.02	0.07	(100) < 0.05
Benzo(k)fluoranthene	T149	2:1	0.01	µg/l	2.5	0.09	(100) < 0.02	0.10	(100) < 0.05
Benzo(a)Pyrene	T149	2:1	0.01	µg/l	2.8	0.10	(100) < 0.02	0.08	(100) < 0.05
Indeno(123-cd)Pyrene	T149	2:1	0.01	µg/l	2.0	0.11	(100) <0.02	0.10	(100) < 0.05
Dibenzo(ah)Anthracene	T149	2:1	0.01	µg/l	0.80	0.04	(100) < 0.02	0.03	(100) < 0.05
Benzo(ghi)Perylene	T149	2:1	0.01	µg/l	1.9	0.14	(100) < 0.02	0.13	(100) < 0.05
PAH(total)	T149	2:1	0.01	µg/l	20	0.79	0.10	0.95	(100) < 0.05

Leachate to BS EN 12457-1 (2:1) Analysed as Water Volatile Organic Compounds (USEPA 624)

				L Reference	259230 005			259230 039	259230 047
		Custon	ner Sampl	e Reference	HP08 0.5	HP12 0.5	HP20 0.4	WS4 0.65	WS7 1.8
				Depth	0.5	0.5	0.4	0.65	1.8
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
				Sand	Sand	Sand	Sand	Sand	
Determinand	Method	Test Sample	LOD	Units					
1,1,1,2-Tetrachloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1,2-Trichloroethylene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1-Dichloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1-Dichloroethylene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,1-Dichloropropene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2-dibromoethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2-Dichloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,2-Dichloropropane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,3-Dichloropropane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
2,2-Dichloropropane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
2-Chlorotoluene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
4-Chlorotoluene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Benzene	T54	2:1	1	µg/l	⁽¹³⁾ <1				
Bromobenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Bromochloromethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Bromodichloromethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Bromoform	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Bromomethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Carbon tetrachloride	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Chlorobenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Chlorodibromomethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Chloroethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Chloroform	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Chloromethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Cis-1,2-Dichloroethylene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Cis-1,3-Dichloropropene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Dibromomethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Dichlorodifluoromethane	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Dichloromethane	T54	2:1	50	µg/l	<50	<50	<50	<50	<50
EthylBenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Isopropyl benzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
M/P Xylene n-Propylbenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
13	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
p-Isopropyltoluene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
S-Butylbenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Styrene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
T-Butylbenzene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Tetrachloroethene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Trans-1,2-Dichloroethene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Trans-1,3-Dichloropropene	T54	2:1	1	µg/l	<1	<1	<1	<1	<1
Trichlorofluoromethane	T54	2:1	1	μg/l μg/l	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1

Index to symbols used in 259230-1

Value	Description
AR	As Received
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
2:1	Leachate to BS EN 12457-1 (2:1)
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
N.D.	Not Detected
13	Results have been blank corrected.
2	LOD Raised Due to Matrix Interference
100	LOD determined by sample aliquot used for analysis
9	LOD raised due to dilution of sample
IS	Insufficient Sample
W	Analysis was performed at another SAL laboratory
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised

Value	Description
T287	Calc TOC/0.58
T6	ICP/OES
T162	Grav (1 Dec) (105 C)
T54	GC/MS (Headspace)
T4	Colorimetry
T7	Probe
T207	GC/MS(MCERTS)
T242	2:1 Extraction/ICP/OES (TRL 447 T1)
T546	Colorimetry (CF)
T17	HPLC
T277	Grav (1 Dec) (40 C)
T27	PLM
T149	GC/MS (SIR)
T209	GC/MS(Head Space)(MCERTS)
T281	ICP/MS (Filtered)
T206	GC/FID (MCERTS)
T8	GC/FID
T16	GC/MS
T85	Calc
T22	Titration

Method Index

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Ammonia expressed as NH3	T22	AR	5	mg/kg	N	048
Cyanide(Complex)	T85	AR	1	mg/kg	N	048
Cyanide(Total)	T546	AR	1	mg/kg	М	048
Cyanide(free)	T546	AR	1	mg/kg	М	048
pH	T7	AR			М	003,005,021,035,039-040,045,047
Soil Organic Matter	T287	M40	0.1	%	N	001,003,008,011,014,019-024,026,033,036,039,042,046-048,050
SO4(Total)	T6	M40	0.01	%	Ν	003,005,021,035,039-040,045,047
(Water Soluble) SO4(2:1) expressed as SO4	T242	AR	10	mg/l	N	048
Sulphur (elemental)	T17	M40	20	mg/kg	WM	048
TPH (C5-C10)	T54	2:1	10	µg/l	N	005,011,021,039,047
As (Dissolved)	T281	2:1	0.2	µg/l	U	005,011,021,028,039,047
Ba (Dissolved)	T281	2:1	1	µg/l	U	005,011,021,028,039,047
Be (Dissolved)	T281	2:1	0.05	µg/l	U	005,011,021,028,039,047
Boron	T6	2:1	0.01	mg/l	N	005,011,021,028,039,047
Cd (Dissolved)	T281	2:1	0.02	µg/l	U	005,011,021,028,039,047
Cr (Dissolved)	T281	2:1	1	µg/l	U	005,011,021,028,039,047

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Chromium VI	T4	2:1	50	µg/l	N	005,011,021,028,039,047
Cu (Dissolved)	T281	2:1	0.5	µg/l	U	005,011,021,028,039,047
Pb (Dissolved)	T281	2:1	0.3	µg/l	U	005,011,021,028,039,047
Hg (Dissolved)	T281	2:1	0.05	µg/l	U	005,011,021,028,039,047
Ni (Dissolved)	T281	2:1	1	µg/l	U	005,011,021,028,039,047
Se (Dissolved) V (Dissolved)	T281 T281	2:1 2:1	0.5 2	µg/l µg/l	UU	005,011,021,028,039,047 005,011,021,028,039,047
Zn (Dissolved)	T281	2:1	2	μg/l	U	005.011.021.028.039.047
Arsenic	T6	M40	2	mg/kg	М	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Barium	T6	M40	1	mg/kg	U	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Beryllium	T6	M40	2	mg/kg	U	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Boron (water-soluble)	T6	AR	1	mg/kg	N	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Cadmium	T6	M40	1	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Chromium	T6	M40	1	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Chromium VI	T6	AR	1	mg/kg	N	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Copper	T6	M40	1	mg/kg	М	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Lead	T6	M40	1	mg/kg	М	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Mercury	T6	M40	1	mg/kg	М	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Nickel	T6	M40	1	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Selenium	Т6	M40	3	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Vanadium	Т6	M40	1	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Zinc	T6	M40	1	mg/kg	м	001,003,005,007-009,011,014,017-024,026,028-029,033,036,039,042,044,046- 048,050
Moisture	T277	AR	0.1	%	N	001,003,005,007-009,011,013-014,017-024,026,028-029,033,035-036,039- 040,042,044-048,050
Moisture @ 105 C	T162	AR	0.1	%	N	001,003,005,007-009,011,013-014,017-024,026,028-029,033,035-036,039- 040,042,044-048,050
Naphthalene	T207	M105	0.1	mg/kg	М	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Acenaphthylene	T207	M105	0.1	mg/kg	U	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Acenaphthene	T207	M105	0.1	mg/kg	М	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Fluorene	T207	M105	0.1	mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Fluoranthene	T207 T207	M105 M105	0.1	mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Benzo(a)Anthracene Chrysene	T207	M105	0.1	mg/kg mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048 001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	М	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	М	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
PAH(total)	T207	M105	0.1	mg/kg	U	003,007,009,013-014,019,022-024,026,036,042,046
PAH(total)	T16	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Naphthalene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Acenaphthylene Acenaphthene	T149 T149	2:1 2:1	0.01	μg/l μg/l	U	005,011,021,039,047 005,011,021,039,047
Fluorene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Phenanthrene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Anthracene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Fluoranthene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Pyrene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Benzo(a)Anthracene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Chrysene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
Benzo(b)fluoranthene Benzo(k)fluoranthene	T149 T149	2:1 2:1	0.01	μg/l μg/l	UU	005,011,021,039,047 005,011,021,039,047
Benzo(a)Pyrene	T149	2:1	0.01	μg/I	U	005,011,021,039,047
Indeno(123-cd)Pyrene	T149	2:1	0.01	μg/l	U	005,011,021,039,047
Dibenzo(ah)Anthracene	T149	2:1	0.01	μg/l	U	005,011,021,039,047
Benzo(ghi)Perylene	T149	2:1	0.01	µg/l	U	005,011,021,039,047
PAH(total)	T149	2:1	0.01	µg/l	U	005,011,021,039,047
1,2,4-Trichlorobenzene	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
1,2-Dichlorobenzene	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
1,3-Dichlorobenzene	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
1,4-Dichlorobenzene	T207	M105 M105	0.1	mg/kg mg/kg	M U	001,005,011,018,021,033,039,047-048 001,005,011,018,021,033,039,047-048
2.4.5-Trichlorophonol			1 0.1	1 11Q/KQ	U U	1001,000,011,010,021,000,000,047-040
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	T207 T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
2,4-Dimethylphenol	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
2,4-Dinitrophenol	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
2,4-Dinitrotoluene	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
2,6-Dinitrotoluene	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
2-Chloronaphthalene	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
2-Chlorophenol	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
2-methyl phenol 2-Methylnaphthalene	T207 T207	M105 M105	0.1 0.1	mg/kg	M	001,005,011,018,021,033,039,047-048 001,005,011,018,021,033,039,047-048
2-Nitroaniline	T207	M105	0.1	mg/kg mg/kg	M	001,005,011,018,021,033,039,047-048
2-Nitrophenol	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
3-Nitroaniline	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
3/4-Methylphenol	T207	M105	0.1	mg/kg	м	001,005,011,018,021,033,039,047-048
4-Bromophenyl phenylether	T207	M105	0.1	mg/kg	м	001,005,011,018,021,033,039,047-048
4-Chloro-3-methylphenol	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
4-Chloroaniline	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
4-Chlorophenyl phenylether	T207	M105	0.1	mg/kg	м	001,005,011,018,021,033,039,047-048
4-Nitroaniline	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
4-Nitrophenol	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Anthracene	T207	M105	0.1	mg/kg	U	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Azobenzene	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
Benzo(a)Pyrene	T207	M105	0.1 0.1	mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Benzo(b/k)Fluoranthene Benzo(ghi)Perylene	T207 T207	M105 M105	0.1	mg/kg mg/kg	M	001,005,011,018,021,033,039,047-048 001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Bis (2-chloroethoxy) methane	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
Bis (2-chloroethyl) ether	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
Bis (2-chloroisopropyl) ether	T207	M105	0.1	mg/kg	M	001,005,011,018,021,033,039,047-048
Bis (2-ethylhexyl)phthalate	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
Butyl benzylphthalate	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Carbazole	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Di-n-butylphthalate	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
Di-n-octylphthalate	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
Dibenzofuran	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
Diethyl phthalate	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Dimethyl phthalate	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Hexachlorobenzene Hexachlorobutadiene	T207 T207	M105 M105	0.1 0.1	mg/kg	M	001,005,011,018,021,033,039,047-048 001,005,011,018,021,033,039,047-048
Hexachlorocyclopentadiene	T207	M105	0.1	mg/kg mg/kg	U	001,005,011,018,021,033,039,047-048
Hexachloroethane	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	M	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Isophorone	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Nitrobenzene	T207	M105	0.1	mg/kg	м	001,005,011,018,021,033,039,047-048
Pentachlorophenol	T207	M105	0.1	mg/kg	U	001,005,011,018,021,033,039,047-048
Phenanthrene	T207	M105	0.1	mg/kg	м	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
Phenol	T207	M105	0.1	mg/kg	М	001,005,011,018,021,033,039,047-048
Pyrene	T207	M105	0.1	mg/kg	М	001,003,005,007,009,011,013-014,018-019,021-024,026,033,036,039,042,046-048
EthylBenzene	T209	M105	10	µg/kg	М	001,005,021,039,048
M/P Xylene	T209	M105	10	µg/kg	M	001,005,021,039,048
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	M	001,021,039,048
TPH (C5-C6 aliphatic) TPH (C6-C8 aliphatic)	T209 T209	M105 M105	0.100	mg/kg	N N	001,021,039,048 001,021,039,048
TPH (C6-C8 aliphatic) TPH (C8-C10 aliphatic)	T209	M105	0.100	mg/kg mg/kg	N	001,021,039,048
TPH (C10-C12 aliphatic)	T209	M105	1	mg/kg	N	001,021,039,048
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	N	001,021,039,048
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	м	001,021,039,048
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	М	001,021,039,048
TPH (C6-C7 aromatic)	T209	M105	0.100	mg/kg	N	001,021,039,048
TPH (C7-C8 aromatic)	T209	M105	0.100	mg/kg	N	001,021,039,048
TPH (C8-C10 aromatic)	T209	M105	0.100	mg/kg	N	001,021,039,048
TPH (C10-C12 aromatic)	T8	M105	1	mg/kg	N	001,021,039,048
TPH (C12-C16 aromatic)	T8	M105	1	mg/kg	N	001,021,039,048
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	M	001,021,039,048
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	M	001,021,039,048
1,1,1,2-Tetrachloroethane	T54 T54	2:1	1	µg/l	UU	005,011,021,039,047
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	T54	2:1 2:1	1	μg/l μg/l	U	005,011,021,039,047 005,011,021,039,047
1,1,2-Trichloroethane	T54	2:1	1	μg/i μg/l	U	005,011,021,039,047
	104		1	μg/I μg/I	U	005,011,021,039,047
	T54	2:1				
1,1,2-Trichloroethylene 1,1-Dichloroethane	T54 T54	2:1 2:1	1		U	005,011,021,039,047
1,1,2-Trichloroethylene				μg/l μg/l		

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
1,2,3-Trichloropropane	T54	2:1	1	µg/l	U	005,011,021,039,047
1,2,4-Trimethylbenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
1,2-dibromoethane	T54	2:1	1	µg/l	U	005,011,021,039,047
1,2-Dichlorobenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
1,2-Dichloroethane	T54	2:1	1	µg/l	U	005,011,021,039,047
1,2-Dichloropropane	T54	2:1	1	µg/l	U	005,011,021,039,047
1,3,5-Trimethylbenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
1,3-Dichlorobenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
1,3-Dichloropropane	T54 T54	2:1 2:1	1	µg/l	UU	005,011,021,039,047 005,011,021,039,047
1,4-Dichlorobenzene 2,2-Dichloropropane	T54	2:1	1	μg/l μg/l	U	005,011,021,039,047
2-Chlorotoluene	T54	2:1	1	μg/l	U	005,011,021,039,047
4-Chlorotoluene	T54	2:1	1	μg/l	U	005,011,021,039,047
Benzene	T54	2:1	1	µg/l	U	005,011,021,039,047
Bromobenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
Bromochloromethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Bromodichloromethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Bromoform	T54	2:1	1	µg/l	U	005,011,021,039,047
Bromomethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Carbon tetrachloride	T54	2:1	1	µg/l	U	005,011,021,039,047
Chlorobenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
Chlorodibromomethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Chloroethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Chloromethane	T54 T54	2:1 2:1	1	µg/l	UU	005,011,021,039,047 005,011,021,039,047
Chloromethane Cis-1,2-Dichloroethylene	T54	2:1	1	μg/l μg/l	U	005,011,021,039,047 005,011,021,039,047
Cis-1,3-Dichloropropene	T54	2:1	1	μg/I μg/I	U	005,011,021,039,047
Dibromomethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Dichlorodifluoromethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Dichloromethane	T54	2:1	50	µg/l	N	005,011,021,039,047
EthylBenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
Isopropyl benzene	T54	2:1	1	µg/l	U	005,011,021,039,047
M/P Xylene	T54	2:1	1	µg/l	U	005,011,021,039,047
n-Propylbenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
O Xylene	T54	2:1	1	µg/l	U	005,011,021,039,047
p-Isopropyltoluene	T54	2:1	1	µg/l	U	005,011,021,039,047
S-Butylbenzene	T54	2:1	1	µg/l	U	005,011,021,039,047
Styrene T-Butylbenzene	T54 T54	2:1 2:1	1	μg/l μg/l	UU	005,011,021,039,047 005,011,021,039,047
Tetrachloroethene	T54	2:1	1	µg/I µg/I	U	005,011,021,039,047
Toluene	T54	2:1	1	μg/l	U	005,011,021,039,047
Trans-1,2-Dichloroethene	T54	2:1	1	µg/l	U	005,011,021,039,047
Trans-1,3-Dichloropropene	T54	2:1	1	µg/l	U	005,011,021,039,047
Trichlorofluoromethane	T54	2:1	1	µg/l	U	005,011,021,039,047
Vinyl chloride	T54	2:1	1	µg/l	U	005,011,021,039,047
1,1,1,2-Tetrachloroethane	T209	M105	50	µg/kg	М	001,005,021,039,048
1,1,1-Trichloroethane	T209	M105	50	µg/kg	М	001,005,021,039,048
1,1,2,2-Tetrachloroethane	T209	M105	50	µg/kg	U	001,005,021,039,048
1,1,2-Trichloroethane	T209	M105	50	µg/kg	M	001,005,021,039,048
1,1-Dichloroethane	T209	M105	50	µg/kg	M	001,005,021,039,048
1,1-Dichloroethylene	T209	M105	50	µg/kg	M	001,005,021,039,048
1,1-Dichloropropene 1,2,3-Trichloropropane	T209	M105	50	µg/kg	M	001,005,021,039,048
1,2,3- I richloropropane 1,2,4-Trimethylbenzene	T209 T209	M105 M105	50 50	μg/kg μg/kg	M	001,005,021,039,048 001,005,021,039,048
1,2-dibromoethane	T209	M105	50	μg/kg μg/kg	M	001,005,021,039,048
1,2-Dichlorobenzene	T209	M105	50	μg/kg	M	001,005,021,039,048
1,2-Dichloroethane	T209	M105	50	µg/kg	M	001,005,021,039,048
1,2-Dichloropropane	T209	M105	50	µg/kg	M	001,005,021,039,048
1,3,5-Trimethylbenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
1,3-Dichlorobenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
1,3-Dichloropropane	T209	M105	50	µg/kg	М	001,005,021,039,048
1,4-Dichlorobenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
2,2-Dichloropropane	T209	M105	50	µg/kg	U	001,005,021,039,048
2-Chlorotoluene	T209	M105	50	µg/kg	U	001,005,021,039,048
4-Chlorotoluene	T209	M105	50	µg/kg	U	001,005,021,039,048
Benzene	T209	M105	10	µg/kg	M	001,005,021,039,048
Bromobenzene	T209	M105	50	µg/kg	M	001,005,021,039,048
Bromochloromethane	T209	M105	50	µg/kg	M	001,005,021,039,048
Bromodichloromethane Bromoform	T209 T209	M105 M105	50 50	µg/kg	M	001,005,021,039,048 001,005,021,039,048
	1209	CUIN	50	µg/kg	IVI	001,000,021,000,040

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Bromomethane	T209	M105	50	µg/kg	U	001,005,021,039,048
Carbon tetrachloride	T209	M105	50	µg/kg	М	001,005,021,039,048
Chlorobenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
Chlorodibromomethane	T209	M105	50	µg/kg	М	001,005,021,039,048
Chloroethane	T209	M105	50	µg/kg	М	001,005,021,039,048
Chloroform	T209	M105	50	µg/kg	М	001,005,021,039,048
Chloromethane	T209	M105	50	µg/kg	U	001,005,021,039,048
Cis-1,2-Dichloroethylene	T209	M105	50	µg/kg	М	001,005,021,039,048
Cis-1,3-Dichloropropene	T209	M105	50	µg/kg	М	001,005,021,039,048
Dibromomethane	T209	M105	50	µg/kg	М	001,005,021,039,048
Dichlorodifluoromethane	T209	M105	50	µg/kg	М	001,005,021,039,048
Dichloromethane	T209	M105	50	µg/kg	U	001,005,021,039,048
Isopropyl benzene	T209	M105	50	µg/kg	М	001,005,021,039,048
n-Propylbenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
O Xylene	T209	M105	10	µg/kg	М	001,005,021,039,048
p-Isopropyltoluene	T209	M105	50	µg/kg	М	001,005,021,039,048
S-Butylbenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
Styrene	T209	M105	50	µg/kg	U	001,005,021,039,048
T-Butylbenzene	T209	M105	50	µg/kg	М	001,005,021,039,048
Tetrachloroethene	T209	M105	50	µg/kg	М	001,005,021,039,048
Toluene	T209	M105	10	µg/kg	М	001,005,021,039,048
Trans-1,2-Dichloroethene	T209	M105	50	µg/kg	М	001,005,021,039,048
Trans-1,3-Dichloropropene	T209	M105	50	µg/kg	м	001,005,021,039,048
Trichloroethene	T209	M105	50	µg/kg	М	001,005,021,039,048
Trichlorofluoromethane	T209	M105	50	µg/kg	М	001,005,021,039,048
Vinyl chloride	T209	M105	50	µg/kg	М	001,005,021,039,048
Asbestos ID	T27	AR			SU	005,011,021,024,026,032-033,036,039,047

Grontmij Radcliffe House 3rd Floor Blenheim Court, Lode Iane Solihull West Midlands B912AA

Attention: Gareth Taylor

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 22 March 2012 H_GRONTMIJ_SOL 120311-10

Hinter Road 175071

We received 6 samples on Saturday March 10, 2012 and 6 of these samples were scheduled for analysis which was completed on Thursday March 22, 2012. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 120311-10
 Location:
 Hinter Road
 Order Number:

 Job:
 H_GRONTMIJ_SOL-44
 Customer:
 Grontmij
 Report Number:
 175071

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
5306639	16 KEBLE CLOSE			09/03/2012
5306635	17 HIGH BANK			09/03/2012
5306637	3 HIGH BANK			09/03/2012
5306636	30 TRINITY CLOSE			09/03/2012
5306640	34 A HUNTER ROAD			09/03/2012
5306638	7 HIGH BANK			09/03/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

ALcontrol La		CI	ERI	FIFI	СА	TE	OF	ANALYSIS			Valida
SDG: Job: Client Reference:	120311-10 H_GRONTMIJ_SOL-44	Location: Custome Attention	r:	Hinte Groni Garei	tmij				Order Number: Report Number: Superseded Report:	175071	
LIQUID											
Results Legend	Lab Sa	mple No(s)	5306637	5306638	5306639	5306636 5306635	5306640				
No Determination Possible	Cu	Customer Sample Reference				17 HIGH BANK	34 A HUNTER ROAD				
	AGS F	Reference									
	Dej	oth (m)									
	Cor	ntainer	11plastic (ALE221) 11 green glass bottle	11plastic (ALE221) 11 green glass bottle	11plastic (ALE221) 11 green glass bottle	11 green glass bottle 11 green glass bottle	11plastic (ALE221) 11 green glass bottle				
Dissolved Metals by ICP-M	S All	NDPs: 0 Tests: 6	x	x		x x					
Low Level Cyanide (W)	All	NDPs: 0 Tests: 6	x	x	x	x x	x				
Mercury Dissolved	All	NDPs: 0 Tests: 6	x	x	x	x x	X				
PAH Low level*	All	NDPs: 0 Tests: 6	x	X	x	x x	X				

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

	0311-10 _GRONTMIJ_SC	DL-44	Location: H Customer: G	IFICATE OF A linter Road Grontmij Gareth Taylor		Order Number: Report Number: Superseded Repo	175071 rt:	
Results Legend	Cus	stomer Sample R	34 A HUNTER ROA	3 HIGH BANK	7 HIGH BANK	17 HIGH BANK	16 KEBLE CLOSE	30 TRINITY CLOS
# ISO17025 accredited. M mCERTS accredited. § Deviating sample.		Depth (m)	34 A HUNTER ROA D	3 HIGH BANK	7 HIGH BANK	17 HIGH BANK	16 KEBLE CLOSE	E
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Sample Type	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)	Water(GW/SW)
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Date Received	09/03/2012 10/03/2012	09/03/2012 10/03/2012	09/03/2012 10/03/2012	09/03/2012 10/03/2012	09/03/2012 10/03/2012	09/03/2012 10/03/2012
** % recovery of the surrogate st check the efficiency of the me	thod. The	SDG Ref ab Sample No.(s)	120311-10 5306640	120311-10 5306637	120311-10 5306638	120311-10 5306635	120311-10 5306639	120311-10 5306636
results of individual compound samples aren't corrected for the		AGS Reference		000000				
(F) Trigger breach confirmed Component	LOD/Units	Method						
Acenaphthene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo (a) anthracene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo (a) pyrene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo (b) fluoranthene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo (g,h,i) perylene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo (k) fluoranthene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz (a,h) anthracene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno (1,2,3)	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
PAH, Total	µg/l	SUB	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Antimony (diss.filt) Arsenic (diss.filt)	<0.16 µg/l	TM152 TM152	<0.16 	<0.16 # 0.929	<0.16 # 0.817	<0.16 # 0.785	<0.16 # 0.717	<0.16
Boron (diss.filt)	<0.12 μg/l <9.4 μg/l	TM152			26.8	0.785 # 27.6	0.717 # 26.3	28.9
Cadmium (diss.filt)	<0.1 µg/l	TM152	<0.1		20.0 # <0.1	<0.1	20.3 # <0.1	<0.1
Chromium (diss.filt)	<0.1 µg/i	TM152	<0.1		<0.1	<0.1	<0.1 #	<0.1
Copper (diss.filt)	<0.22 μg/l <0.85	TM152	-0:22 		<0.22 # 13.1	<0.22 # 15.7	<0.22 # 23.3	102
Lead (diss.filt)	<0.85 μg/l <0.02	TM152	0.088		0.096	0.096	23.3 # 0.107	0.132
Nickel (diss.filt)	<0.02 μg/l <0.15	TM152	1.02		1.08	1.46	1.06	1.25
Selenium (diss.filt)	μq/l <0.39	TM152	0.988		1.08 #	1.40 # 1.04	0.899	0.61
Zinc (diss.filt)	μg/l <0.41	TM152	14.4		6.39	12.3	6.87	10.8
Mercury (diss.filt)	<u>µg/l</u> <0.01	TM183	<0.01		<0.01	<0.01	<0.01	<0.01
Cyanide, Total (low level)	μg/l <5 μg/l	TM279	<5		<5	<5	<5	<5
			§ #	# <u>§</u> #	§#	<u></u>	#	

CERTIFICATE OF ANALYSIS

Validated

 SDG:
 120311-10
 Location:
 Hinter Road
 Order Number:

 Job:
 H_GRONTMIJ_SOL-44
 Customer:
 Grontmij
 Report Number:
 175071

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:

Notification of Deviating Samples

Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
5306643	30 TRINITY CLOSE		LIQUID	Low Level Cyanide (W)	Cyanide, Total (low level)	Sample holding time exceeded
5306646	17 HIGH BANK		LIQUID	Low Level Cyanide (W)	Cyanide, Total (low level)	Sample holding time exceeded
5306650	34 A HUNTER ROAD		LIQUID	Low Level Cyanide (W)	Cyanide, Total (low level)	Sample holding time exceeded
5306654	7 HIGH BANK		LIQUID	Low Level Cyanide (W)	Cyanide, Total (low level)	Sample holding time exceeded
5306662	3 HIGH BANK		LIQUID	Low Level Cyanide (W)	Cyanide, Total (low level)	Sample holding time exceeded

Note : Test results may be compromised

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

Validated

SDG:	120311-10	Location:	Hinter Road	Order Number:	
Job:	H_GRONTMIJ_SOL-44	Customer:	Grontmij	Report Number:	175071
Client Reference:		Attention:	Gareth Taylor	Superseded Report:	

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
SUB		Subcontracted Test		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM178	Modified: US EPA Method 8100	Determination of Polynuclear Aromatic Hydrocarbons (PAH) by GC-MS in Waters		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM279		Determination of Low Level Easily Liberatable (Free) Cyanides and Total Cyanides in Waters using the Skalar SANS+ System Segmented Flow Analyser		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

ALcontrol Laboratories

(

CERTIFICATE OF ANALYSIS

 SDG:
 120311-10
 Location:
 Hinter Road
 Order Number:

 Job:
 H_GRONTMIJ_SOL-44
 Customer:
 Grontmij
 Report Number:
 175071

 Client Reference:
 Attention:
 Gareth Taylor
 Superseded Report:
 175071

Test Completion Dates

Lab Sample No(s)	5306640	5306637	5306638	5306635	5306639	5306636
Customer Sample Ref.	34 A HUNTER ROA D	3 HIGH BANK	7 HIGH BANK	17 HIGH BANK	16 KEBLE CLOSE	30 TRINITY CLOS E
AGS Ref.						
Depth						
Туре	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Dissolved Metals by ICP-MS	20-Mar-2012	20-Mar-2012	20-Mar-2012	20-Mar-2012	20-Mar-2012	20-Mar-2012
Low Level Cyanide (W)	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012
Mercury Dissolved	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012	19-Mar-2012
PAH Low level*	22-Mar-2012	22-Mar-2012	22-Mar-2012	22-Mar-2012	22-Mar-2012	22-Mar-2012

Analytical Services Torrington Avenue, Coventry, CV4 9GU

T: +44 (0)24 7642 1213 F: +44 (0)24 7685 6575

www.stsanalytical.com

21 March 2012

Test Report: COV/846301/2012

Dear Ms Dykes

Ms Dykes

Manor Road Hawarden

Cheshire

Deeside CH5 3US

Park

Alcontrol Laboratories

Units 7 & 8 Hawarden Business

Analysis of your sample(s) submitted on 15 March 2012 is now complete and we have pleasure in enclosing the appropriate test report(s).

An invoice for the analysis carried out will be sent under separate cover.

Should you have any queries regarding this report(s) or any part of our service, please contact Customer Services on +44 (0)24 7642 1213 who will be happy to discuss your requirements.

If you would like to arrange any further analysis, please contact Customer Services. To arrange container delivery or sample collection, please call the Couriers Department directly on 024 7685 6562.

Thank you for using Severn Trent Services and we look forward to receiving your next samples.

Yours Sincerely,

Signed: A 1 Horbin

Name: A. Horobin

Title: Team Leader

Severn Trent Services Analytical Services is a trading name of Severn Trent Laboratories Limited. This communication has been sent to you by Severn Trent Laboratories Ltd. Registered in England and Wales. Registration No.2148934. Registered Office: Severn Trent Centre, 2 St. John's Street, Coventry, CV1 2LZ

Report Summary	UKAS TESTING 1314 1229 0897		SEVERN TRENT SERVICES
Ms Tracy Dykes Alcontrol Laboratories Units 7 & 8 Hawarden Business Park Manor Road Hawarden Deeside Cheshire	4409		
		Date of Issue: 21 M	arch 2012
Report Number: COV/8463	801/20	012 Issue	1
Job Description: Ground Water An	alysis		
Number of Samples included in this report 6		Job Received:	15 March 2012
Number of Test Results included in this report 102		Analysis Commenced:	15 March 2012
	Name:	A. Horobin	Date: 21 March 2012
signed: A 1 Horbbin	Title:	Team Leader	
Severn Trent Services was not responsible for sampling unless oth Information on the methods of analysis and performance character Opinions and interpretations expressed herein are outside the scop Tests marked 'Not UKAS Accredited' in this Report/Certificate are n	istics are a be of UKAS	vailable on request. S accreditation. The results relate o	nly to the items tested.
Severn Trent Services Analytical Services is a trading name of Sev Trent Laboratories Limited. Registered in England and Wales. Reg Coventry, CV1 2LZ			

(c) Severn Trent Services 2012. All rights reserved. We, Severn Trent Laboratories Limited, are the owner of all copyright in this report. You must not copy, reproduce, amend or adapt this report, its contents or any format in which it is delivered without our prior written agreement. If you copy, reproduce, amend, or adapt this report in any way without our agreement you will be liable for any damage or loss to us. In the event of a dispute the copy of the report held by us shall be the reference copy.

Page 9 of 16

Report Number: COV/846301/2012 Laboratory Number: 12906879

Issue 1 Sample 1 of 6

Sample Source:	Alcontrol Laboratories
Sample Point Description:	Water Analysis
Sample Description:	5319642 5306638-7 High Bank
Sample Matrix:	Ground waters
Sample Date/Time:	
Sample Received:	15 March 2012
Analysis Complete:	21 March 2012

Test Description	Result	Units	Accreditation	Method
Acenaphthene	<0.01	ug/l	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y Cov	GEO19
Anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Chrysene	<0.01	ug/l	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	Y Cov	GEO19
Fluorene	<0.01	ug/l	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y Cov	GEO19
Naphthalene	<0.01	ug/l	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	Y Cov	GEO19
Pyrene	<0.01	ug/l	Y Cov	GEO19
PAH, Total	<0.01	ug/l	N Cov	GEO19

Analyst Comments for 12906879:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

A. Horobin Name:

Date: 21 March 2012

Title: **Team Leader**

Page 10 of 16

Report Number: COV/846301/2012 Laboratory Number: 12906880

Issue 1 Sample 2 of 6

Sample Source: **Alcontrol Laboratories** Sample Point Description: Water Analysis Sample Description: 5319656 5306640-34 A Hunter Road Sample Matrix: Ground waters Sample Date/Time: Sample Received: 15 March 2012 Analysis Complete: 21 March 2012

Test Description	Result	Units	Accred	itation	Method
Acenaphthene	<0.01	ug/l	Y	Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y	Cov	GEO19
Anthracene	<0.01	ug/l	Y	Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y	Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y	Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y	Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y	Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y	Cov	GEO19
Chrysene	<0.01	ug/l	Y	Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y	Cov	GEO19
Fluoranthene	<0.01	ug/l	Y	Cov	GEO19
Fluorene	<0.01	ug/l	Y	Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y	Cov	GEO19
Naphthalene	<0.01	ug/l	Y	Cov	GEO19
Phenanthrene	<0.01	ug/l	Y	Cov	GEO19
Pyrene	<0.01	ug/l	Y	Cov	GEO19
PAH, Total	<0.01	ug/l	N	Cov	GEO19

Analyst Comments for 12906880:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

Name: A. Horobin Date: 21 March 2012

Title: **Team Leader**

Report Number: COV/846301/2012 Laboratory Number: 12906881

Issue 1 Sample 3 of 6

Sample Source:	Alcontrol Laboratories
Sample Point Description:	Water Analysis
Sample Description:	5319698 5306637-3 High Bank
Sample Matrix:	Ground waters
Sample Date/Time:	
Sample Received:	15 March 2012
Analysis Complete:	21 March 2012

Test Description	Result	Units	Accreditatio	on Method
Acenaphthene	<0.01	ug/l	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y Cov	GEO19
Anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Chrysene	<0.01	ug/l	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	Y Cov	GEO19
Fluorene	<0.01	ug/l	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y Cov	GEO19
Naphthalene	<0.01	ug/l	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	Y Cov	GEO19
Pyrene	<0.01	ug/l	Y Cov	GEO19
PAH, Total	<0.01	ug/l	N Cov	GEO19

Analyst Comments for 12906881:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

A. Horobin Name:

Date: 21 March 2012

Title: **Team Leader**

Report Number: COV/846301/2012 Laboratory Number: 12906882

Issue 1 Sample 4 of 6

Sample Source: **Alcontrol Laboratories** Sample Point Description: Water Analysis Sample Description: 5319735 5306636-30 Trinity Close Sample Matrix: Ground waters Sample Date/Time: Sample Received: 15 March 2012 Analysis Complete: 21 March 2012

Test Description	Result	Units	Accreditation	Method
Acenaphthene	<0.01	ug/l	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y Cov	GEO19
Anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Chrysene	<0.01	ug/l	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	Y Cov	GEO19
Fluorene	<0.01	ug/l	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y Cov	GEO19
Naphthalene	<0.01	ug/l	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	Y Cov	GEO19
Pyrene	<0.01	ug/l	Y Cov	GEO19
PAH, Total	<0.01	ug/l	N Cov	GEO19

Analyst Comments for 12906882:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

Name: A. Horobin Date: 21 March 2012

Title: **Team Leader**

Page 13 of 16

Report Number: COV/846301/2012 Laboratory Number: 12906883

Issue 1 Sample 5 of 6

Alcontrol Laboratories
Water Analysis
5319751 5306639-16 Keble Close
Ground waters
15 March 2012
21 March 2012

Test Description	Result	Units	Accreditation	Method
Acenaphthene	<0.01	ug/l	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y Cov	GEO19
Anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Chrysene	<0.01	ug/l	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	Y Cov	GEO19
Fluorene	<0.01	ug/l	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y Cov	GEO19
Naphthalene	<0.01	ug/l	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	Y Cov	GEO19
Pyrene	<0.01	ug/l	Y Cov	GEO19
PAH, Total	<0.01	ug/l	N Cov	GEO19

Analyst Comments for 12906883:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

A. Horobin Name:

Date: 21 March 2012

Title: **Team Leader**

Page 14 of 16

Report Number: COV/846301/2012 Laboratory Number: 12906884

Issue 1 Sample 6 of 6

Sample Source:	Alcontrol Laboratories
Sample Point Description:	Water Analysis
Sample Description:	5319761 5306635-17 High Bank
Sample Matrix:	Ground waters
Sample Date/Time:	
Sample Received:	15 March 2012
Analysis Complete:	21 March 2012

Test Description	Result	Units	Accreditation	Method
Acenaphthene	<0.01	ug/l	Y Cov	GEO19
Acenaphthylene	<0.01	ug/l	Y Cov	GEO19
Anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) anthracene	<0.01	ug/l	Y Cov	GEO19
Benzo (g,h,i) perylene	<0.01	ug/l	Y Cov	GEO19
Benzo (a) pyrene	<0.01	ug/l	Y Cov	GEO19
Benzo (b) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Benzo (k) fluoranthene	<0.01	ug/l	Y Cov	GEO19
Chrysene	<0.01	ug/l	Y Cov	GEO19
Dibenz (a,h) anthracene	<0.01	ug/l	Y Cov	GEO19
Fluoranthene	<0.01	ug/l	Y Cov	GEO19
Fluorene	<0.01	ug/l	Y Cov	GEO19
Indeno (1,2,3) cd pyrene	<0.01	ug/l	Y Cov	GEO19
Naphthalene	<0.01	ug/l	Y Cov	GEO19
Phenanthrene	<0.01	ug/l	Y Cov	GEO19
Pyrene	<0.01	ug/l	Y Cov	GEO19
PAH, Total	<0.01	ug/l	N Cov	GEO19

Analyst Comments for 12906884:

The date of sampling has not been provided and therefore sample stability times cannot be assessed. It is therefore possible that the results provided may be compromised. The sample for PAH was received in a container inappropriate for this parameter. It is therefore possible that the results provided may be compromised.

Accreditation Codes: Y = UKAS Accredited, N = Not UKAS Accredited, M = MCERTS.

Analysed at: Brd = Bridgend, Cov = Coventry, Rea = Reading, Run = Runcorn, S = Subcontracted, Wak = Wakefield. For Microbilogical determinands 0 or ND=Not Detected, For Legionella ND=Not Detected in volume of sample filtered. The LOD for the Legionella analysis will increase where the volume analysed is <1000g (1g is approximately equivalent to 1ml for sample volume analysed). I/S=Insufficient sample

Signed: A | Horobin

A. Horobin Name:

Date: 21 March 2012

Title: **Team Leader** ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	120311-10	Location:	Hinter Road	Order Number:
Job:	H_GRONTMIJ_SOL-44	Customer:	Grontmij	Report Number:
Client Reference:		Attention:	Gareth Taylor	Superseded Report:

Appendix

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate

If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.

9 NDP -No determination possible due to insufficient/unsuitable sample

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately

11. Results relate only to the items tested

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

14. Product analyses -Organic analyses on products can only be semi-guantitative due to the matrix effects and high dilution factors employed

Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol ethylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 15 3-Methylphenol and 4-Methylphenol) Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol)

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5 -C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised

SOLID MATRICES EXTRACTION SUMMARY									
ANALYSIS	D&C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS					
SOLVENTEXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC					
CYOLOHEXANE EXT. MATTER	D&C	CYCLOHEXANE	SOXTHERM	GRAVIMETRIC					
ELEMENTAL SULPHUR	D&C	DOM	SOXTHERM	HPLC					
PHENOLS BY GOMS	WET	DOM	SOXTHERM	GC-MS					
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS					
PESTICIDES	D&C	HEXANEACETONE	HEXANEACETONE SOXTHERM						
EPH (DRO)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID					
EPH (MIN OL)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID					
EPH (CLEANED UP)	D&C	HEXANEACETONE	ENDOWEREND	GC-FID					
EPH CWGBY GC	D&C	HEXANEACETONE	ENDOWEREND	GC-FID					
PCBAROCLOR 1254/ PCBCON	D&C	HEXANEACETONE	ENDOWEREND	GC-MS					
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MICROWAVE TM218.	GC-MS					
×06C40	WET	HEXANEACETONE	SHAKER	GC-FID					
POLYAROMATIC HYDROCARBONS RAFID GC			SHAKER	ଫ୍ଟେମ୍ବ					
SEM VOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GC-MS					

175071

SOLID MATRICES EXTRACTION SUMMARY

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EX TRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
BH	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
EPHCWG	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
MNERALOL	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC FD
PCB7 CONGENERS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
PCBAROCLOR 1254	HEXANE	STRRED EXTRACTION (STIR-BAR)	GCMS
SVOC	DCM	LIQUID/LIQUID SHAKE	GCMS
FREESULPHUR	DCM	SOLID PHASEEXTRACTION	HPLC
PESTOCROPP	DCM	LQUD/LQUD SHAKE	GCMS
TRIAZINE HERBS	DCM	LQUD/LQUD SHAKE	GCMS
PHENOLSMS	ACETONE	SOLID PHASEEXTRACTION	GCMS
TPH by INFRARED (IR)	TCE	STRRED EXTRACTION (STIR-BAR)	R
MINERALOL by IR	TCE	STRRED EXTRACTION (STIR-BAR)	R
GLYCOLS	NONE	DRECTINIECTION	GC FD

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Chrysofile	WhiteAsbestos
Amoste	BrownAsbestos
Orodolite	Blue Asbestos
Fibrous Adinalite	-
Fbrous Anthophylite	-
Fibrous Trendile	-

APPENDIX E

Well	Date	CH4	CO2	02	со	H2S	flow	pressure	GSV
		%	%	%	ppm	ppm	l/hr	mb	
ambient	07/12/2011	0	0	19.8	0	0	n/a	993	
	09/01/2012	-0.1	0	19.2	-2	-10	n/a	1017	
	18/01/2012	-0.1	0	19	0	0	n/a	1010	
	26/01/2012	-0.1	0.1	18.8	-2	0	n/a	991	
	23/03/2012	0	0	20.4	0	0	n/a	1010	
WS1	07/12/2011	0	0.6	19.3	0	0	0	992	0.00006
	09/01/2012	-0.1	0.8	18.5	-2	-10	-0.1	1015	0.00008
	18/01/2012	-0.1	0.9	17.7	-2	-10	-0.1	1008	0.00009
	26/01/2012	-0.1	0.8	18.1	-10	-4	-0.7	991	0.00008
	23/03/2012	0	0.9	19.7	0	0	0	1011	0.00009
WS2	07/12/2011	0	0.3	19	0	0	0	992	0.00003
	09/01/2012	0	0.3	19	-2	-10	0	1015	0.00003
	18/01/2012	0	0.8	18.4	-2	0	-0.1	1009	0.00008
	26/01/2012	-0.1	0.8	18	0	-2	-0.6	991	0.00008
	23/03/2012	0	1	19.5	0	0	0	1012	0.0001
WS4	07/12/2011	0	1.6	17	0	0	0	992	0.00016
	09/01/2012	-0.1	0.9	16.8	-4	-10	0	1016	0.00009
	18/01/2012	-0.1	1.3	17.6	-2	0	-0.1	1010	0.00013
	26/01/2012	-0.1	0.8	16.5	-4	0	-0.7	991	0.00008
	23/03/2012	0	2.2	18.2	0	0	0	1011	0.00022
WS5	07/12/2011	0	1.6	17.7	0	0	-0.1	992	0.00016
	09/01/2012	-0.2	1.6	17.5	-4	-10	0	1016	0.00016
	18/01/2012	-0.1	1.5	17.5	0	0	-0.3	1010	0.00015
	26/01/2012	-0.1	0.6	17.7	0	0	-1.2	991	0.00006
	23/03/2012	0	1.1	19	0	0	0	1011	0.00011
WS6	07/12/2011	0	1.1	17.8	0	0	-0.1	992	0.00011
	09/01/2012	-0.2	0.8	18.1	-4	0	0	1016	0.00008
	18/01/2012	-0.1	0.8	18.2	-10	-2	-0.3	1010	0.00008
	26/01/2012	-0.1	0.8	17.8	-10	0	-1	991	0.00008
	23/03/2012	0	0.8	19.7	0	0	0	1010	0.00008
WS7	07/12/2011	0	0.9	18.6	0	0	0	992	0.00009
	09/01/2012	0	0.6	18.4	-2	-10	0	1015	0.00006
	18/01/2012	0	1.9	17.6	-2	-10	0	1008	0.00019
	26/01/2012	-0.3	4.2	14.4	0	0	-0.7	992	0.00042
	23/03/2012	0	3.1	17.1	0	0	0	1012	0.00031

 Pressure trend data
 sources:
 http://www.worldweatheronline.com/weather/United-Kingdom/806139/Cannock/808864/info.aspx?day=0:

 http://www.metoffice.gov.uk/weather/uk/wm/coleshill_latest_weather.html

	07/12/2011	09/01/2012	18/01/2012	26/01/2012	23/03/2012	Date	Person	Time	Weather
midnight	1001	1027	1024	1006	1026	07/12/20	11 GVT	10:0	00 sunny but cold
3am	1000	1027	1022	1006	1026	09/01/20	12 RJH	14:3	30 Overcast some drizzle
6am	1002	1027	1020	1005	1026	18/01/20	12 RJH	13:0	00 Overcast
9am	1004	1027	1019	1005	1026	26/01/20	12 RJH	10::	L5 cloudy
noon	1007	1028	1021	1005	1026	23/03/20	12 GVT	17:0	00 Sunny and warm for se
3pm	1010	1029	1022	1007	1026				
6pm	1013	1032	1023	1009	1026				
9pm	1016	1033	1022	1010	1026				
midnight	1017	1033	1022	1012	1026				

eason (15 C)

APPENDIX F

Appendix F: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Severity Category	Description	Examples
Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non-aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily- repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or,
	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

		Sev	erity	
Probability	Severe	Medium	Mild	Minor
High	Very high	High	Moderate	Low/moderate
Likely	High	Moderate	Low/moderate	Low
Low	Moderate	Low/moderate	Low	Very low
Unlikely	Low/moderate	Low	Very low	Very low

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

APPENDIX C EXPLORATORY HOLE LOGS

~	G	irontr	nij	j	1	Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Tel: 01217 116600	se		Trialpit No HP101 Sheet 1 of 1
Project						ject No.	Co-ords: -		Date
Cannoo					106	6270-011	Level: -		10/09/2012
Locatio	n: l	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25
Client: Cannock Chase Council									Logged By RJH
Samp Depth (m)	les & li Type	N Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description	
0.30-0.40	T, J,		0.48 0.50			and tarmac. Cobb	le of brick at 0.3m	ge brown gravelly SAND. Grave , brick, glass coal with rare ash s fine to coarse subrounded to ete at 0.50 m	l is fine
									-1
									-2
									-3
									-4
Remarks	5:	I		ı		ı			AGS
Groundw	vater:								

~	G	irontr	nij	j	/	Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Tel: 01217 116600	se		Trialpit No HP102 Sheet 1 of	
Project						ject No.	Co-ords: -		Date	·
Cannoo						270-011	Level: -		10/09/2012	2
Locatio	n: l	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale	
							Depth &		1:25	
Client:		Cannock Chase	Counci	1			Depth 6 0.60m 7. 0		Logged By RJH	у
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	•		
0.20-0.30 0.35-0.45	T J,V		0.45 0.60			concrete, plastic s	heet, ash and ceramic. (gravelly SAND. Gravel is	orange brown gravelly SAND wi ir to rounded of quartz, Dccasional cobble of brick s fine to coarse subrounded to	th fine	
							тарі Сопре			- 1 - -
										- 2
										- 3
										- 4
Remarks		<u> </u>		<u> </u>		<u> </u>			AGS	S

Solihull B90 4LH Tel: 01217 116600 Sheet 1 of 1 Project Name Project No. Co-ords: - Date Cannock Part 2a 106270-011 Level: - 10/09/2012 Location: Hunter Road, Cannock Dimensions: 0.30m Scale Client: Cannock Chase Council Depth E Logged By Samples & In Situ Testing Depth Level Dencisitie		6	kont			1	Grontmij Solihull Ist Floor Yorke Hou	se		Trialpit No HP103
Project Name Cannock Part 2a Project No. 106270-011 Co-ords: Level: Date 1009/2012 Location: Hunter Road, Cannock Dimensions: 0.30m 0.30m Client: Cannock Chase Council Depth 0.80m generalization Secole 5 in Statu Testing Depth 0.80m generalization Scale 1.25 Openh (n) Type Project No. 0.80m Statum Description Secole 5 in Statu Testing Depth 0.80m Scale 1.25 Scale 1.25 Openh (n) Type Project ROLMD: Genus per detail project Status Testington and rare ab. Coable of the cando coreal and rare ab. Coable of the cando core		U	nonu	ШJ		9	Solihull B90 4LH			
Cannock Part 2a 106270-011 Lavel: 10092012 Location: Hunter Road, Cannock Dimension: - 0.30m 5.cale 12.5 Client: Cannock Chase Council Dimension: - 0.60m 9 1.5 Location: -						-		Coorder		
Location: Hunter Road, Cannock Client: Cannock Chase Council Samples & In Stu Terring Depth is Stu Terring Depth im Special Depth im Stratum Description 0.40-0.50 T. J. 0.40-0.50 T. J. 0.40 0.80 0.40 Image: Stratum Description 1 Image: Stratum Description						-				
Depth Energy 1:25 Logged By Rull Logged By Rull Summer & M. Statu Taxing Toring Incode Append Stratum Description Incode				nnock		100			0.30m	
Client: Cannock Chese Council Degrin of the council Logged By RJH Stratum Description In Note CROUND: Onse over an incoming merits lights codey SAND. Gravel is and anonesis In Note CROUND: Onse over an incoming merits lights codey SAND. Gravel is and anonesis In Note CROUND: Onse over an incoming merits lights codey SAND. Gravel is and anonesis 0.40.050 T. J. 0.60 Onserve all codes of track and concrete Incomine of quarks Trape Comption at 000 m	Looullo							l I	0.3011	
Samples & In Situ Testing Depth Lengel (m) Stratum Description Depth (m) Type Results (m) ADE: CROLIND: Create our data known granely sightly cockly SAND, Gravel is fine to coarse sub-market no counced (m) (m) 0.40-0.50 T. J. 0.50 (m) (m)<	Client: Cannock Chase Council							0.60m 0		Logged By
Depth (m) type Results (m)	Samp	les & li	n Situ Testing	Depth	Level					
Remarks: Orange/red brown gravely SAND. Gravel is fine to coarse subrounded to gaatz.	Depth (m)		Results	(m)	(m AOD)		MADE GROUND; fine to coarse sub and rare ash. Cob	Grass over dark brown g	gravelly slightly cobbly SAND, G	ravel is
Remarks:	0.40-0.50	T, J,		0.50		*****	Orange/red brown	aravelly SAND Gravel i	s fine to coarse subrounded to	
Remarks:				0.60			rounded of quartz	gravelly SAND. Gravel		
Remarks:								Trialpit Comple	ete at 0.60 m	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Remarks:										-2
Remarks:										-3
										-4
										AGS

G	rontmi	i	Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH	ise		Trialpit No HP104
			Tel: 01217 116600	1		Sheet 1 of 1
Project Name			roject No.	Co-ords: - Level: -		Date 10/09/2012
Cannock Par Location: H	t 2a Iunter Road, Cannock	1	06270-011		0.00	
	TURLET INDAU, CARROCK			Dimensions:	0.30m	Scale 1:25
Client: C	Cannock Chase Counc	1		Depth 607 0.70m 0		Logged By RJH
Samples & In	Situ Testing Depth	Level				КЈП
Depth (m) Type	Results (m)	(m AOD) Lege				
0.20-0.30 T			MADE GROUND; fine to coarse sub and rare ash. Cob	Grass over dark brown (angular to rounded of qu bles of brick and concret	gravelly slightly cobbly SAND, G Jartz, brick, ceramic, concrete e	ravei is
0.50 J,V	0.50 0.60		Orange/red browr rounded of guartz	gravelly SAND. Gravel i	s fine to coarse subrounded to	
	0.00					
				Trialpit Comple	ete at 0.70 m	'n
						-1 - - - - - - - - - 2
						-3
						-4
Remarks: Groundwater:		i				AGS

4	G	irontr	nij	j	1 7 5	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit N HP10 Sheet 1 o	5
Project						ject No.	Co-ords: -		Date	
Cannoo						270-011	Level: -		10/09/20 ⁻	12
Locatio		Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client:	(Cannock Chase (Counci	l			Depth 6 0.35m 7 0		Logged E RJH	Зу
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	escription		
0.25-0.35	T,J,V		0.35			concrete, plastic s	Grass over light brown/ of fine to coarse subangula	prange brown gravelly SAND w Ir to rounded of quartz, Dccasional cobble of brick and ion at 0.35m	ith fine	
										- 2
										- 3
										-4
Remarks Groundw		Terminated on o	concret	e obstru	iction				AG	S

	G	irontr	ni	i	1 A	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH	se		Trialpit N HP106	;
					1	Fel: 01217 116600	1		Sheet 1 of	f1
Project Cannoo						ect No. 270-011	Co-ords: - Level: -		Date 10/09/201	2
Locatio		Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale	
							Depth &		1:25	
Client:		Cannock Chase	Counci	1			Depth 60 0.70m 0		Logged B RJH	By
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	escription		
0.20-0.30	J,V		0.55			subangular to rour fragments, rare as	nded of brick, quartz, con h and glass		se	-
0.60-0.70	J,V		0.70			MADE GROUND;	as previous strata becor	ning less gravelly		
							Trialpit Comple	ete at 0.70 m		1
										- 2
										- 3 - - -
Remarks	5:									
Groundw	/ater:								AG	S

<	G	rontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP107 Sheet 1 of 1	
Project						ject No.	Co-ords: -		Date	_
Cannoc						270-011	Level: -		10/09/2012	
Location	n: H	Hunter Road, Ca	nnock		•		Dimensions:	0.30m	Scale	
							Depth E		1:25	
Client:		Cannock Chase	Counci	il			Depth 6 0.70m 7. 0		Logged By RJH	
Samp Depth (m)	les & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.40 0.40 0.70-0.80	J,V T J,V		0.85			MADE GROUND; sub angular to rou clinker and glass.	Grass over dark brown o nded of quartz, brick, ce Piece of fibrous lagging Trialpit Comple	gravelly SAND. Gravel is fine to ramic, concrete and rare ash, identified at 0.4m (sampled)	coarse	
							тарі Сопр	ete al 0.70 m	- 1	1
									-2	2
									-3	3
									- 4	1
Remarks Groundw				·					AGS	

	G	irontr	ni	i		Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH	se		Trialpit No HP108
						Tel: 01217 116600	1		Sheet 1 of 1
Project						ject No.	Co-ords: -		Date
Cannoo					106	270-011	Level: -		10/09/2012
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25
							Depth 6 0.85m 7.		
Client:		Cannock Chase				I	0.85m 0		Logged By RJH
Depth (m)	Type	Results	Depth (m)	Level (m AOD)	Legend		Stratum D	escription	
0.50-0.60	J,V		0.65			to coarse sub ang rare clinker. Cobbi	ular to rounded of quartz, les of brick	ly slightly cobbly SAND. Gravel brick, glass, concrete and	is fine
			0.70			rounded of quartz	gravely SAND, Gravel is		
						\	Trialpit Comple	ete at 0.85 m	/ -
									-1
									-4
Remarks	8:								
Groundw	vater:								AGS

~	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP109 Sheet 1 of 1
Project	Nam	е				ect No.	Co-ords: -		Date
Cannoo					106	270-011	Level: -		10/09/2012
Locatio	n: l	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale
							Depth 60 0.70m 7.0		1:25
Client:		Cannock Chase					0.70m		Logged By RJH
Depth (m)	Type	n Situ Testing Results		Level (m AOD)	Legend		Stratum D		
			0.03			· · · · · · · · · · · · · · · · · · ·	Peas Gravel on anti wee		
0.20-0.30	J,V J,V					MADE GROUND; rounded of quartz, and odour from 0.4	brown gravelly SAND. G brick and some wood fra 45-0.65m	ravel is fine to coarse subangu agments. Black (organic) staini	lar to ng
0.30-0.00	5,0		0.70						-
			0.70		vvvvv		Trialpit Comple	ete at 0.70 m	
									- -1 -
									-2
									-
									-3
									-
									-4
Remarks	L 5:								
Groundw									— AGS

Project Name Carmock Part 2a Project No. 106270-011 Co-ords: Level: Dimensions: 0.300 Dimensions: 1.10m 0.300 Client: Cannock Chase Council Scale 1.25 Dimensions: 0.300 0.300 Depth Stratup Depth Tim) Type Scale 1.10m Scale 1.25 Dimensions: 0.302-00 0.300 0.302-00 JV Image Stratup Scale 1.10m Scale 1.10m Image Stratup Image Stratup 0.302-00 JV Image Stratup Scale 1.10m Image Stratup Image Stratup </th <th>~</th> <th>G</th> <th>irontr</th> <th>nij</th> <th>j</th> <th>1 A S</th> <th>Grontmij Solihull st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600</th> <th>se</th> <th></th> <th>Trialpit No HP110 Sheet 1 of 1</th> <th>i</th>	~	G	irontr	nij	j	1 A S	Grontmij Solihull st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP110 Sheet 1 of 1	i
Location: Hunter Road, Cannock Client: Cannock Chase Council Samples & In Stur Teeling Dight Intering Death Imit Spin Perint Intering 0.30 0.40 J.V No.00 0.40 J.V 1.10 MADE GROUND: Greate and english to council of parts: block, glass, councer and english to counce and english to council of parts: block, glass, counce and english to counce											
Depth End 125 Digit (n) 100 1	Cannoc	k Pa	t 2a			106	270-011	Level: -		10/09/2012	
Samples & In Stur Treating Depth Level (m) Level (m) Level (m) Stratum Description RUH 0.30-00 J.V Results Integration MADE GROUND, Grass are from gravely sliphty obday SMMD, Gravel in the rare clinkin Cabble of thick. Logged from expende face in gurden where reprofiling his recently taken place in gurden where Integration 0.30-0.00 J.V Integration Integration Integration Integration Integration 0.30-0.00 J.V Integration Integratin	Location	n: ŀ	Hunter Road, Ca	nnock				l r	0.30m		
Depth (m) Type Results (m) (m) (m) Stratum Decorption 0.300-00 J.V Image: Stratum Decorption Image: Stratum Decorption Stratum Decorption Stratum Decorption 0.300-00 J.V Image: Stratum Decorption The Circle of the C	Client:	(Cannock Chase	Counci	il			1.10m 0			
0.300.40 J.V 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.				Depth (m)	Level (m AOD)	Legend		Stratum D	escription		
Remarks: Trippi Complete at 1.10 m	0.30-0.40	J,V					rare clinker. Cobbl	es of brick. Logged from	exposed face in garden where	is fine	-1
Remarks:				1.10		XXXXX		Trialpit Comple	ete at 1.10 m		
Remarks:											
										-	
Groundwater: AGS	Remarks	:									
	Groundw	vater:								— AGS	

Project Name Project No. 106270-011 Co-ords: Lovel: Universions: 0.76m O.30m Date 1009/2012 Client: Cannock Chase Council Dimensions: 0.76m 0.30m Scale Depth: 0.30m 0.30m 125 Logged By: RJH Depth: 0.30m 0.30m 125 Logged By: RJH Depth: 0.30m 0.30m 125 Logged By: RJH Depth: 0.76m 0.30m 125 Logged By: RJH 0.100.02 JV Project No. 0.100.02 NACE CROUND: Conserver nome prevention Image: Risk certainit and rate clinker. 0.100.02 JV Recommy device thorous certainity SMD. Conserver nome prevention Image: Risk certainit and rate clinker. Image: Risk certainit and rate clinker. 0.100.02 JV 0.75 Trepin Complete at 0.50m Image: Risk certainit and rate clinker. 0.100.02 JV 0.75 Trepin Complete at 0.50m Image: Risk certainit and rate clinker. Image: Risk certainit and rate clinker. 0.100.02 Image: Risk certainit and rate clinker. Image: Risk certainit and rate clinker. Image: Risk certainit and rate clinker.	~	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP111 Sheet 1 of 1	
Cannock Part 2a 106270-011 Level: - 1009/2012 Location: Hunter Road, Cannock Dimensions: 0.30m 125 Client: Cannock Chase Council Dimensions: 0.30m 125 Dimension: 0.75m E Dimension: 125 Ligged By Number 4 histur Texing Oright (not topic topic topic) Texing topic topi								Co-ords: -			┨
Depth Emilia 1:25 Logged By B Logged By Logged By <thloged by<="" th=""> <thloged by<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10/09/2012</td><td></td></thloged></thloged>										10/09/2012	
Client: Cannock Chase Council Deph. Client: Logged By RJH Samples & In Stu Testing Deph. Intel Ling Deph. MADE Council Logged By RJH 0.10-0.20 J.V Intel Ling Deph. MADE Council Stratum Description Intel Ling	Locatio	n:	Hunter Road, Ca	nnock		•			0.30m		
Samples & In Stur Treating Depth Lovel (m) Lovel (m) Lovel (m) Stratum Description RUH RUH 0.10-0.20 J.V V Treating								Depth O			
Depth (m) type Results (m) (m) Statut Decipition (m)							r	0.75m .			
Remarks: Becoming darker brown at 0.35m	Depth (m)			Depth (m)	Level (m AOD)	Legend					
Remarks: Tridgal Complete at 0.75 m -1	0.10-0.20 0.35-0.45						MADE GROUND; angular to rounded Becoming darker t	Grass over brown grave d of quartz, brick, glass, brown at 0.35m	Ily SAND, Gravel is fine to coar ceramic and rare clinker.	se sub	
remarks:				0.75				Tricloit Compl	oto at 0.75 m	- - 	
Remarks:								парк обц		-1	1
Remarks:										-	
Remarks:										-2	2
Remarks:										-3	3
										4	1
Groundwater: AGS										AGS	Î

~	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		HP	oit No 112 t 1 of 1		
					-		Co-ords: -			ate		
							Level: -		10/09)/2012		
Location	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m		cale		
							Depth E		1:	25		
Client:			Counci	1			0.70m 0		Logg RJ	ed By IH		
			Depth (m)	Level (m AOD)	Legend		Stratum E	Description				
Project Name Project No. Co-ords: - 1 Cannock Part 2a 106270-011 Level: - 1 Location: Hunter Road, Cannock Dimensions: 0.30m Client: Cannock Chase Council 0.70m 70												
										-		
									I	-		
Remarks Groundw										AGS		

~	G	irontr	nij	j	1 7 5	Grontmij Solihull st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		HP	oit No 113 : 1 of 1
Project						ect No.	Co-ords: -		D	ate
Cannoc						270-011	Level: -		11/09	/2012
Location	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m		cale
							Depth E			25
Client:		Cannock Chase					Depth 6 0.70m 7: 0		Logg RJ	ed By H
Samp Depth (m)	les & Ir Type	Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.30-0.40	J,V		0.70			MADE GROUND; coarse sub angula of brick and concre	Dark brown gravelly slig ar to rounded of quartz, b ete Trialpit Compl	htly cobbly SAND. Gravel is fine rick, glass and concrete. Cobbl ete at 0.70 m	es	
										-2
										-3
Remarks	•									
Groundw										AGS

~	G	irontr	nij	j	1	Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP114 Sheet 1 of	
Project						ject No.	Co-ords: -		Date	
Cannoc	k Pai	t 2a				270-011	Level: -		11/09/201	2
Location	n: ł	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client:	(Cannock Chase (Counci	il			Depth 60 0.60m 0.60		Logged B RJH	у
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.50-0.60 J,V 0.60 MADE GROUND; Bark over dark brown gravelly slightly cobbly SAND. Gr fine to coarse subangular to rounded of sandstone, quartz, brick and rare clinker. Cobble of concrete with re-bar. 0.50-0.60 J,V 0.60 Trialpit Complete at 0.60 m										
										- 4
Remarks Groundw		Terminated on o	cobble	obstruct	ion				AGS	S

		irontr		•		Grontmij Solihull Ist Floor Yorke Hou	se		Trialpit No	
	U	irontr	nI		5	Arleston Way Solihull B90 4LH			HP115	
					1	Fel: 01217 116600			Sheet 1 of Date	1
Project Cannoo						ject No. 270-011	Co-ords: - Level: -		11/09/2012	2
Locatio		Hunter Road, Ca	nnock		100		Dimensions:	0.30m	Scale	-
		,,							1:25	
Client:	(Cannock Chase	Counci	1			Depth 60 0.50m 0		Logged By RJH	y
		Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum I	Description		
Depth (m)	Т	Results	Jescription ally SAND. Gravel is fine to coar ass. is fine to coarse subrounded to lete at 0.50 m	se sub						
										-4
										-
										-
Remarks									AGS	
Groundw	vater:									

~	G	irontr	nij	j		Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP116 Sheet 1 of 1	
Project						ject No.	Co-ords: -		Date	
Cannoo	ck Pa	rt 2a				270-011	Level: -		11/09/2012	
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client: Cannock Chase Council Depth 6 0.50m 0										
Samp Depth (m)	oles & Ir Type	Results	Depth (m)	Level (m AOD)	Legend		Stratum D	escription		
0.30	т		0.50			MADE GROUND; cobbly SAND. Gra sandstone, wood (noted but did not a	former fence post) and r	ome orange pockets gravely sli angular to subrounded of quart are cobble of brick. Grey tile te at 0.50 m	ghtly z, 	
									- 1	
									-2	
									-3	
									-44	
Remarks		<u> </u>		<u> </u>		<u> </u>			AGS	

Samples & In Situ Testing Depth Level Legand	()	Gronti	mij	j	1 A S	Grontmij Solihull st Floor Yorke Hou vrleston Way Solihull B90 4LH fel: 01217 116600	se		Trialpit No HP117 Sheet 1 of 1	
Location: Hunter Road, Cannock Dimensions: 0.30m Scale Difference 0.42m E E Logged By Samples & In Situ Testing Depth Level Level Stratum Description eph (m) Type Results MADE GROUND: Grase over how with orange pockets gravely SAND. Gravel is fine to ocarse subangular to rounded of quartz, sandstone and brick with rare glass and ash. MADE GROUND: Page gravel indicative of services no further excavation 0.20 T 0.40 MADE GROUND: Pag gravel indicative of services no further excavation										
Depth Output Image: Computer of the second										
Client: Cannock Chase Council Logged By RJH Samples & In Situ Testing Depth (m) Type Depth (m) (m AOD) Legend Stratum Description 0.20 T 0.40 MDE CROUND: Grass over brown with orange pockets gravelly SAND. Gravel is finate ocarses ubangular to rounded of quartz, sandstone and brick with 0.42 MADE GROUND: Peag gravel indicative of services no further excavation	Location.		annock							
Samples & In Situ Testing epth (m) Depth (m ACD) Legend (m ACD) Stratum Description 0.20 T 0.40 MADE GROUND; Grass over brown with orange pockets gravely SAND. Gravel is fine to coarse subangular to rounded of quartz, sandstone and brick with rare glass and ash. MADE GROUND; Pea gravel indicative of services no further excavation 0.40 0.42 MADE GROUND; Pea gravel indicative of services no further excavation	Client:	Cannock Chase	Counci	il	Depth 5 0.42m 7: O			Logged By		
epth (m) Type Results (m) (m AOD) Legent Stratum Description 0.20 T T ADE GROUND; Grass over brown with arrange pockets gravelly SAND. Gravel is fine to carse subangular to rounded of quartz; sandstone and brick with rare glass and ash. MADE GROUND; Pea gravel indicative of services no further excavation 0.20 T 0.40 0.42 MADE GROUND; Pea gravel indicative of services no further excavation 0.41 0.42 MADE GROUND; Pea gravel indicative of services no further excavation Indertaken	Samples &	& In Situ Testing	Depth	Level						
0.42 MDE GROUND; Pea gravel indicative of services no further excavation undertaken Triaipit Complete at 0.42 m			(ḿ)	(m AOD)		MADE GROUND; fine to coarse sub rare glass and ash	Grass over brown with ora angular to rounded of quar). Gravel is n	
-1 -1 -2			0.40 0.42			MADE GROUND: Pea gravel indicative of services no further evolution				
						\undertaken			·	
							maipit complete	e al 0.42 m	-	
									_	
									-1	
									-	
									-	
									-	
									-	
									-	
									_	
									-2	
									-	
									-	
									-	
									-	
									-	
									-	
									-3	
									-	
									-	
									-	
									-	
									-	
									-4	
									-	
									-	
									-	
									-	
									-	
									-	
	Remarks:		pea gra	ivel abov	ve poss	ible drain				
Groundwater:	Groundwate	r:								

~	G	irontr	nij	j		Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No. HP118 Sheet 1 of	3		
Project						ject No.	Co-ords: -		Date			
Cannoc						270-011	Level: -		11/09/201	12		
Location	n: ł	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale			
							Depth E		1:25			
Client: Cannock Chase Council 0.20m 0.20m JS												
Samp Depth (m)	les & Ir Type	Results	Depth (m)	Level (m AOD)	Legend		Stratum I	Description				
						MADE GROUND; to medium subrou	Scrub vegetation over o nded to rounded of quar	range/brown gravelly SAND. Gr rtz with rare fragments of coal a	avel fine nd	-		
0.20												
										-		
										-		
										-		
										-		
										-1		
										-		
										-		
										-		
										-		
										-		
										-		
										-2		
										-		
										-		
										-		
										r		
										-		
										-		
										-3		
										-		
										-		
										-		
										t		
										-4		
										-		
										-		
										-		
										-		
Remarks	:											
Groundw									AG	S		

<	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	ise		Trialpit No HP119 Sheet 1 of 1			
Project I	Nam	е				ect No.	Co-ords: -		Date			
Cannocl					106	270-011	Level: -		11/09/2012			
Location	า:	Hunter Road, Ca	annock				Dimensions:	0.30m	Scale 1:25			
Client:		Cannock Chase		il			Depth 60 0.20m 7.0		Logged By JS			
	es & li Type	n Situ Testing Results	Depth (m)	Level (m AOD) L	egend		Stratum I	Description				
				X		MADE GROUND; fine to medium su	; Scrub vegetation over light brown gravelly SAND. Gravel is ubrounded to rounded of quartz. Some rootlets.					
0.20	J,V		0.20				Trialpit Comp	lete at 0.20 m				
									tandard Trialpt Log V2 dated 27h			
Remarks: Groundwa		I		1 1					AGS			

Grc Grc	ontmij	i	1 7 5	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP120 Sheet 1 of 1	
Project Name			1	ect No.	Co-ords: -		Date	_
Cannock Part 2a			106	270-011	Level: -		11/09/2012	
Location: Hunter	Road, Cannock				Dimensions:	0.30m	Scale	
					Depth &		1:25	
	ck Chase Counci	l			Depth 6 0.20m 0		Logged By JS	
Samples & In Situ TeDepth (m)TypeF	Results Depth	Level (m AOD)	Legend		Stratum D	Description		
		Š		MADE GROUND;	Grass over light brown/c	prange fine to medium gravelly unded of quartz with frequent	SAND.	
0.20 J,V	0.20	۲ ۲	****	rootlets.				
					Trialpit Comple	ete at 0.20 m	14	
							-	
							-	
							-	
							-	
							-1	1
							-	
							-	
							-	
							-	
							-	
							-2	2
							-	
							-	
							-	
							-	
							-	
							-	
							-	
							-3	3
							-	
							-	
							-	
							~	
							-	
							-4	4
							n.	
							n	
							-	
							-	
							-	
							-	
							-	
Remarks:								
Groundwater:							AGS	

~	Grontr	nij	/	Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	ise		Trialpit No HP121 Sheet 1 of 1
Project N	lame			ject No.	Co-ords: -		Date
Cannock			106	270-011	Level: -		11/09/2012
Location:	Hunter Road, Ca	annock			Dimensions:	0.30m	Scale 1:25
Client:	Cannock Chase				Depth 6 0.20m 7. 0		Logged By JS
	s & In Situ Testing Type Results	Depth Level (m) (m AOE	Legend		Stratum E	Description	
				MADE GROUND; fine to medium su	Scrub vegetation over lig	ght brown gravelly SAND. Grave quartz. Some rootlets.	is _
0.20	V,V	0.20			Trialpit Compl	ete at 0.20 m	
Remarks:							
Remarks: Groundwat	ter:						

~	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit No HP122 Sheet 1 of 1	
Project						ject No.	Co-ords: -		Date	_
Cannoo	k Pa	rt 2a				270-011	Level: -		11/09/2012	
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale	
							Depth 60 0.60m 7.0		1:25	
Client:		Cannock Chase					0.60m 0.60m 0.60		Logged By JS	
Depth (m)	Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D			
0.20	J,V		0.20			Orange/brown gra	vellv SAND. Gravel is fin	ravelly SAND. Gravel is fine to ents of clinker and tile e to coarse with rare sub round		
						cobbles of quartz a	and coal.		-	
			0.60				Trialpit Comple	ete at 0.60 m		
									-	
									- -1 -	
									-	
									-	
									-	
									-2	!
									-	
									-	
									-3 - -	\$
									-	
									-	
									-4	ł
									-	
									-	
Remarks	:	<u> </u>				<u> </u>				
Groundw	ater:								AGS	

			-		(Grontmij Solihull			Trialpit No)
	G	irontr	ni	í	ŀ	st Floor Yorke Hou Arleston Way	se		HP123	
					5	Solihull B90 4LH Fel: 01217 116600			Sheet 1 of	1
Project	Nam	e			Proj	ect No.	Co-ords: -		Date	
Cannoo					106	270-011	Level: -		11/09/2012	2
Location	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale	
							Depth 0.20m 0.20m		1:25	
Client:	(Cannock Chase	Counci	I			0.20m 0		Logged By JS	y
		Situ Testing	Depth (m)	Level (m AOD)	Legend		Ctratum F	Description		
Depth (m)	Туре	Results	(m)	(m aod)		MADE GROUND:	Light brown fine to medi			
0.40	J,V		0.20 0.30 0.50 0.60			brick. Some rootle MADE GROUND; quartz and rare co	ts			-
										-1
										-
										-2
										- 3
										- 4
Remarks	:									
Groundw	ater:								AGS	5

~	G	rontr	nij	j	1 A S	Grontmij Solihull st Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit N HP124 Sheet 1 c	4
Project						ect No.	Co-ords: -		Date	
Cannoc					106	270-011	Level: -		11/09/20	12
Location	n: H	lunter Road, Ca	nnock				Dimensions:	0.30m	Scale	•
							Depth 60 0.60m 0.60		1:25	
Client:		Cannock Chase		1			0.60m 0.00		Logged I JS	By
Samp Depth (m)	les & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend			Description		
0.50	J,V		0.60			MADE GROUND; medium subangul bone and clinker. I of metal pipe appr	Rare boulder of clinker 1	m gravelly SAND. Gravel is fine glass with rare bottle tops, ecovered at 0.3m and a section ete at 0.60 m	to 1	
										- 1
										2
										-3 - - - -
										-4
Remarks		Terminated on o	concret	e obstru	ıction				— AG	S

	Grontr	nij		1 A S T	Grontmij Solihull st Floor Yorke Hou vrleston Way Solihull B90 4LH fel: 01217 116600			Trialpit No HP125 Sheet 1 of	
Project N					ect No.	Co-ords: - Level: -		Date 11/09/2012	
Cannock Location:		on o ol í		106	270-011		0.00		2
Location.		INOCK				Dimensions:	0.30m	Scale 1:25	
Client:	Cannock Chase (Council				Depth E 0.60m O		Logged By JS	y
	es & In Situ Testing	Depth (m) (r	Level m AOD)	egend		Stratum D	Description		
Depth (m) T	J,V T	0.60		.egend	MADE GROUND; to subangular of q bricks recovered. I	Stratum E Light brown gravelly SAI uartz brick with occasior Possible ACM material id Trialpit Comple	ND. Gravel is fine to coarse subi al coal fragments. 3No. Whole dentified at 100mm (sampled)	ounded	
									- 4
Remarks: Groundwa	Terminated on o	cobble ol	bstructio	วท				AGS	5

~	G	irontr	nij	j	1	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit HP12 Sheet 1	26
Project						ject No.	Co-ords: -		Date	e
Cannoo						270-011	Level: -		12/09/2	012
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scal 1:25	
Client:	(Cannock Chase	Counci	1			Depth 67 0.30m 67 O.30m 6		Loggeo JS	l By
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum E	Description		
0.25-0.30 0.30	V J,V		0.30			MADE GROUND; of gravel ,ash, clin Whole brick recov	Grass over gravelly SAN ker, quartz and concrete ered at 0.2m. Potential A Trialpit Comple	ID. Gravel is fine to coarse sub with rare brick fragments. ACM material recovered (sampl	angular ed)	-
							парк обц			- - - - - 1 -
										2
										-3
										-4
										-
Remarks										GS
Groundw	vater:									35

~	G	irontr	nij	j		Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit N HP12 Sheet 1 c	7
Project						ject No.	Co-ords: -		Date	
Cannoo						270-011	Level: -		12/09/20	12
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale	
							Depth E		1:25	
Client:		Cannock Chase		1			Depth 6 0.30m 7 0		Logged I RJH	Ву
Samp Depth (m)	les & Ir Type	N Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.10-0.30	J		0.30			Gravel is rounded	to subangular of guartz,	o coarse gravelly SAND with so clinker, brick, glass, ncrete. Potential ACM material	me roots.	-
			0.00				Trialpit Comple	ete at 0.30 m		-
										-
										-
										-
										-
										-
										-
										-
										-
										-
										-
										-
										-2
										-
										-
										-
										_
										-
										-
										-3
										-
										-
										-
										-
										-4
										-4
										-
										-
										-
										ſ
										-
										-
Remarks									— AG	
Groundw	/ater:									

	G	irontr	nij	j	1 /	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH	se		Trialpit N HP128	3
			_		٦	Fel: 01217 116600			Sheet 1 o Date	t 1
Project Cannoo						ect No. 270-011	Co-ords: - Level: -		12/09/20 ²	12
Locatio		Hunter Road, Ca	nnock		100		Dimensions:	0.30m	Scale	. 2
Localio	1								1:25	
Client:	(Cannock Chase	Counci	1			Depth 60 0.10m 0		Logged E RJH	Зy
Samp Depth (m)	les & Ir Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum [Description		
0.10-0.28	V	Results	0.10		****	MADE GROUND; subangular to ang material in the forr		Ily SAND. Gravel is fine to coars stic, concrete. Potential ACM nic and glass.	se 	
										- 1 - 1
										2
										3
										- 4
										_
Remarks				I					AG	
Groundw	vater:									

	G	irontr	ni	i	1 A	Grontmij Solihull Ist Floor Yorke Hou Arleston Way	se		Trialpit N HP129	
					5	Solihull B90 4LH Fel: 01217 116600			Sheet 1 of	f 1
Project					Proj	ject No.	Co-ords: -		Date	
Cannoo					106	270-011	Level: -		12/09/201	2
Locatio	n: I	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client:		Cannock Chase	Counci	I			Depth 6 0.28m 0		Logged B RJH	Зу
		n Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum [Description		
Depth (m)	J	Results	0.28	(m AOD)		MADE GROUND; subangular to rour fragments (gate pr Rare cobble sized sandstone. No vis	Grass over brown grave	Ily SAND. Gravel is fine to coars itially with glass, metallic concrete increasing from 0.1. d of hole at 0.28 on cobble of terial.	e	
										n
Remarks									— AG	S

	Grontr	nij	j	1 A S	Grontmij Solihull st Floor Yorke Hou rleston Way Golihull B90 4LH el: 01217 116600	se		Trialpit No HP130 Sheet 1 of)
Project Nan					ect No.	Co-ords: -		Date	
Cannock Pa				106	270-011	Level: -		13/02/201	3
Location:	Hunter Road, Ca	Innock				Dimensions:	0.30m	Scale 1:25	
Client:	Cannock Chase	Counci	il			Depth ອ 0.30m ຕິ		Logged B JS	у
Samples & Depth (m) Type	In Situ Testing e Results	Depth (m)	Level (m AOD) L	.egend		Stratum D	escription		
					MADE GROUND: subangular of qua brick recovered at	Grass over dark brown f rtz and crushed brick. Ra 0.3m	ine to medium gravelly SAND. are fragments of wood and who	Gravel is lle	-
	D 0.30					Trialpit Comple			-1-1
Remarks:	Hand dug pit to	0.30ml			r olfactory eviden	ce of contamination	noted		
Remarks: Groundwater:		0.30ml	bgl. No vi	sual or	r olfactory eviden	ce of contamination	noted.	AG	BASE 3.1 (BId 426.5)

	Grontr	nij	j	1 A S	Grontmij Solihull st Floor Yorke Hou rleston Way Solihull B90 4LH el: 01217 116600	se		Trialpit No HP131 Sheet 1 of	
Project Nar					ect No.	Co-ords: -		Date	
Cannock P				106	270-011	Level: -		13/02/201	3
Location:	Hunter Road, Ca	Innock				Dimensions:	0.30m	Scale 1:25	
Client:	Cannock Chase	Counci	1			Depth ອ 0.30m ຕິ		Logged B JS	у
Samples & Depth (m) Typ	e Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.20 D					MADE GROUND: subangular to rour	Grass over dark brown f nded of quartz and brick	ine to medium gravelly SAND. with rare slate.	Gravel is	-
		0.30				Trialpit Comple	ete at 0.30 m		
Remarks: Groundwater		0.30ml	ogl. No v	risual or	r olfactory eviden	ce of contamination	noted.	AGS	BASE 3.1 (Bid 426.68) Standard Trialoit Loo v2 dated 27h N

~		Trialpit No HP132 Sheet 1 of								
Project	Name	Э				Tel: 01217 116600 ect No.	Co-ords: -		Date	
Cannoc					106	270-011	Level: -		13/02/201	3
Location	n: H	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client:	(Cannock Chase (Counci	I			Depth E 0.30m O		Logged B JS	y
Samp Depth (m)	les & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend			Description	·	
0.10	D		0.30			MADE GROUND: with occasional ro brick with rare slat	Grass over dark brown f otlets. Gravel is subang e and clinker. Trialpit Compl	ine to medium slightly gravelly ular to rounded of quartz and ete at 0.30 m	SAND	-
										- 1
										-2
										- 3
										- 4
Remarks Groundw		Hand dug pit to	0.30mt	ogl. Clin	ker note	ed, however no o	Ifactory evidence of	contamination noted.	AG	S

~	Grontmij Solihull Ist Floor Yorke Hou Arleston Way Solihull B90 4LH Fel: 01217 116600	se		Trialpit N HP133 Sheet 1 of	3					
Project					-	ect No.	Co-ords: -		Date	
Cannoc					106	270-011	Level: -		13/02/201	3
Location	n: H	Hunter Road, Ca	nnock				Dimensions:	0.30m	Scale 1:25	
Client:	(Cannock Chase (Counci	I			Depth E 0.30m O		Logged B JS	By
Samp Depth (m)	les & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum D	Description		
0.30	D	roome	0.30	<u> </u>		MADE GROUND: rootlets. Gravel is packaging.	Grass over light brown f subangular to rounded c Trialpit Compl	ine to medium gravelly SAND w f quartz with rare red plastic ete at 0.30 m	vith rare	-
										- - - - - - - - - - - - -
										- 2
										- 3
										- 4
Remarks		Hand dug pit to	0.30mt	ogl. No v	visual o	r olfactory eviden	ce of contamination	noted.	AG	S

	Grontr	nij	j	1 A S	Grontmij Solihull st Floor Yorke Hou rleston Way solihull B90 4LH el: 01217 116600	se		Trialpit N HP134 Sheet 1 o	1 I
Project Na				-	ect No.	Co-ords: -		Date	
Cannock P		<u> </u>		106	270-011	Level: -		13/02/201	13
Location:	Hunter Road, Ca	Innock				Dimensions:	0.30m	Scale 1:25	
Client:	Cannock Chase	Counci	I			Depth E 0.30m O		Logged E JS	Зy
Samples 8 Depth (m) Typ	k In Situ Testing De Results	Depth (m)	Level (m AOD)	egend		Stratum D	escription		
0.30 D		0.30			MADE GROUND: rootlets. Gravel is	Grass over dark brown fi subangular to rounded o	ne to medium gravelly SAND f quartz and brick.	with rare	-
						Trialpit Comple	xe at 0.30 m		
Remarks:	Hand dug pit to	0.30ml	ogl. No vis	sual or	r olfactory eviden	ce of contamination	noted.		285 551 Standard Trianit on v2 dated 27th Nov 10

	Gronti	mij		Grontmij Solihull 1st Floor Yorke Hou Arleston Way Solihull B90 4LH Tel: 01217 116600	ise		Trialpit No HP135 Sheet 1 of 1
Project Na				ject No.	Co-ords: -		Date
Cannock			100	6270-011	Level: -		13/02/2013
Location:	Hunter Road, Ca	annock			Dimensions: Depth E 0.30m o	0.30m	Scale 1:25
Client:		nnock Chase Council					Logged By JS
	Sector Sector Sector Sector Sype Results	Depth I (m) (m	Level n AOD) Legend		Stratum D	escription	
	D	0.30		MADE GROUND: with rare rootlets.	Scrub vegetation over da Gravel is subrounded of	ark brown fine to medium grave quartz.	ly SAND
							-4
							in the second
Remarks: Groundwate		0.30mbg	 II. No visual o	or olfactory evider	nce of contamination	noted.	AGS

	Gron	tmij	1 A S	Grontmij Solihull st Floor Yorke Hou vrleston Way Solihull B90 4LH el: 01217 116600	se		Trialpit No HP136 Sheet 1 of 1		
Project N			-	ect No.	Co-ords: -		Date		
Cannock Location		d Cannack	106	270-011	Level: - Dimensions:	0.00	13/02/2013 Scale		
LUCATION		Hunter Road, Cannock				0.30m	1:25		
Client:	Cannock Cl	hase Council			Depth E 0.30m O		Logged By JS		
	es & In Situ Testing		evel AOD) Legend		Stratum [Description			
epth (m)	Type Results	; (m) (m /	AOD) Legend	MADE GROUND:		ark brown fine to medium grave quartz with rare brick.	elly SAND		
0.10	D	0.25					-		
		0.30	~~~~	MADE GROUND:	Orange fine to medium Trialpit Compl				
							-1		
							-2		
							-3		
							- - -4		
							-		
Remarks: Groundwa		pit to 0.30mbgl.	No visual o	r olfactory evider	ce of contamination	noted.	AGS		

	Grontn	nij	j	1 A S	Frontmij Solihull st Floor Yorke Hou rleston Way olihull B90 4LH el: 01217 116600	se		Trialpit N HP137 Sheet 1 of	,
Project Nan					ect No.	Co-ords: -		Date	
Cannock Pa				106	270-011	Level: -		13/02/201	3
Location:	Hunter Road, Can	nock				Dimensions:	0.30m	Scale 1:25	
Client:	Cannock Chase C	ck Chase Council				Depth E 0.30m O		Logged B JS	By
Samples & Depth (m) Type	In Situ Testing	Depth (m)	Level (m AOD) Le	egend		Stratum D	escription		
					MADE GROUND: with rare rootlets.	Scrub vegetation over da Gravel is subrounded of	rk brown fine to medium grave quartz with rare brick.	IIy SAND	-
0.30 D		0.30		~~~~		Trialpit Comple	ite at 0.30 m		
									- - 1 - - -
									2
									-
									-3
									on v2 dated 27th Nov 03
									, , , , , , , , , , , , , , , , , , ,
Remarks:	Hand dug pit to 0).30mb	ogl. No vis	ual or	olfactory eviden	ce of contamination	noted.	AG	E 3 1 (Bld 426.58) Sta

	Grontm		Trialpit No HP138 Sheet 1 of 1					
Project Nan			Project N		Co-ords: -		Date	
Cannock Pa Location:	art 2a Hunter Road, Canno	ock	106270-0	011	Level: - Dimensions:	0.30m	13/02/201 Scale	3
Location.		OCK				0.3011	1:25	
Client:	Cannock Chase Council				Depth E 0.30m 0		Logged By JS	
	In Situ Testing De	epth Level	_egend		Stratum De			
epth (m) Type 0.20 D		m) (m AOD) ^I	MAE with	DE GROUND: a rare rootlets. asional brick. F		k brown fine to medium gra		-
					Trialpit Complet	e at 0.30 m		
Remarks: Groundwater:		30mbgl. No vi	sual or olfac	ctory eviden	ce of contamination	noted.	AG	

APPENDIX D LABORATORY CHEMICAL ANAYLSIS RESULTS

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: Supplement to 295391-1

Date of Report: 09-Oct-2012

Customer: Grontmij 3rd Floor Radcliffe House Blenheim Court Lode Lane Solihull B91 2AA

Customer Contact: Mr Gareth Taylor

Customer Job Reference: 106270 Customer Site Reference: Hunter Road Date Job Received at SAL: 12-Sep-2012 Date Analysis Started: 18-Sep-2012 Date Analysis Completed: 21-Sep-2012

The results reported relate to samples received in the laboratory

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by : Mr Ross Walker Customer Services Manager (Land)

SAL Reference: 295391

Project Site: Hunter Road Customer Reference: 106270

Analysed as Soil

PAH US EPA 16 (B and K split)

Soil

			SA	L Reference	295391 008	295391 010	295391 013	295391 015	295391 016	295391 018	295391 020	295391 021	295391 022	295391 023
		Custon	ner Sampl	e Reference	HP106 0.2	HP107 0.4	HP108 0.5	HP109 0.5	HP110 0.3	HP111 0.35	HP112 0.3- 0.40	HP113 0.3	HP114 0.5	HP115 0.4
			Da	ate Sampled	10-SEP- 2012	11-SEP- 2012	11-SEP- 2012	11-SEP- 2012						
Determinand	Method	Test Sample	LOD	Units										
Naphthalene	T149	AR	0.01	mg/kg	0.43	0.07	0.04	0.02	0.04	0.02	0.04	0.05	0.05	0.05
Acenaphthylene	T149	AR	0.01	mg/kg	2.1	0.08	0.05	0.02	0.04	0.02	0.04	0.07	0.04	0.06
Acenaphthene	T149	AR	0.01	mg/kg	0.49	0.07	0.15	0.03	0.03	0.01	0.02	0.03	0.04	0.03
Fluorene	T149	AR	0.01	mg/kg	2.5	0.08	0.11	0.03	0.03	0.01	0.03	0.05	0.04	0.04
Phenanthrene	T149	AR	0.01	mg/kg	15	1.3	1.9	0.39	0.83	0.30	0.44	0.92	0.62	0.60
Anthracene	T149	AR	0.01	mg/kg	4.1	0.33	0.55	0.12	0.23	0.09	0.12	0.29	0.20	0.12
Fluoranthene	T149	AR	0.01	mg/kg	17	4.2	4.5	1.4	2.7	1.2	1.4	2.8	1.8	1.5
Pyrene	T149	AR	0.01	mg/kg	13	3.7	3.8	1.2	2.3	0.99	1.2	2.4	1.5	1.3
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	6.4	1.9	2.0	0.69	1.4	0.58	0.73	1.5	0.97	0.85
Chrysene	T149	AR	0.01	mg/kg	5.9	1.9	2.0	0.68	1.4	0.58	0.77	1.4	0.95	0.86
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	5.8	2.4	1.7	0.78	1.5	0.57	0.85	1.4	1.1	1.1
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	5.4	2.0	1.9	0.71	1.6	0.62	0.78	1.5	0.94	0.93
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	6.2	2.5	2.0	0.84	1.7	0.65	0.87	1.5	1.1	1.1
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	3.3	1.6	1.1	0.47	1.0	0.38	0.59	0.79	0.64	0.66
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	1.1	0.51	0.39	0.16	0.33	0.13	0.23	0.28	0.22	0.22
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	3.7	1.9	1.3	0.51	1.2	0.42	0.69	0.85	0.72	0.75
PAH(total)	T149	AR	0.01	mg/kg	92	25	23	8.1	16	6.6	8.8	16	11	10

SAL Reference: 295391 Project Site: Hunter Road Customer Reference: 106270 Soil Analysed as Soil PAH US EPA 16 (B and K split) SAL Reference 295391 026 295391 027 295391 028 295391 295391 295391 295391 032 295391 033 029 030 031 HP124 0.5 HP125 0.2 **Customer Sample Reference** HP118 0.2 HP119 0.2 HP120 0.2 HP121 0.2 HP122 0.2 HP123 0.4 **Date Sampled** 11-SEP-2012 11-SEP 2012 11-SEP-2012 11-SEP 2012 11-SEP-2012 11-SEP-2012 11-SEP-2012 11-SEP-2012 Test Determinand Method LOD Units ample T149 0.01 0.02 0.02 0.25 0.04 Naphthalene AR mg/kg 0.01 0.04 0.01 0.01 T149 AR 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.18 0.03 Acenaphthylene mg/kg Acenaphthene T149 AR 0.01 mg/kg 0.01 0.01 0.01 0.01 0.01 <0.01 1.3 0.02 T149 0.01 0.02 Fluorene AR 0.01 mg/kg 0.01 0.01 0.01 0.01 < 0.01 0.85 Phenanthrene T149 AR 0.01 0.10 0.25 0.14 0.26 0.18 0.06 7.5 0.44 mg/kg T149 AR 0.01 0.12 Anthracene mg/kg 0.03 0.07 0.04 0.07 0.04 0.02 2.4 Fluoranthene T149 AR 0.01 0.38 1.2 0.58 0.87 0.61 0.30 17 1.4 mg/kg Pyrene T149 AR 0.01 mg/kg 0.41 1.1 0.55 0.76 0.55 0.29 14 1.3 Benzo(a)Anthracene T149 AR 0.01 0.20 0.59 0.39 0.44 0.38 0.20 7.0 0.93 mg/kg Chrysene T149 AR 0.01 mg/kg 0.21 0.69 0.43 0.47 0.39 0.21 6.7 0.92 T149 AR 0.58 Benzo(b)fluoranthene 0.01 mg/kg 0.27 0.74 0.51 0.49 0.31 7.3 1.2 Benzo(k)fluoranthene T149 AR 0.01 0.24 0.59 0.54 0.46 0.42 0.24 6.7 1.1 mg/kg T149 0.26 7.5 Benzo(a)Pyrene AR 0.01 mg/kg 0.61 0.56 0.49 0.47 0.30 1.2 Indeno(123-cd)Pyrene T149 AR 0.01 0.16 0.42 0.38 0.34 0.30 0.21 4.5 0.72 mg/kg T149 AR 0.01 Dibenzo(ah)Anthracene mg/kg 0.06 0.17 0.13 0.14 0.10 0.07 1.5 0.25 T149 Benzo(ghi)Perylene AR 0.01 0.18 0.49 0.44 0.40 0.35 0.25 5.1 0.81 mg/kg PAH(total) T149 AR 0.01 mg/kg 2.5 7.0 4.8 5.3 4.3 2.5 90 11

SAL Reference: 295391 Project Site: Hunter Road Customer Reference: 106270

Soil Asbe

......

Analysed as Soil

estos						
SAL Reference	295391	295391	295391	295391	295391	295391
	001	002	004	005	007	010
Customer Sample Reference	HP101 0.3	HP102 0.2	HP103 0.4	HP104 0.2	HP105 0.25	HP107 0.4
Date Sampled	10-SEP-	10-SEP-	10-SEP-	10-SEP-	10-SEP-	10-SEP-
	2012	2012	2012	2012	2012	2012

	10-SEP- 2012	11-SEP- 2012	11-SEP- 2012											
Determinand	Method	Test Sample	LOD	Units										
Asbestos ID	T27	AR			N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	Chrysotile Detected -	N.D.	N.D.

295391 011

HP107 0.4 ACM 295391 019

HP112 0.3

295391 023

HP115 0.4

295391 024

HP116 0.3

SAL Reference:	295391
Project Site:	Hunter Road

Analysed as Soil

Customer Reference: 106270

Soil

Asbestos 295391 025 295391 033 295391 034 295391 035 295391 036 295391 037 295391 038 295391 039 295391 040 295391 041 SAL Reference HP126 0.2 ACM HP127 0.1 ACM HP128 0.05-0.1 HP128 0.05 ACM **Customer Sample Reference** HP117 0.2 HP125 0.2 HP125 0.2 HP126 0.3 HP127 0.1 HP129 0.2 11-SEP-2012 11-SEP-2012 11-SEP-2012 12-SEP-2012 12-SEP-2012 12-SEP-2012 12-SEP-2012 12-SEP-2012 12-SEP-2012 12-SEP-2012 Date Sampled Test Sample Determinand Method LOD Units Asbestos ID T27 N.D. N.D. Chrysotile Detected N.D. N.D. N.D. N.D. Chrysotile Detected Chrysotile Detected AR Amosite Detected Amosite Detected

	SAL Refere	ence:	295391					Sector Sector					
	Project	Site:	Hunter Ro	ad									
Cu	stomer Refere	ence:	106270										
Soil			Analysed	as Soil									
SOM									Sec.				
				SA	L Reference	295391 016	295391 021	295391 030	295391 031				
			Custon	ner Sampl	le Reference	HP110 0.3 HP113 0.3		HP122 0.2	HP123 0.4				
				D	ate Sampled	10-SEP-2012	11-SEP-2012	11-SEP-2012	11-SEP-2012				
Determina	and Met	hod	Test Sample	LOD	Units								

Index to symbols used in Supplement to 295391-1

Value	Description
AR	As Received
N.D.	Not Detected
S	Analysis was subcontracted
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Asbestos Comments:
019 - Detected in cement 034 - Detected in cement 036 - Detected in insulation board 038 - Detected in cement 040 - Detected in insulation board
Supplemental report to include additional asbestos information

Method Index

Value	Description
T149	GC/MS (SIR)
T27	PLM
T287	Calc TOC/0.58

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Naphthalene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Acenaphthylene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Acenaphthene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Fluorene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Phenanthrene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Anthracene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Fluoranthene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Pyrene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Chrysene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
PAH(total)	T149	AR	0.01	mg/kg	U	008,010,013,015-016,018,020-023,026-033
Asbestos ID	T27	AR			SU	001-002,004-005,007,010-011,019,023-025,033-041
Soil Organic Matter	T287	AR	0.1	%	N	016,021,030-031

Scientific Analysis Laboratories Ltd

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 317955-1

Date of Report: 01-Mar-2013

Customer: Grontmij 1st Floor Yorke House Arleston Way Shirley Solihull B90 4LH

Customer Contact: Ms Sasha Layton

Customer Job Reference: 106270 Customer Site Reference: Hunter Road Date Job Received at SAL: 22-Feb-2013 Date Analysis Started: 25-Feb-2013 Date Analysis Completed: 01-Mar-2013

The results reported relate to samples received in the laboratory

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs All results have been reviewed in accordance with QP22

Report checked and authorised by : Mr Ross Walker Customer Services Manager (Land) Issued by : Mr Ross Walker Customer Services Manager ² (Land)

	SAL Reference	317955												
	Project Site	Hunter Ro	bad											
Cu	stomer Reference	106270	106270											
Soil	bil Analysed as Soil													
Miscellaneous														
			SA	L Reference	317955 001	317955 002	317955 003	317955 004	317955 005					
		Custor	ner Sampl	le Reference	HP130	HP131	HP132	HP133	HP134					
			D	ate Sampled	13-FEB-2013	13-FEB-2013	13-FEB-2013	13-FEB-2013	13-FEB-2013					
Determina	nd Method	Test Sample	LOD	Units										
	T27	AR			N.D.	N.D.	N.D.	N.D.	N.D.					

SAL	Reference:	317955						
	Project Site:	Hunter Ro	bad					
Custome	r Reference:	106270						
Soil Miscellaneous		Analysed	as Soil					
			SA	L Reference	317955 006	317955 007	317955 008	317955 009
		Custon	ner Sampl	le Reference	HP135	HP136	HP137	HP138
			Da	ate Sampled	13-FEB-2013	13-FEB-2013	13-FEB-2013	13-FEB-2013
Determinand	Method	Test Sample	LOD	Units				
Determinanu		oumpie						

Index to symbols used in 317955-1

Value	Description
AR	As Received
N.D.	Not Detected
S	Analysis was subcontracted
U	Analysis is UKAS accredited

Method Index

Value	Description
T27	PLM

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Asbestos ID	T27	AR			SU	001-009

APPENDIX E TIER 1 SCREENING SPREADSHEETS

APPENDIX E1 SOILS

Multiplier:	1 Strata Observed Contamination Sample Description		Cannock C	nase Counc	n Hunte	er Rd (10627	<u>v-v1v-011)</u>							
	Date Sample ID		Nov-11	Nov-11	Nov-11	Nov-11	Nov-11	Nov-11 HP11 0.45	Nov-11 HP12 0.5	Nov-11	Nov-11 HP16 0.3	Nov-11	Nov-11	Nov-11 HP19 0.2
	Sample ID Depth	m	HP06 0.1 0.1	HP07 0.7 0.7	HP08 0.5 0.5	HP010 0.3 0.3	HP 11 0.1 0.1	0.45		HP14 0.5 0.5		HP17 0.15 0.15	HP18 0.4 0.4	
reening Level	Substance	Units												
-														
480 400	Acenaphthene Acenaphthylene		<0.1 <0.1	0.4	3 0.2	0.4 <0.1	<0.1 <0.1			<0.1 <0.1			<0.1 <0.1	<0.1 <0.1
4900 4.7	Anthracene Benz(a)anthracene	mg/kg	0.2	1.4	6.3 15	0.9	<0.1 0.3			<0.1 0.4			<0.1	<0.1
0.94	Benzo(a)pyrene	mg/kg	1.7	11	11	1.4	0.3			0.3			0.2	<0.1
6.5 46	Benzo(b)fluoranthene Benzo(ghi)perylene	mg/kg	2.2	15 9.8	15 7.4	1.8 1	0.5			0.5			0.2	0.1 <0.1
9.6 8	Benzo(k)fluoranthene Chrysene	mg/kg	0.7	4.9 10	5 16	0.6 1.9	0.2			0.2			<0.1	<0.1 0.1
0.86 460	Dibenz(ah)anthracene Fluoranthene		0.5	2.9 18	3.4 46	0.3 6.2	<0.1 0.6			<0.1 0.8			<0.1 0.4	<0.1
380 3.9	Fluorene Indeno(123-cd)pyrene	mg/kg	<0.1 1	0.2	2.2 7.6	0.3	<0.1 0.2			<0.1 0.2			<0.1	<0.1 <0.1
3.7 200	Naphthalene Phenanthrene	mg/kg	<0.1 0.7	0.4 5	<0.1 39	<0.1 4.1	<0.1 0.2			<0.1 0.5			<0.1 0.1	<0.1 <0.1
1000	Pyrene		2.9	16	35	5.4	0.5			0.7			0.3	0.2
55 160	Aliphatic EC 5-6 Aliphatic EC >6-8													
46	Aliphatic EC >8-10	mg/kg			L									<u> </u>
230 1700	Aliphatic EC >12-16 Aliphatic EC >12-16 Aliphatic EC >16-25	mg/kg												
64000 64000	Aliphatic EC >16-35 Aliphatic EC >35-44	mg/kg												
130	Aromatic EC 5-7 (benzene)													
270 65	Aromatic EC >7-8 (toluene) Aromatic EC >8-10	mg/kg												
160 310	Aromatic EC >10-12 Aromatic EC >12-16	mg/kg												\vdash
480 1100	Aromatic EC >16-21 Aromatic EC >21-35	mg/kg	50											
1100	Aromatic EC >35-44	mg/kg												
-	Sulphate pH low limit	mg/kg												
-	pH high limit				0				0					
- 0.1	Asbestos PAHs total				0				0					
-	Petroleum Hydrocarbons	mg/kg												
-	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene													
-	1,3-Dichlorobenzene 1,4-Dichlorobenzene													
-	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol													
-	2,4-Dichlorophenol 2,4-Dimethylphenol													
-	2,4-Dinitrophenol 2,4-Dinitrotoluene													
-	2,6-Dinitrotoluene 2-Chloronaphthalene													
-	2-Chlorophenol 2-methyl phenol													
-	2-Methylnaphthalene 2-Nitroaniline													
	2-Nitrophenol													
-	3-Nitroaniline 3/4-Methylphenol													
-	4-Bromophenyl phenylether 4-Chloro-3-methylphenol													
-	4-Chloroaniline 4-Chlorophenyl phenylether													
-	4-Nitroaniline 4-Nitrophenol													
480 400	Acenaphthene Acenaphthylene		<0.1 <0.1		3 0.2				<0.1 <0.1			<0.1 <0.1		
4900	Anthracene Azobenzene		0.2		6.3				0.1			<0.1		\vdash
4.7 0.94	Benzo(a)Anthracene Benzo(a)Pyrene		1.1 1.7		15 11				1 0.9			0.2		
46	Benzo(b/k)Fluoranthene Benzo(ghi)Perylene		3		20 7.4				1.6 0.9			0.3		
-	Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether		1.0						2.0					
-	Bis (2-chloroisopropyl) ether Bis (2-chloroisopropyl) ether Bis (2-ethylhexyl)phthalate				L									<u> </u>
-	Butyl benzylphthalate													
- 8	Carbazole Chrysene		1.8		16				1.4			0.2		
-	Di-n-butylphthalate Di-n-octylphthalate													
0.86	Dibenzo(ah)Anthracene Dibenzofuran		0.5		3.4				0.3			<0.1		
-	Diethyl phthalate Dimethyl phthalate													
460 380	Fluoranthene Fluorene		3 <0.1		46 2.2				2 <0.1			0.4 <0.1		
-	Hexachlorobenzene Hexachlorobutadiene				-									
-	Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane													
3.9	Indeno(123-cd)Pyrene		1		7.6				0.8			0.1		
3.7	Isophorone Naphthalene		<0.1		<0.1				0.1			<0.1		<u> </u>
-	Nitrobenzene Pentachlorophenol													<u> </u>
200	Phenanthrene Phenol		0.7		39				0.5			0.1		

1

Observed Contamination Sample Description Date Sample ID + Depth Substance	Nov-11 HP20 0.4 0.4		Nov-11	N 44										
Sample ID F	HP20 0.4	HP21 0.1	Nov-11											
Substance	0.4		HP21 0.2		Nov-11 HP23 0.45	Nov-11 HP24 0.6		Nov-11 WS2 0.2(SC		Nov-11 WS4 0.65	Nov-11 WS5 0.7		Nov-11 WS7 0.7	Nov-11 WS7 1.8
		0.1	0.2	0.25	0.45	0.6	0.2	0.2	0.4	0.65	0.7	0.3	0.7	1.8
Acenaphthene Acenaphthylene	0.1 0.2	0.2 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1			0.7	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1		<0.1 <0.1	<0.1 <0.1
Anthracene Benz(a)anthracene	0.7 5.8	0.5 1.5	<0.1 0.4	0.2	<0.1 <0.1			3.5 7.5	<0.1 <0.1	<0.1 0.3	<0.1 0.4		0.1 0.5	<0.1 0.2
Benzo(a)pyrene Benzo(b)fluoranthene	6.2 7.8	1.5 2.1	0.5 0.7	1.7 2	<0.1 0.1			6.1 8.4	<0.1 <0.1	0.2	0.6 0.7		0.6	0.1
Benzo(ghi)perylene Benzo(k)fluoranthene	4 2.6	1 0.7	0.3	1.3	<0.1 <0.1			4.1	<0.1 <0.1	0.2	0.4		0.4	0.2 <0.1
Chrysene Dibenz(ah)anthracene Fluoranthene	6.8 1.7 13	2.1 0.4 5.2	0.5 0.1 1	1.8 0.4 3	0.1 <0.1 0.2			8.6 1.5 18	<0.1 <0.1 <0.1	0.3 <0.1 0.7	0.5 0.2 0.8		0.6 0.1 1	0.2 <0.1 0.1
Fluorene	<0.1 3.8	<0.1 0.9	<0.1 0.3	<0.1 1.1	<0.1 <0.1			0.7	<0.1 <0.1	<0.1 0.2	<0.1 0.4		<0.1 0.4	<0.1 0.1
Naphthalene Phenanthrene	0.4 2.6	<0.1 1.9	<0.1 0.3	<0.1 0.7	<0.1 0.1			0.1 11	<0.1 <0.1	<0.1 0.3	<0.1 0.2		<0.1 0.6	<0.1 <0.1
Pyrene	13	4.5	0.9	2.9	0.2			14	<0.1	0.6	0.9		0.8	0.1
Aliphatic EC 5-6 Aliphatic EC >6-8 Aliphatic EC >8-10														
Aliphatic EC >12-16 Aliphatic EC >12-16														
Aliphatic EC >16-35 Aliphatic EC >35-44														
Aromatic EC 5-7 (benzene)			_											
Aromatic EC >7-8 (toluene) Aromatic EC >8-10 Aromatic EC >10-12														
Aromatic EC >10-12 Aromatic EC >12-16 Aromatic EC >16-21														
Aromatic EC >21-35 Aromatic EC >35-44	150									10				
Sulphate														
pH low limit pH high limit Asbestos	0			0	0			1	0	0				0
PAHs total Petroleum Hydrocarbons	0			0	0					•				
1,2,4-Trichlorobenzene														
1,2-Dichlorobenzene 1,3-Dichlorobenzene														
1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol														
2,4-Dichlorophenol 2,4-Dimethylphenol														
2,4-Dinitrophenol 2,4-Dinitrotoluene														
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol														
2-methyl phenol 2-Methylnaphthalene														
2-Nitroaniline 2-Nitrophenol														
3-Nitroaniline 3/4-Methylphenol														
4-Bromophenyl phenylether 4-Chloro-3-methylphenol 4-Chloroaniline														
4-Chlorophenyl phenylether 4-Nitroaniline														
4-Nitrophenol Acenaphthene	0.1							0.7		<0.1				<0.1
Acenaphthylene Anthracene Azobenzene	0.2			·				0.2 3.5		<0.1 <0.1				<0.1 <0.1
Benzo(a)Anthracene Benzo(a)Pyrene	5.8 6.2							7.5 6.1		0.3				0.2
Benzo(b/k)Fluoranthene Benzo(ghi)Perylene	10 4						-	11 4.1		0.5			-	0.3
Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether	_													_
Bis (2-chloroisopropyl) ether Bis (2-ethylhexyl)phthalate Butyl benzylphthalate														
Carbazole Chrysene	6.8							8.6		0.3				0.2
Di-n-butylphthalate Di-n-octylphthalate					-		-						-	
Dibenzo(ah)Anthracene Dibenzofuran Diethyl phthalate	1.7			·				1.5		<0.1				<0.1
Dimethyl phthalate Fluoranthene	13							18		0.7				0.1
Fluorene Hexachlorobenzene	<0.1							0.7		<0.1				<0.1
Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	_													_
Indeno(123-cd)Pyrene Isophorone	3.8							4		0.2				0.1
Naphthalene Nitrobenzene	0.4							0.1		<0.1				<0.1
Pentachlorophenol Phenanthrene	2.6							11		0.3				<0.1
Phenol Pyrene	13							14		0.6				0.1

Strata Observed Contamination															
Sample Description		Nov-11	Nov-11	Nov-11	Nov-11	Nov-11	Nov-11	Sep-12							
	WS7 2.15	HP A 0.25	WS2 1.7	WS4 1.4	WS6 1.5	HP12 0.5	HP13 0.4	HP101 0.3	HP102 0.2	HP103 0.4	HP104 0.2	HP105 0.2	HP106 0.2	HP107 0.4	HP108 0.5
Substance															
Acenaphthene Acenaphthylene						<0.1 <0.1	<0.1 <0.1						0.49	0.07	0
Anthracene Benz(a)anthracene	<0.1					0.1	<0.1 0.4						4.1	0.33	0
Benzo(a)pyrene	<0.1					0.9	0.5						6.4 6.2	2.5	
Benzo(b)fluoranthene Benzo(ghi)perylene	<0.1					1.2 0.9	0.7 0.6						5.8 3.7	2.4 1.9	
Benzo(k)fluoranthene Chrysene						0.4	0.2						5.4 5.9	2	
Dibenz(ah)anthracene Fluoranthene	<0.1					0.3	0.2						1.1 17	0.51 4.2	C
Fluorene Indeno(123-cd)pyrene	<0.1					<0.1 0.8	<0.1 0.4						2.5 3.3	0.08 1.6	C
Naphthalene	<0.1					0.1	<0.1						0.43	0.07	(
Phenanthrene Pyrene	0.2					0.5 1.9	1						13	3.7	
Aliphatic EC 5-6															
Aliphatic EC >6-8 Aliphatic EC >8-10															
Aliphatic EC >12-16 Aliphatic EC >12-16															
Aliphatic EC >16-35 Aliphatic EC >35-44															
Aromatic EC 5-7 (benzene)					1										
Aromatic EC >7-8 (toluene)															
Aromatic EC >8-10 Aromatic EC >10-12															
Aromatic EC >12-16 Aromatic EC >16-21															
Aromatic EC >21-35 Aromatic EC >35-44	7														
Sulphate pH low limit															
pH high limit Asbestos															
PAHs total Petroleum Hydrocarbons															
1,2,4-Trichlorobenzene															
1,2-Dichlorobenzene 1,3-Dichlorobenzene															
1,4-Dichlorobenzene															
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol															
2,4-Dichlorophenol 2,4-Dimethylphenol															
2,4-Dinitrophenol 2,4-Dinitrotoluene															
2,6-Dinitrotoluene 2-Chloronaphthalene															
2-Chlorophenol 2-methyl phenol															
2-Methylnaphthalene															
2-Nitroaniline 2-Nitrophenol															
3-Nitroaniline 3/4-Methylphenol															
4-Bromophenyl phenylether 4-Chloro-3-methylphenol															
4-Chloroaniline 4-Chlorophenyl phenylether															
4-Nitroaniline 4-Nitrophenol															
Acenaphthene			-							-					
Acenaphthylene Anthracene	<0.1														
Azobenzene Benzo(a)Anthracene	<0.1				1										
Benzo(a)Pyrene Benzo(b/k)Fluoranthene	0.2														
Benzo(ghi)Perylene Bis (2-chloroethoxy) methane	<0.1														
Bis (2-chloroethyl) ether Bis (2-chloroisopropyl) ether					-										
Bis (2-ethylhexyl)phthalate Butyl benzylphthalate															
Carbazole															
Chrysene Di-n-butylphthalate															
Di-n-octylphthalate Dibenzo(ah)Anthracene	<0.1														
Dibenzofuran Diethyl phthalate															
Dimethyl phthalate Fluoranthene			-							-					
Fluorene	<0.1				1										
Hexachlorobenzene Hexachlorobutadiene															
Hexachlorocyclopentadiene Hexachloroethane															
Indeno(123-cd)Pyrene Isophorone	<0.1														
Naphthalene Nitrobenzene	<0.1														
Pentachlorophenol Phenanthrene			-		1					-					
Phenanthrene	0.2														

1 Strata Observed Contamination					1				1						
Sample Description Date Sample ID Depth	Sep-12 HP109 0.5	Sep-12 HP110 0.3	Sep-12 HP111 0.35	Sep-12 HP112 0.3	Sep-12 HP112 0.4	Sep-12 HP113 0.3	Sep-12 HP114 0.5	Sep-12 HP115 0.4	Sep-12 HP118 0.2	Sep-12 HP119 0.2	Sep-12 HP120 0.2	Sep-12 HP121 0.2	Sep-12 HP122 0.2	Sep-12 HP123 0.4	Sep-12 HP124 0.5
Substance															
Acenaphthene	0.03	0.03	0.01		0.02	0.03	0.04	0.03	0.01	0.01	0.01	0.01	0.01	<0.01	1.3
Acenaphthylene Anthracene	0.02	0.04	0.02		0.04	0.07	0.04	0.06	0.03	0.02	0.02	0.01	0.01		0.18 2.4
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	0.69 0.84 0.78	1.4 1.7 1.5	0.58 0.65 0.57		0.73 0.87 0.85	1.5 1.5 1.4	0.97 1.1 1.1	0.85 1.1 1.1		0.59 0.61 0.74	0.39 0.56 0.58	0.44 0.49 0.51	0.38 0.47 0.49	0.2 0.3 0.31	7 7.5 7.3
Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	0.78	1.5 1.2 1.6	0.57		0.85	0.85 1.5	0.72	0.75	0.27 0.18 0.24	0.74 0.49 0.59	0.58	0.51	0.49 0.35 0.42	0.25	5.1 6.7
Chrysene Dibenz(ah)anthracene	0.68 0.16	1.4 0.33	0.58 0.13		0.77	1.4 0.28	0.95	0.86	0.21	0.69	0.43	0.47	0.39	0.21	6.7 1.5
Fluoranthene Fluorene Indeno(123-cd)pyrene	1.4 0.03 0.47	2.7 0.03	1.2 0.01 0.38		1.4 0.03 0.59	2.8 0.05 0.79	1.8 0.04 0.64	1.5 0.04 0.66			0.58 0.01 0.38	0.87 0.01 0.34	0.61 0.01 0.3	0.3 <0.01 0.21	17 0.85 4.5
Naphthalene Phenanthrene	0.02	0.04	0.02		0.04	0.05	0.05	0.05		0.04	0.02	0.01	0.02	0.01	0.25
Pyrene	1.2	2.3	0.99		1.2	2.4	1.5	1.3	0.41	1.1	0.55	0.76	0.55	0.29	14
Aliphatic EC 5-6 Aliphatic EC >6-8 Aliphatic EC >8-10															
Aliphatic EC >12-16 Aliphatic EC >12-16															
Aliphatic EC >16-35 Aliphatic EC >35-44															
Aromatic EC 5-7 (benzene) Aromatic EC >7-8 (toluene)															
Aromatic EC >8-10 Aromatic EC >10-12															
Aromatic EC >12-16 Aromatic EC >16-21 Aromatic EC >21-35															
Aromatic EC >35-44															
Sulphate pH low limit pH high limit															
Asbestos PAHs total				1											
Petroleum Hydrocarbons															
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene															
1,4-Dichlorobenzene 2,4,5-Trichlorophenol															
2,4,6-Trichlorophenol 2,4-Dichlorophenol															
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene															
2,6-Dinitrotoluene 2-Chloronaphthalene															
2-Chlorophenol 2-methyl phenol 2-Methylnaphthalene															
2-Nitroaniline 2-Nitrophenol															
3-Nitroaniline 3/4-Methylphenol															
4-Bromophenyl phenylether 4-Chloro-3-methylphenol 4-Chloroaniline															
4-Chlorophenyl phenylether 4-Nitroaniline															
4-Nitrophenol Acenaphthene															
Acenaphthylene Anthracene Azobenzene															
Benzo(a)Anthracene Benzo(a)Pyrene															
Benzo(b/k)Fluoranthene Benzo(ghi)Perylene															
Bis (2-chloroethoxy) methane Bis (2-chloroethyl) ether Bis (2-chloroisopropyl) ether															
Bis (2-ethylhexyl)phthalate Butyl benzylphthalate															
Carbazole Chrysene Di-n-butylphthalate															
Di-n-butylphthalate Di-n-octylphthalate Dibenzo(ah)Anthracene															
Dibenzofuran Diethyl phthalate															
Dimethyl phthalate Fluoranthene Fluorene															
Hexachlorobenzene Hexachlorobutadiene															
Hexachlorocyclopentadiene Hexachloroethane															
Indeno(123-cd)Pyrene Isophorone Naphthalene															
Naprinalene Nitrobenzene Pentachlorophenol															
Phenanthrene Phenol															
Pyrene															

1 Strata									
Observed Contamination Sample Description			1		1	1	1	1	
Date Sample ID	Sep-12 HP125	Sep-12 HP126	Sep-12 HP127	Sep-12 HP128	Dec-10 TP1	Dec-10 TP2	Dec-10 TP3	Dec-10 TP4	Dec-10 TP5
Depth	0.2	0.2	0.1	0.05	0.1	0.3	0.6	0.3	0.1
Substance									
Acenaphthene Acenaphthylene	0.02				0.249	0.0525	0.0315	0.0265	9.77 0.165
Anthracene	0.12				3.42	0.209	0.14	0.141	15.9
Benz(a)anthracene Benzo(a)pyrene	0.93				6.4 5.22	0.827 0.973	0.614 0.729	0.959	20.5 14.8
Benzo(b)fluoranthene	1.2				5.67	1.17	0.752	1.2	17.7
Benzo(ghi)perylene Benzo(k)fluoranthene	0.81				3.16 2.56	0.75 0.459	0.602 0.334	0.886	7.09 8.56
Chrysene Dibenz(ah)anthracene	0.92				5.25 0.768	0.903 0.16	0.539 0.124	0.876 0.173	16.1 1.99
Fluoranthene	1.4				16.6	2.15	1.45	1.74	65.1
Fluorene Indeno(123-cd)pyrene	0.02				1.22 2.91	0.159 0.612	0.0338	0.0247 0.706	8.14 6.76
Naphthalene Phenanthrene	0.04				0.198	0.283	0.0453 0.649	0.0811 0.394	0.142 51.5
Prienantiniene Pyrene	1.3				14.7	1.63	1.21	1.55	44.2
Aliphatic EC 5-6									
Aliphatic EC >6-8									
Aliphatic EC >8-10 Aliphatic EC >12-16									·
Aliphatic EC >12-16 Aliphatic EC >16-35									
Aliphatic EC > 16-35 Aliphatic EC > 35-44									
Aromatic EC 5-7 (benzene)									
Aromatic EC >7-8 (toluene) Aromatic EC >8-10									
Aromatic EC >10-12									
Aromatic EC >12-16 Aromatic EC >16-21									
Aromatic EC >21-35									
Aromatic EC >35-44									
Sulphate pH low limit									
pH high limit									
Asbestos PAHs total	1	1	1	1					
Petroleum Hydrocarbons									
1,2,4-Trichlorobenzene									
1,2-Dichlorobenzene 1,3-Dichlorobenzene									
1,4-Dichlorobenzene									
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol									
2,4-Dichlorophenol 2,4-Dimethylphenol									
2,4-Dinitrophenol									
2,4-Dinitrotoluene 2,6-Dinitrotoluene									
2-Chloronaphthalene 2-Chlorophenol									
2-methyl phenol									
2-Methylnaphthalene 2-Nitroaniline									
2-Nitrophenol 3-Nitroaniline									
3/4-Methylphenol									
4-Bromophenyl phenylether 4-Chloro-3-methylphenol									
4-Chloroaniline 4-Chlorophenyl phenylether									
4-Nitroaniline									
4-Nitrophenol Acenaphthene									
Acenaphthylene									
Anthracene Azobenzene									
Benzo(a)Anthracene Benzo(a)Pyrene									
Benzo(b/k)Fluoranthene									
Benzo(ghi)Perylene Bis (2-chloroethoxy) methane									l
Bis (2-chloroethyl) ether Bis (2-chloroisopropyl) ether									
Bis (2-ethylhexyl)phthalate									
Butyl benzylphthalate Carbazole									
Chrysene Di-n-butylphthalate									
Di-n-octylphthalate									
Dibenzo(ah)Anthracene Dibenzofuran									
Diethyl phthalate									
Dimethyl phthalate Fluoranthene									<u> </u>
Fluorene Hexachlorobenzene									
Hexachlorobutadiene									
Hexachlorocyclopentadiene Hexachloroethane									
Indeno(123-cd)Pyrene Isophorone									
Naphthalene									
Nitrobenzene Pentachlorophenol									
Phenanthrene									
Phenol Pyrene									
. Jinio									

Cannock Chase Council | Hunter Rd (106270-010-011)

Arsenic mg Cadmium mg Cadmium mg Chomium (trivalent) mg Copper mg Lead (using old SGV) mg Mercury (elemental) mg Mercury (idemental) mg Mercury (idemental) mg Mercury (idemental) mg Selenium mg Zinc mg Chromium (hexavalent) mg Antimony mg Yanadium mg Barjum mg Thocyanate mg Cyanide (tree) mg Cyanide (trotal) mg Berzene mg Toluene mg Ethylbenzene mg -Xylene mg -Xylene mg Acenaphthene mg Acenaphthylene mg	ykg ykg ykg ykg ykg ykg ykg ykg	291 GAC (2.5% SOM) 22 GAC (2.5% SOM) 10 GAC (2.5% SOM) 230 GAC (2.5% SOM) 2310 GAC (2.5% SOM) 2330 GAC (2.5% SOM) 2330 GAC (2.5% SOM) 450 GAC (2.5% SOM) 450 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 170 GAC (2.5% SOM) 130 GAC (2.5% SOM) 350 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 550 EIC-Claire 75 SGV / GAC (6% SOM) 560 EIC-Claire 670 EIC-Claire - - - - - - - - - - - - - - - - - - -<						
Cadmium mg Chromium (trivalent) mg Copper mg Lead (using old SGV) mg Mercury (elemental) mg Mercury (inorganic) mg Nickel mg Selenium mg Antimony mg Parfum (hexavalent) mg Berylium mg Barlum mg Derylium mg Barlum mg Derylium mg Barlum mg Thiocyanate mg Cyanide (Total) mg Toluene mg Toluene mg Aylene mg Aylene mg Aylene mg Aylene mg Arthracene mg	9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg	10 GAC (2.5% SOM) 627 GAC (2.5% SOM) 627 GAC (2.5% SOM) 628 GAC (2.5% SOM) 450 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 530 EIC-Cl:aire 53 GAC (3.6% SOM) 51 SGV (GAC (6% SOM) 1300 EIC-Cl:aire - - - - 290 GAC (2.5% SOM) - - 290 GAC (2.5% SOM) - - 270 GAC (2.5% SOM)						
Chromium (trivalent) mg Copper mg Lead (using old SGV) mg Mercury (elemental) mg Mercury (methyl) mg Mercury (inorganic) mg Nickel mg Selenium mg Chromium (hexavalent) mg Antimory mg Vanadium mg Barjium mg Barjum mg Cyanide (free) mg Cyanide (free) mg Cyanide (free) mg Copanate mg Tolocyanate mg Berzene mg Toluene mg Ethylbenzene mg -Xylene mg -Xylene mg Acenaphthene mg Acenaphthylene mg	9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg 9kg	627 GAC (2.5% SOM) 2330 GAC (2.5% SOM) 2340 GAC (2.5% SOM) 0.42 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 9.7 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 4.3 GAC (2.5% SOM) 4.3 GAC (2.5% SOM) 550 EIC-Claire 75 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 52 EIC-Claire - - - - - - - - - - - - - - - - - - - - - - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Lead (using old SGV) mg Mercury (elemental) mg Mercury (inorganic) mg Nickel mg Selenium mg Zinc mg Chromium (hexavalent) mg Berylium mg Berylium mg Barlum mg Chromium (hexavalent) mg Barlum mg Derylium mg Derylium mg Cyanide (tree) mg Cyanide (total) mg Phenols (Total) mg Toluene mg mXylene mg o-Xylene mg Acenaphthylene mg Acenaphthylene mg Acenaphthylene mg	g/kg g/kg y/kg y/kg y/kg y/kg y/kg y/kg	450 GAC (2.5% SOM) 0.42 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 170 GAC (2.5% SOM) 130 GAC (2.5% SOM) 143 GAC (2.5% SOM) 150 EIC-CI:aire 15 SGV / GAC (6% SOM) 1300 EIC-CI:aire 15 SGV / GAC (6% SOM) 1300 EIC-CI:aire 1430 GAC (2.5% SOM) 1430 EIC-CI:aire 1430 EIC-CI:a						
Mercury (elemental) mg Mercury (methyl) mg Mercury (inorganic) mg Nickel mg Selenium mg Zinc mg Chromium (hexavalent) mg Antimony mg Vanadium mg Berylium mg Barium mg Kolydenum mg Cyanide (free) mg Cyanide (free) mg Cyanide (free) mg Tolucne mg Berzene mg Tolucne mg Cyalide (Total) mg Cyalene mg Actenaphthene mg Acenaphthene mg Acenaphthylene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	0.42 GAC (2.5% SOM) 9.6 GAC (2.5% SOM) 9.7 GAC (2.5% SOM) 130 GAC (2.5% SOM) 130 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 4.3 GAC (2.5% SOM) 550 EIC-Claire 75 SGV / GAC (6% SOM) 1300 EIC-Claire 670 EIC-Claire 290 GAC (2.5% SOM) - - - - - - 290 GAC (2.5% SOM) 270 GAC (2.5% SOM) 270 GAC (2.5% SOM)						
Mercury (methyl) mg Mercury (inorganic) mg Mercury (inorganic) mg Nickel mg Selenium mg Zinc mg Chromium (hexavalent) mg Antimony mg Barlum mg Barlum mg Barlum mg Cyande (ree) mg Cyande (rota) mg Phenols (Total) mg Berzene mg Toluene mg Cyande (rota) mg Penols (Total) mg Actenaphthene mg Actenaphthylene mg Actenaphthylene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	9.6 GAC (2.5% SOM) 170 GAC (2.5% SOM) 170 GAC (2.5% SOM) 30 GAC (2.5% SOM) 350 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 550 EIC-Claire 550 / GAC (6% SOM) 550 EIC-Claire 57 SGV / GAC (6% SOM) 590 EIC-Claire 500 / GAC (2.5% SOM) 500 EIC-Claire 500 EIC-Claire 5						
Nickel mg Selenium mg Zinc mg Chronium (hexavalent) mg Antimony mg Vanadium mg Berylium mg Berylium mg Dioyanate mg Cyanide (free) mg Cyanide (free) mg Cyanide (Total) mg Phenols (Total) mg Tolucene mg Cyanide (Total) mg Cyanide (Total) mg Cyanide (Total) mg Actinacene mg Actenaphthene mg Actenaphthylene mg Actinacene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	130 GAC (2.5% SOM) 350 GAC (2.5% SOM) 350 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 4.3 GAC (2.5% SOM) 550 EIC-Claire 75 SGV / GAC (6% SOM) 1300 EIC-Claire 670 EIC-Claire - - - - 290 GAC (2.5% SOM) - - 290 GAC (2.5% SOM) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <						
Selenium mg Zinc mg Chromium (hexavalent) mg Antimony mg Vanadium mg Barlium mg Barlium mg Kottoparate mg Cyanide (tree) mg Cyanide (trota) mg Toluene mg Toluene mg Cyanide (trota) mg Phenols (Total) mg Cyanide (trota) mg Phenols (Total) mg Cyanide (trota) mg Activation mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	350 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 3750 GAC (2.5% SOM) 3750 EIC-Claire 75 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 1300 EIC-Claire 670 EIC-Claire - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Chromium (hexavalent) mg Antimony mg Vanadium mg Berylium mg Berylium mg Barlum mg Molybdenum mg Thicoyanate mg Cyanide (free) mg Cyanide (free) mg Cyanide (Total) mg Benzene mg Toluene mg Benzene mg Toluene mg Actinacene mg Actenaphthene mg Acenaphthylene mg Anthracene mg	p/kg p/kg p/kg p/kg p/kg p/kg p/kg p/kg	4.3 GAC (2.5% SOM) 550 EIC-Citaire 75 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 1300 EIC-Citaire - - - - 290 GAC (2.5% SOM) - - - - - <tr tr=""></tr>						
Antimony mg Vanadium mg Berylium mg Berylium mg Barium mg Molybdenum mg Thiocyanate mg Cyanide (free) mg Cyanide (frota) mg Phenols (Total) mg Toluene mg Ethylberzene mg -Xylene mg -Xylene mg Acenaphthene mg Acenaphthylene mg Anthracene mg	p/kg p/kg p/kg p/kg p/kg p/kg p/kg p/kg	550 EIC-CI:aire 75 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 1300 EIC-CI:aire 670 EIC-CI:aire 290 GAC (2.5% SOM) - - 0.16 GAC (2.5% SOM) 270 GAC (2.5% SOM)						
Vanadium mg Berylum mg Barium mg Molybdenum mg Vyanide (Total) mg Cyanide (Total) mg Cyanide (Total) mg Phenois (Total) mg Benzene mg Ethybenzene mg m-Xylene mg o-Xylene mg Acenaphthene mg Acenaphthylene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	75 SGV / GAC (6% SOM) 51 SGV / GAC (6% SOM) 1300 EIC-Claire 670 EIC-Claire 290 GAC (2.5% SOM) 1 - 290 GAC (2.5% SOM) 1 - 270 GAC (2.5% SOM)						
Barium mg Molybdenum mg Thiocyanate mg Cyanide (free) mg Cyanide (Total) mg Phenols (Total) mg Derzene mg Toluene mg Etryberzene mg -Xylene mg -Xylene mg Acenaphthene mg Actmachthylene mg Anthracene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	1300 EIC-Cl:aire 670 EIC-Cl:aire - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Molybdenum mg Thiccyanate mg Cyanide (Tree) mg Cyanide (Total) mg Phenois (Total) mg Benzene mg Ethytbenzene mg m-Xylene mg o-Xylene mg Acenaphthene mg Acenaphthylene mg	9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg 9/kg	670 EIC-CLaire - - 290 GAC (2.5% SOM) - - 0.16 GAC (2.5% SOM) 270 GAC (2.5% SOM)						
Thicoyanate mg Cyanide (free) mg Cyanide (Total) mg Phenols (Total) mg Benzene mg Toluene mg Ethylbenzene mg o-Xylene mg o-Xylene mg Acenaphthene mg Actinatione mg Actionatione mg	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	290 GAC (2.5% SOM) 1.16 GAC (2.5% SOM) 270 GAC (2.5% SOM) 270 GAC (2.5% SOM)						
Cyanide (Total) mg Phenois (Total) mg Benzene mg Ethylbenzene mg m-Xylene mg p-Xylene mg Acenaphthene mg Acenaphthylene mg Anthracene mg	g/kg g/kg g/kg g/kg g/kg g/kg	290 GAC (2.5% SOM) 						-
Phenols (Total) mg Benzene mg Toluene mg Ethylbenzene mg o-Xylene mg Acenaphthene mg Acenaphthylene mg Actinacione mg	g/kg g/kg g/kg g/kg g/kg	290 GAC (2.5% SOM) - - 0.16 GAC (2.5% SOM) 270 GAC (2.5% SOM)						-
Toluene mg Ethylbenzene mg m-Xylene mg o-Xylene mg p-Xylene mg Acenaphthene mg Acenaphthylene mg Activatione mg	g/kg g/kg g/kg g/kg	0.16 GAC (2.5% SOM) 270 GAC (2.5% SOM)						
Toluene mg Ethylbenzene mg m-Xylene mg o-Xylene mg p-Xylene mg Acenaphthene mg Acenaphthylene mg Activatione mg	g/kg g/kg g/kg g/kg	270 GAC (2.5% SOM)						-
Ethylbenzene mg m-Xylene mg o-Xylene mg p-Xylene mg Acenaphthene mg Accenaphthylene mg Anthracene mg	g/kg g/kg g/kg							
m-Xylene mg o-Xylene mg p-Xylene mg Acenaphthene mg Actenaphthylene mg Anthracene mg	g/kg g/kg	150 GAC (2.5% SOM)						
p-Xylene mg Acenaphthene mg Acenaphthylene mg Anthracene mg		100 GAC (2.5% SOM)						
Acenaphthene mg Acenaphthylene mg Anthracene mg		110 GAC (2.5% SOM) 98 GAC (2.5% SOM)						
Acenaphthylene mg Anthracene mg								-
Anthracene mg	g/kg	480 GAC (2.5% SOM)	45	<0.01	9.77	0.42	1.5	0
	g/kg a/ka	400 GAC (2.5% SOM) 4900 GAC (2.5% SOM)	45 45	0.01	2.1 15.9	0.16	0.34 2.61	0
	g/kg	4.7 GAC (2.5% SOM)	45	<0.1	20.5	2.28	4.07	8
	g/kg	0.94 GAC (2.5% SOM) 6.5 GAC (2.5% SOM)	45 45	<0.1 <0.1	14.8 17.7	2.18 2.57	3.31 4.16	21 6
	g/kg g/kg	6.5 GAC (2.5% SOM) 46 GAC (2.5% SOM)	45	<0.1	9.8	2.57	2.16	0
	g/kg	9.6 GAC (2.5% SOM)	45	<0.1	8.56	1.32	1.91	0
	g/kg	8 GAC (2.5% SOM)	45	<0.1	16.1	2.33	3.8 0.74	4
	g/kg g/kg	0.86 GAC (2.5% SOM) 460 GAC (2.5% SOM)	45 45	0.06 <0.1	3.4 65.1	0.49 5.99	12.2	0
Fluorene mg	g/kg	380 GAC (2.5% SOM)	45	<0.01	8.14	0.41	1.29	0
	g/kg g/kg	3.9 GAC (2.5% SOM) 3.7 GAC (2.5% SOM)	45 45	<0.1 0.01	8.5 0.43	1.34 0.11	2.02	5
	g/kg g/kg	200 GAC (2.5% SOM)	45	0.06	51.5	3.75	9.8	0
	g/kg	1000 GAC (2.5% SOM)	45	<0.1	44.2	4.74	8.84	0
Aliphatic EC 5-6 mg	g/kg	55 GAC (2.5% SOM)						-
	g/kg	160 GAC (2.5% SOM)						
	g/kg	46 GAC (2.5% SOM)						
	g/kg g/kg	230 GAC (2.5% SOM) 1700 GAC (2.5% SOM)						
Aliphatic EC >16-35 mg	g/kg	64000 GAC (2.5% SOM)						
		64000 GAC (2.5% SOM)						
	g/kg g/kg	 130 GAC (2.5% SOM)						-
Aromatic EC >7-8 (toluene) mg	g/kg	270 GAC (2.5% SOM)						
	g/kg g/kg	65 GAC (2.5% SOM) 160 GAC (2.5% SOM)						
	g/kg	310 GAC (2.5% SOM)						
Aromatic EC >16-21 mg	g/kg	480 GAC (2.5% SOM)		_	455		05.5	-
	g/kg g/kg	1100 GAC (2.5% SOM) 1100 GAC (2.5% SOM)	4	7	150	54.3	66.8	0
					<u> </u>			-
	g/kg	· ·						-
pH low limit pH high limit		· ·	1					-
Asbestos		0.1 1 is eqaul to detection	14		1	0.43	0.51	6
	g/kg							-
Petroleum Hydrocarbons mg	g/kg	· ·						-
1,2,4-Trichlorobenzene	_							-
1,2-Dichlorobenzene		· ·						-
1,3-Dichlorobenzene		· · ·						-
1,4-Dichlorobenzene 2,4,5-Trichlorophenol		· · ·						-
2,4,6-Trichlorophenol	_ †							-
2,4-Dichlorophenol		· ·						-
2,4-Dimethylphenol		· · ·						-
2,4-Dinitrophenol 2,4-Dinitrotoluene		· ·						-
2,6-Dinitrotoluene								-
2-Chloronaphthalene		· ·						-
2-Chlorophenol 2-methyl phenol		· ·						-
2-methyl phenol 2-Methylnaphthalene		· · ·						-
2-Nitroaniline	_ †	· ·						-
2-Nitrophenol		· ·	1	1	[-		-
3-Nitroaniline		· · ·						-
3/4-Methylphenol 4-Bromophenyl phenylether		· · ·						-
4-Chloro-3-methylphenol								-
4-Chloroaniline		· ·						-
4-Chlorophenyl phenylether 4-Nitroaniline								-

							Gront
Substance	Screening Criteria	Number of Analyses	Reported Minimum Value	Reported Maximum Value	Statistical Mean	Standard Deviation	Number of Exceedances
Nitrophenol							-
Acenaphthene	480 GAC (2.5% SOM)	9	<0.1	3	0.49	0.96	0
Acenaphthylene	400 GAC (2.5% SOM)	9	<0.1	0.2	0.13	0.05	0
Inthracene	4900 GAC (2.5% SOM)	9	<0.1	6.3	1.24	2.2	0
zobenzene							-
Benzo(a)Anthracene	4.7 GAC (2.5% SOM)	9	<0.1	15	3.47	5.11	3
Benzo(a)Pyrene	0.94 GAC (2.5% SOM)	9	<0.1	11	2.94	3.91	4
Benzo(b/k)Fluoranthene		9	0.2	20	5.21	6.97	-
Benzo(ghi)Perylene	46 GAC (2.5% SOM)	9	<0.1	7.4	2.03	2.57	0
Bis (2-chloroethoxy) methane							-
Bis (2-chloroethyl) ether							-
Bis (2-chloroisopropyl) ether							-
Bis (2-ethylhexyl)phthalate							-
Butyl benzylphthalate							-
Carbazole							-
Chrysene	8 GAC (2.5% SOM)	9	0.2	16	3.94	5.5	2
Di-n-butylphthalate							-
Di-n-octylphthalate							-
Dibenzo(ah)Anthracene	0.86 GAC (2.5% SOM)	9	<0.1	3.4	0.87	1.14	3
Dibenzofuran							-
Diethyl phthalate							-
Dimethyl phthalate							-
luoranthene	460 GAC (2.5% SOM)	9	0.1	46	9.28	15.2	0
luorene	380 GAC (2.5% SOM)	9	<0.1	2.2	0.4	0.7	0
lexachlorobenzene							-
lexachlorobutadiene	· ·						-
lexachlorocyclopentadiene	· ·						-
lexachloroethane							-
ndeno(123-cd)Pyrene	3.9 GAC (2.5% SOM)	9	<0.1	7.6	1.97	2.62	2
sophorone							-
laphthalene	3.7 GAC (2.5% SOM)	9	<0.1	0.4	0.13	0.1	0
litrobenzene							-
Pentachlorophenol							-
Phenanthrene	200 GAC (2.5% SOM)	9	<0.1	39	6.06	12.8	0
Phenol							-
Pyrene	1000 GAC (2.5% SOM)	9	0.1	35	7.56	11.7	0

APPENDIX F PAH RISK ASSESSMENT

APPENDIX F

PAH Risk Assessment Approach

1. Introduction

Cannock Chase District Council (the Council) are required to make a decision about the concentration of substances including PAH / benzo(a)pyrene in soil below which it would not consider that there is significant possibility of significant harm (SPOSH) to human health.

The 2012 revised Statutory Guidance states (4.16) that;

"The decision on whether the possibility of significant harm being caused is significant is a regulatory decision to be taken by the relevant local authority. In deciding whether the possibility of significant harm being caused is significant, the authority is deciding whether the possibility of significant harm posed by contamination in, on or under the land is sufficiently high that regulatory action should be taken to reduce it, with all that would entail. In taking such decisions, the local authority should take account of the broad aims of the regime set out in Section 1 of this Guidance."

The Statutory Guidance considers that there are four categories into which a local authority may assign land under Part 2A of the 1990 Environmental Protection Act. The description of the four categories differs for human health and controlled waters. For human health a basic description of the four categories are described below. For the full definitions reference should be made to Sections 4.19 to 4.25 of the Statutory Guidance 2012.

- **Category 1:** "Unacceptably high probability, supported by robust science based evidence that significant harm would occur if no action taken to stop it."
- **Category 2:** "A strong case for considering that the risks from the land are of sufficient concern that the land poses SPOSH".
- **Category 3:** "The strong case described for Category 2 does not exist, thus the legal test for SPOSH is not met. (Note that the risk may not be low but regulatory intervention is not warranted)".
- **Category 4:** "No risk or that the level of risk is low (no relevant contaminant linkage / within normal range of background concentrations / GAC¹ not exceeded)."

The Council is required to decide which Category the site falls into based on the data available from the site inspection.

2. Rationale for Requirement to Progress Beyond GAC

With specific regard to the PAH Benzo (a) pyrene, the initial risk assessment screening criterion of 0.94 mg/kg is a GAC derived by the Chartered Institute of Environmental Health (CIEH) and Land Quality Management Ltd (LQM)². Soil GAC are criteria which combine a set of generic, conservative assumptions regarding exposure with toxicological criteria (health criteria values or HCVs), which represent *minimal* risks to health.

¹ Generic assessment criteria, explained below.

² Statutory Guidance 2012 accepted GAC – Paragraph 3.27 to 3.30 and associated footnote of the Statutory Guidance 2012)

The 2012 revised Statutory Guidance states that:

"GACs relating to human health risk assessment represent cautious estimates of levels of contaminants in soil at which there is considered to be no risk to health or, at most, a minimal risk to health.

- (a) They may be used to indicate when land is very unlikely to pose a significant possibility of significant harm to human health. This is on the basis that they are designed to estimate levels of contamination at which risks are likely to be negligible or minimal and far from posing a significant possibility of significant harm to human health.
- (b) They should not be used as direct indicators of whether a significant possibility of significant harm to human health may exist."
- (c) They should not be seen as screening levels which describe the boundary between Categories 3 and 4 in terms of Section 4 (of the Statutory Guidance) (i.e. the two Categories in which land would not be contaminated land on grounds of risks to human health). In the very large majority of cases, these SGVs/GACs describe levels of contamination from which risks should be considered to be comfortably within Category 4.(also see footnote 3 of paragraph 3.29).
- (d) They should not be viewed as indicators as levels of contamination above which detailed risk assessment would automatically be required under Part 2A
- (e) They should not be used as generic remediation targets under Part 2A.

For the full details of the appropriate use of GAC reference should be made to Paragraphs 3.27 to 3.30 of the Statutory Guidance.

Based on the available data, Grontmij do not consider that there is an unacceptable high probability that significant harm would occur to humans at the site. Thus, Category 1 does not exist, and Category 4 was also discounted on the basis of the results obtained.

Therefore, given the maximum concentration recorded of 15 mg/kg and the number of samples which exceeded the GAC, further assessment was required to assist the Council to establish whether or not one or more properties within the site fall into **Category 2** or **Category 3** (i.e. to decide if there is a strong case that SPOSH exists or not). As discussed above, GAC cannot be used for this purpose and thus other types of assessment are needed to be considered.

The Statutory Guidance states that technical tools and or advice maybe used to aid with informing a decision. This is provided that these have been undertaken by "government bodies, regulators of other organisations in the land contamination sector" (Section 3.30 of the Statutory Guidance) and/or "that they have been produced in an objective, scientifically robust and expert manner by reputable organisation (Section 3.28 of the statutory Guidance).

Therefore, work undertaken by these bodies, or institutions of repute with regard to (for example but not limited to) toxicological properties of a substance, or bodily uptake of a contaminant could be critically assessed for its suitability (it is required under the Part 2A definition that the work is developed in a manner which is scientifically-based, authoritative, and relevant) and used as a means to more closely assess whether there is strong case that SPOSH exists at the site.

In the case of benzo(a)pyrene, the Institute of Occupational Medicine carried out a review for Brent Council on polycyclic aromatic hydrocarbons (PAHs) in 2009. This assessed the

toxicological properties of PAH to support Brent Council in making an assessment of soil concentrations above which they may constitute significant possibility of significant harm (SPOSH) at the Brent site.³.

Therefore, this approach to assessing whether there is a strong case that SPOSH exists from benzo(a)pyrene was examined in relation to the circumstances at the Hunter Road site

A summary of their approach and how it relates to the Hunter Road site is described in the following sections.

3. Selection of Assessment Criterion from IOM Report

Origin of Assessment Criterion

The IOM carried out a review for Brent Council on polycyclic aromatic hydrocarbons (PAHs) in 2009. The review assessed the toxicological properties of PAH to support Brent Council in making an assessment of soil concentrations of PAH above which they may constitute a significant possibility of significant harm (SPOSH) at the Brent site.

Although the report was developed specifically for one particular site in Brent, the toxicological considerations used provide a useful input into other similar sites.

Grontmij consider the IOM toxicological review to be authoritative and the lines of evidence are appropriate for the circumstances at the Hunter Road site.

Following review of the IOM work it has been agreed between Grontmij and the Council that an assessment criterion of 17 mg/kg produced by IOM for Brent Council will be adopted for benzo(a)pyrene as a threshold below which SPOSH will not be considered to occur.

Derivation of IOM Assessment Criterion

The value of 17 mg/kg is the lower end of a range (for which the upper end is 36mg/kg) proposed by IOM as a concentration range at which it could be argued that, if greatly exceeded "the potential for significant harm would be significant, unless measures are in place to prevent exposure"⁴.

The range of 17 mg/kg to 36 mg/kg benzo(a)pyrene has been derived by considering a number of toxicological assumptions, and assumptions about exposure. Both toxicological assessment and exposure assessment are subject to considerable uncertainties. In toxicological assessment, studies on animals and/or epidemiological studies are used to determine either:

- a) the concentration of a substance at which no observable adverse effect is occurring,
- b) the lowest concentration at which an observable adverse effect is occurring,
- c) the level at which a certain percentage of animals develop a tumour.

The general term for the latter is the "Point of Departure (POD)" and to this a variety of uncertainty factors are applied. These uncertainty factors in relation to the IOM work are discussed below.

³ Toxicological Review of the Risks of Exposure to Soil Containing Polycyclic Aromatic Hydrocarbons 2009

⁴ The report also notes that "*It would clearly be inappropriate to discriminate between soils that contained PAH contents that were marginally above a discrete guideline value from those that were marginally below that value.*"

Uncertainty Factors

Point of Departure

Benzo(a)pyrene is a genotoxic carcinogen. Although there is human epidemiological data for the inhalation route, there is no human data for the ingestion route. Therefore toxicological criteria are based on rodent studies and there is considerable uncertainty in their derivation. It is therefore common practice to identify a range of PODs.

Expert toxicologists within IOM selected a POD for benzo(a)pyrene, referred to as a $BMDL_{10}^{5}$ of 0.5-1 mg/kg bodyweight/day from pooled studies on rat and mouse estimates based on total tumour incidence.

Toxicity Equivalency Factor and Margin of Exposure

The toxicologists took into account that there were other PAHs at the site, some more and some less potent than benzo(a)pyrene using an approach referred to as toxicity equivalency factor (TEF). In the case of the site in question, IOM determined that an appropriate TEF for the PAHs in soils was1.6⁶.

They applied an uncertainty factor (referred to as a "margin of exposure" (MoE)⁷) of 10,000, which they based on the fact that the Committee on Carcinogenicity "have indicated that a MoE of <10,000 may be of concern, whereas a MoE of between 10,000-100,000 was unlikely to be of concern." This resulted in an index dose for benzo(a)pyrene as a marker of total PAH exposure of 0.0312 –0.0625 μ g/kg/day by ingestion.

Human type and index dose

IOM considered the exposure of "a typical toddler aged between 1 and 2 years with a body weight of 11.4 kg" with a "long term mean intake of soil and dust" of 100 mg/day and calculated a concentration in soil of benzo(a)pyrene at which the index dose would not be exceeded of 3.56-7.11 mg/kg.

Exposure by inhalation

After defining the index dose, IOM then took into account an additional allowance of a factor of two "for exposure by inhalation to re-suspended soil dust in the indoor environment" on the basis that "*Given the apparently greater potency of inhaled B[a]P over ingested B[a]P although inhalation exposures may be <10% of the ingested dose, they could potentially contribute to >50% of the potential for significant harm*". This resulted in a range of 1.7 mg/kg to 3.6 mg/kg⁸.

Differentiation from normal urban soils

Having derived this range value, IOM noted that this was within one standard deviation of the average benzo(a)pyrene content in urban soils, (based on work by the Environment Agency), and therefore decided that, as Part 2A is meant to differentiate contaminated sites

⁵ A BMDL₁₀ is the 95% lower confidence limit on a dose associated with a 10% extra tumour risk level.

⁶ It is noted that the TEF for the St Raphael's site in Brent may not be representative of the total PAH profile for the Admiral Parker Drive site, and, moreover that the TEF approach is not endorsed by the HPA.
⁷ MoE is the ratio of the point of departure (in mg kg-1 bw day-1 for example) divided by the human exposure to the chemical

⁷ MoE is the ratio of the point of departure (in mg kg-1 bw day-1 for example) divided by the human exposure to the chemical (in the same units)

⁸. IOM did not consider other pathways on the grounds that "exposure, uptake and cancer risk are dominated by inadvertent ingestion and inhalation, the contribution of other routes of exposure to cancer risk is extremely small."

from normal concentrations, it was appropriate to multiply this range by ten (effectively reducing the MoE (uncertainty factor) to 1,000), resulting in the range of 17 mg/kg to 36 mg/kg of benzo(a)pyrene in soil.

In justification for reducing the MoE to 1000. IOM stated that an MoE of above 1000 "may pose a risk" in the view of the Committee on Carcinogenicity.

Exposure During Remedial Works

Grontmij has noted that the IOM report states that:

"Given that the exposure modelling is based on reasonable worst case assumptions, soil concentrations between 7 and 17 mg/kg may be tolerable given that the removal of contaminated soils could give rise to temporary exposure of residents to B[a]P during any remediation works and that this could have a much greater impact on their lifetime exposure than if the soil had remained undisturbed.".

Consideration of the impact on health risk of remediation activities is one of the factors that the revised 2012 Statutory Guidance states that a local authority may take into account, if they consider that the line between Category 2 and Category 3 land is unclear, based on a consideration of the health risks alone.

4. Other Approaches for Derivation of an Assessment Criterion for PAHs (Sensitivity Analysis)

It is considered prudent that other potential approaches are assessed to provide robust argument to the use of the IOM report. It is acknowledged that the Health Protection Agency ⁹stated that

" it would seem prudent to base the index dose (ID) on the BMDL₁₀ values proposed by EFSA¹⁰ and JECFA¹¹ derived from the Culp et al. study [1] ¹²(0.07 and 0.1 milligrams per kilogram bodyweight per day (mg/kg bodyweight/day)."

This range is significantly lower than the range of BMDL₁₀ of 0.5mg/kg/bodyweight/day to 1 mg/kg/bodyweight/day used within the IOM report. It is noted that the Culp et al. mouse study was one of the studies considered within the IOM's derivation of a BMDL₁₀ but that the authors considered it more justifiable to consider a wider range of rat and mouse studies.

A full evaluation of the merits of the choice of BMDL₁₀ within the widely accepted IOM report has not been carried out. However it is noted that the EFSA report¹³ cites the JECFA choice of BMDL₁₀ of 0.1 mg/kg bodyweight/day as being the lower end of the calculated range of 0.10-0.23 mg benzo[a]pyrene/kg bodyweight per day, i.e. the most conservative choice. EFSA used the same data as JECFA but calculated BMDL₁₀ values which ranged from 0.07 to 0.20 mg/kg bodyweight per day with 0.12 mg/kg bodyweight per day representing the best fit.

⁹ HPA Contaminated Land Information Sheet Risk Assessment Approaches for

Polycyclic Aromatic Hydrocarbons (PAHs), Health Protection Agency v5 2010

¹⁰ European Food Safety Authority

¹¹ Joint FAO/WHO Expert Committee on Food Additives

¹² Culp, S.J., et al., A comparison of the tumors induced by coal tar and benzo[a]pyrene

in a 2-year bioassay. Carcinogenesis, 1998. 19(1): p. 117-24. ¹³ Polycyclic Aromatic Hydrocarbons in Food Scientific Opinion of the Panel on Contaminants in the Food Chain, *The EFSA* Journal (2008) 724, 1-114

However, despite the fact that 0.12 mg/kg bodyweight per day was the best fit, the lowest value in the range of 0.07 mg/kg bodyweight per day was chosen "in order to be prudent". There is therefore only approximately a factor of 2 between the upper end of the JECFA and EFSA ranges and the lower end of the IOM range. The IOM range is then subject to a reduction to account for the TEF of 1.6 for total PAHs, whereas the JECFA and EFSA studies use BaP as a surrogate marker (discussed below). Therefore, there is less difference between the selections of BMDL₁₀ than it would at first appear.

Based on the above, the differences between the two values (HPA and IOM) are relatively small, compared to the uncertainty factors that are subsequently applied.

Other than the approach by the HPA, Grontmij note that decisions on SPOSH have been made by other local authorities, where selecting a different POD has resulted in the threshold of SPOSH being selected at greater soil concentrations than those of IOM.

Overall the arguments presented by IOM are considered to be a robust starting point for considering the question of SPOSH at sites where PAH contamination is present.

5. Use of BaP as a Surrogate Marker Compound

It is recognised that the TEF approach that has been used within the IOM report is not endorsed for PAHs by the HPA Contaminated Land Information Sheet (CLIS). The HPA CLIS does propose the use of benzo(a)pyrene as a surrogate marker(a single substance that may be used to represent a wider group of substances) for total PAHs in soils, provided that the profile of PAHs is of sufficient similarity to the mixture used within the Culp *et al.* report, and, specifically that the ratio of seven genotoxic PAHs (benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(ah)anthracene, indeno(1,2,3 cd pyrene) and benzo(ghi)perylene) is within an order of magnitude, in either direction, of the mean ratios established by Culp *et al.*

The HPA CLIS reports a study of 52 contaminated sites across the UK and notes that:

"Categorisation of the data, according to previous industrial use, showed no substantial differences in the relative PAH profiles. Moreover, the PAH profile in contaminated land was similar to that found in industrial, urban and rural UK soil samples and in other surveys of soil within the UK."

It would therefore appear that benzo(a)pyrene is a good surrogate marker for total PAHs in contaminated soil, and this approach is therefore considered suitable for evaluation of the total PAH concentrations at the Hunter Road site. It is noted that, as the value of 17 mg/kg for benzo(a)pyrene considers a TEF of 1.6 for a variety of genotoxic PAHs, this introduces an element of conservatism into the assessment.

6. Conclusions

It is explicitly acknowledged within the Statutory Guidance within paragraph 3.32 that "The uncertainty underlying risk assessments means there is unlikely to be any single "correct" conclusion on precisely what is the level of risk is posed by land, and it is possible that different suitably qualified people could come to different conclusions when presented with the same information. It is for the local authority to use its judgement to form a reasonable view of what it considers the risks to be on the basis of a robust assessment of available evidence in line with this Guidance."

The criterion of 17 mg/kg derived by IOM for benzo(a)pyrene to be used as both a value for benzo(a)pyrene and as a surrogate marker for total PAHs is considered to be a robustly derived and authoritative criterion, appropriate as a value to establish below which the site will not present a significant possibility of significant harm.

APPENDIX G SEVERITY AND PROBABILITY OF RISK (after CIRIA 552)

Appendix G: Severity and Probability of Risk in Conceptual Site Models (after CIRIA552, Tables 6.3 to 6.5)

This report draws on guidance presented in CIRIA report 552, "Contaminated Land Risk Assessment, A Guide for Good Practice", wherein the "severity" term in the Conceptual Site Model is classified with reference to the sensitivity of the hazard and the receptor, as follows:

Severity Category	Description	Examples
Severe	Acute risk to human health likely to result in "significant harm" as defined in EPA90, catastrophic damage to buildings or property, acute risk of major pollution of controlled waters, acute risk of harm to ecosystems (as defined in Contaminated Land Regulations 2006)	High cyanide concentrations at the surface of a recreation area Major spillage into controlled waters Explosion, causing building collapse
Medium	Chronic risk to human health likely to result in "significant harm" as defined in EPA90, chronic pollution of sensitive controlled waters, significant change at a sensitive ecosystems or species, significant damage to buildings or structures	Contaminant concentrations at a site in excess of SGVs, GAC or similar screening values Leaching of contaminants to sensitive aquifer Death of a species within a nature reserve
Mild	Pollution of non-sensitive waters, significant damage to buildings, structures, services or crops, damage to sensitive buildings, structures, services or the environment, which nonetheless result in "significant harm"	Pollution to (former) non-aquifer or to non-controlled surface watercourse. Damage to building rendering it unsafe to occupy (e.g. foundation or structural damage)
Minor	Harm, not necessarily resulting in "significant harm" but probably requiring expenditure to resolve or financial loss. Non-permanent risks to human health that are easily mitigated, e.g. by wearing PPE. Easily- repairable damage to structures or services	Contaminant concentrations requiring the wearing of PPE during site work, but no other long-term mitigation. Discolouration of concrete

The likelihood of an event (probability) takes into account both the presence of hazard and receptor and the integrity of the pathway between hazard and receptor, and is assessed as follows:

Category	There is a pollution linkage and:
High	Event is likely in the short term and almost inevitable over the long term. Or,
	there is evidence of actual harm at/to the receptor
Likely	Event is possible in the short term and likely over the long term
Low	Event is unlikely in the short term and possible over the long term
Unlikely	Event is unlikely, even in the long term

Potential severity and probability have been assessed in the following matrix, to give an overall risk rating:

	Severity								
Probability	Severe	Medium	Mild	Minor					
High	Very high	High	Moderate	Low/moderate					
Likely	High	Moderate	Low/moderate	Low					
Low	Moderate	Low/moderate	Low	Very low					
Unlikely	Low/moderate	Low	Very low	Very low					

The above risk categories are likely to result in the following actions:

- Very high: urgent intervention / investigation needed, remediation likely to be required
- High: urgent intervention / investigation needed, remediation possibly required in short term and probably required in long term
- Moderate: investigation needed to clarify and refine risk; remediation may be required over the long term
- Low: it is possible that harm could arise to a receptor, but if realised, such harm is likely to be, at worst, mild
- Very low: it is possible that harm could arise to a receptor, but if realised, such harm is unlikely to be severe

